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Abstract. A major challenge in securing end-user systems is the righopii-
lar applications being hijacked at run-time. Traditionaasures do not prevent
such threats because the code itself is unmodified and Inoaialy detectors are
difficult to tune for correct thresholds due to insufficieratihing data.

Given that the target of attackers are often popular apipica for communica-
tion and social networking, we propo&msemblea novel, automated approach
based on a trusted community of users contributing syst@htevel local behav-
ioral profiles of their applications to a global profile mergiengine. The trust can
be assumed in cases such as enterprise environments and @athler policed
by reputation systems, g.,by exploiting trust relationships inherently associated
with social networks. The generated global profile can bel bgeall community
users for local anomaly detection or prevention. Evaluatiesults based on a
malware pool of 57 exploits demonstrate that Ensemble isffecte defense
technique for communities of about 300 or more users as iergrise environ-
ments.

1 Introduction

End-user systems can be difficult to secure for a variety afoas. They are typically
unmanaged: users download software, browser ketgdn this paper, we focus on de-
fending against a class of attacks in which popular appdinatare hijacked at run-time.
In the past, this has led to wide-spread attacks such as thpeSkorm [14] spread us-
ing Skype and buffer overflows in Outlook email clients to @xe arbitrary code [7].
Traditional measures, such as anti-virus scanners [5],ad@revent such threats be-
cause the application code itself is unmodified. Prior waordtigates that system-call
level profiling [23, 33, 37] may help detect such attacksyelault a significant barrier is
a lack of sufficient training data to ensure low false positates.

In this paper, we preserinsemblga novel unsupervised anomaly detection ap-
proach based on the idea of a trusted community of usersibofitrg system-call level
local profilesof an application to a common merging engine. The mergingnengen-
erates gylobal profilethat captures the possible space of normal run-time betswsfo
an application. The global profile can be used to detect argmteanomalies in appli-
cation behavior at each end-host in real time. The promighisfapproach is that it
helps overcome the problem of a lack of sufficient trainintads each host and can
be largely automated. The challenges are making such ansyteient, overcoming
the differences in profiles due to factors such as variatiomsstallation directories or
hardware, and identifying the appropriate informationadiect in profiles.

The underlying hypothesis of Ensemble is ttest,the number of local profiles in-
creases, the aggregate global profile tends to convergs, itnealing the normal be-
havior of the target applicationMost applications in our experiments were found to
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satisfy this property, though we also identified types ofliations that would be ex-
ceptions. This paper makes the following contributions.

Handling diversity in execution environments:Various factors impact community-
based profilinge.g.,the same application at different hosts may be installedfierdnt
directories, run with different amount of memory, and usiéedént number of CPUs.
All these can cause variations in the system call traces thilr parameters. We de-
termined the types of data to use for generating behaviodligs to handle these
variations, while keeping profiles compact and represietaf the application.

Analysis of the relationship between the community size andalse positive
rates: We first applied community-based anomaly detection to a conityof 12 users
using a normal, clean instant messaging application. Ttedldd system-call level data
were sampled for 50 minutes during 5 hours with each locdilprgenerated based on
one minute of sampled data. We found that high false pogisites to be of significant
concern, just as with single-host profiling using systentsc& testbed of virtual ma-
chines was subsequently used to study the impact of scafiigeusystem to a larger
user community. We found that the techniques, in genenad, te become much more
effective with larger community size. Significant reductio false positive rates was
observed after reaching approximately 300 users.

Techniques to reduce data transfer by sharing summary data gnerated by
profiling applications: We show that while each host collects detailed system-aadl |
data [23, 26, 36] for local analysis, it only needs to send a@sbamount of local
profile data per application (approximately, 4-5 KB/secatoommon server to create
community profiles.

A general interface: Our system provides a useful abstraction of a general eterf
for any target application to be protected. Multiple apations can subscribe to the
Ensemble service.

Ensembile is currently implemented in user space in WinddVesused Detour li-
brary [27] by Microsoft Research to intercept system caiistérget applications. For
improved efficiency, as discussedsih.2, Ensemble can be implemented as a service in
the OS kernel. The rest of the paper is organized as foll6@siverviews the related
work; §3 describes the overall model of Ensemigié;details our implementation; and
85 evaluates the system experimentally. Finajy,discusses limitations before con-
cluding in§7.

2 Related Work

Our work improves on existing work in the area of anomaly diéte by exploring
the applicability of community-based profiling to generdégailed run-time behavior
profiles of applications at the system call level. Below wghitight some of the related
approaches in malware detection and containment.

Anomaly Detection One of the first studies on anomaly detection for applicegio
was done by Forregt al. [23, 26, 36]. They executed an application multiple times
with different inputs to collect system call sequences drethtused those to form the
baseline behavior of the program. Any significant deviafiom the baseline was con-
sidered as an anomaly. Many of the follow-up studies [1622425, 37, 33, 20] incor-
porate machine learning techniques such as hidden-Markokehand neural networks.
Later studies examined the inclusion of system call argusidr8] and call stack in-
formation [22]. Generating a common model from differentsus a non-trivial prob-
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lem. In [16], Ballardie and Crowcroft explore several reggetative models, including
frequency-based models, a data-mining approach, and a $iaite machine approach.

All these above approaches can suffer from high false pesitite. The data col-
lection process is typically manual or may take a long timedweer most normal be-
havior. If the application’s normal behaviors are not adsgly captured, unobserved
normal behavior is likely misclassified as abnormal. Whigétér machine learning al-
gorithms [25, 33] can help, one fundamental problem in mgiktirese schemes practical
is the difficulty in getting sufficient training data to capglcomprehensive application
behavior.

Our work builds on the approaches in the above systems. Timapr contribution
is to show that if a large user community sharing their tragndata with an IDS at a
fine-grained level, behavioral profiles can be generatetlateamuch more complete
and accurate than local profiles. One of the challenges waieea in extending the
techniques to a community environment is that not just tipaitis, but the operating
environment for the software can be different. In our expents, we allowed appli-
cations to be installed in random directories on variousesys with diverse hardware
configuration and varying workload imposed by other appilaces. \We extend existing
algorithms for combining profiles to handle likely variaim

Community-based SystemsThe concept of “application community” [2] has been
proposed to collaboratively diagnose and respond to athglgenerating appropriate
configuration patches and filters. The goal is to generatenanamity-specific situa-
tion awareness gauge to predict imminent attacks. But it dmé focus on anomaly
detection as in our work to help prevent attacks.

A similar concept of “collaborative learning for securitj29] is applied to auto-
matically generate a patch to the problematic software auttaffecting application
functionality. However, the detectors used are staticaets without training, and the
ways in which the community is utilized are limited to gaihgrdetailed execution con-
straints in the binary, distributing the generated patcid, letting the user community
evaluate them.

Companies, such as Symantec [12], Microsoft, and Googtelelerage the no-
tion of a community to help identify malware programs or spamails [4] from user
based feedback. Vigilante [17] and Sweeper [34] try to dorlt@ernet worms by au-
tomatically detecting exploits. Both enable a user comityuni share their antibodies
to prevent and stop future attacks from Internet worms.

In other application contexts, the concept of community &las been explored.
PeerPressure [35] utilizes it to automatically detect aodtleshoot misconfigura-
tions by assuming that most users in the community have theatoconfiguration.
The Gamma System [32] was proposed to split the monitorisigaaong community
users, enabling minimally intrusive program analysis avftlgare evolution. Similarly,
Cooperative Bug Isolation [31, 30] leverages the commutaitgio “statistical debug-
ging” based on the feedback data automatically generatedtmnunity users.

In contrast to the above body of work, our work examines tlfiecéfeness of ap-
plying the notion of community at a much finer-grained leestead of just combining
binary feedback or signatures of worms, we integrate rometbehavioral profiles, con-
sisting of system calls and associated parameters, ofcapiplns across a community of
heterogeneous users. This allows us to extend anomalytidetés additional classes
of software applications.

Signature based anti-virus (AV) software In this approach, a user typically uses
a signature database of known attacks, resulting in theradga of negligible false
positives. Unfortunately, it is difficult to maintain sigiiaes covering new attacks. A
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study by Oberheidet al.[28] found that commercial AV software has a detection rate
ranging from only 54.9% to 86.6% for attacks that occurrethmprevious year. More
importantly, the AV software had significantly poorer deiea rates for more recent
malware samples. This implies that anomaly based deteistigtiil indispensable.
Behavior-based intrusion detection systems (IDS)These systems rely on pre-
defined rules to detect anomalies in the run-time systemvi@h&hey can better
detect zero-day attacks that attempt to evade code-bageatsies. But, getting the
rules right can be difficult and therefore the rules tend taddatively coarse-grained.
For example, by default, McAfee VirusScan Enterprise 8&5bifccess Protection rule
blocks outbound port 25 to filter malicious email programswéver, to get normal
email applications to work, 42 popular email clients, sushoat | ook. exe and
t hunder bi r d. exe [11], are exempt. Note these applications are often the eres
ploited.

3 Methodology

In this section, first we present high-level methodologssdinEnsemblethen explain
them in detail in§3.1 t0§3.3.

The goal of Ensemble is to detect application misbehavimtiqularly caused by
zero-day attacks. As the start point of our approach, wergémelocal profilefor each
application instance. Arofileis a summary of target application’s inter-process com-
munications and its behavior that can result in persisteanges (changes that survive
across reboots) to the file system, the registry, networtt adher system settings. They
are abstracted from system call traces. Statisticallygiitloe seen as representative data
points in the sample space containing all possible stategihg behavior of the target
application.

We envision that a large number of community users feed Ipaziles of an ap-
plication to a central server, which periodically aggregathem into aylobal profile
depicting the application’s normal behavior as a baselihe.global profile serves as a
classifierthat identifies anomalies using collected local profilesaising data.

To detect and prevent intrusion, we monitor the applicatiehavior and compared
it with the global profile continuously. An alarm is triggerevhen the application is
about to perform an operation that does not match the glotwdilgy The user can
be alerted or the system can be configured to directly bloekojeration. Next we
investigate several important challenges of our methagiolo

3.1 Profile Generation

Local profiles. A local profile is generated from raw system call traces [B6)Vin-
dows, system calls are undocumented, thus we use WindowsallRin our prototype.
For simplicity we ignore a set of APIs that do not modify hokt Bystem or network
state such as graphics and user interface API that are néikesed or even if abused
will likely be visible through other APIs we monitor. Also,aeonly focus on operations
executed by the target application given the profile is foagipular application, with
the exception of the process dependency, as discussed. below

Global profiles. A global profile is distilled from multiple local profiles. Wievelop
a taxonomy for APIs in terms of functionality (process degemcy, file access, network
accessetc). For each category, corresponding records in local poéle aggregated
by key attributes (Table 1). An example of aggregating Fitezdss category is shown
in Table 2.
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Table 1.Key attributes for primary categories in global profiles

| Category | Key Attributes |

Process Src Process Name/Image Hash,
Dependency| Dst Process Name/Image Hash,
Type € {Fork, Hook, File..}

File Access | Filename, Typec {Read, Writé
Registry AccesRRegistry key, Typec {Read, Writé

Network Remote IP, Remote Port,

Connection Protocole {TCP, UDP, othef

Table 2. Example: aggregate records in local profile (a) into globafife (b).

(a) Local profiles (b) Global profiles
Profile ID|FilenameBytes accessegtlype |FilenameType Count by profiles
1 a.dat 10 read | a.dat |read 1
1 a.dat 15 read | b.dat |read 2
1 b.dat 10 read
2 b.dat 10 read

Among all the categories, the process dependency [29] eflie interaction
among processes of the target application and other pregeAdocal profile contains
two types of dependencies: indirect and direct dependéndiyect dependency, such
as a file dependency (Process A writes file F, which is thenlbgatocess B), requires
an object €.g.,afile or an IP address) as an intermediary. It is synthesigedtrelating
multiple API calls. Direct dependency, such as a fork depeany, takes place without
an intermediary. It can be inferred from a single API call.

3.2 The Environment Diversity Challenge

For categories other than process dependency, the sindptif¢hodology illustrated in
Table 2 has limitations. For example, for a text processfferént users edit different
files, thus the file access category is not aggregatablevéhaising the filename as the
key attribute. Similarly, a P2P client may talk to random tlélieesses, leading the aggre-
gation in the global profile to be a set of IP addresses eat¢hweity few occurrences.
We apply two methods to address this challenge.

First, we use predefined rules to normalize the path and fieesaFor example,
c: \Docunents and Settings\Alice\a. dat isnormalized tdJSER- DOC\a. dat .
This also helps protect the privacy of community users.

Second, our main solution Btack Signaturewhich describes the stack history of
the calling thread for each API call. The key idea is that tlaamtiom” events of the same
functionality of a program such as sending a message or makwWolP call in Skype,
should be associated with a fixed set of execution paths émalbe represented by call
stacks. Based on this assumption, we introduce Stack Signat compact version of
call stack. A Stack Signature is calculated by iteratingstdick frames of the current
thread and XORing their return addresses. In the case ofsigelcalls, return addresses
occurring multiple times are counted once.

In a global profile, the relationship between stack sigregand objectse(g.,file-
names and IP addresses) can be characterized by a weigptatiteigraph, whose
vertices are divided into two disjoint sef§ andY’, where X is the set of stack sig-
natures and” is the set of objects. There is an edge z — y € FE wherex € X
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andy € Y, if and only if an event accessing objechas stack signaturein at least
one local profile. Each element iXi, Y and F has a weight, indicating its occurrence
frequency in terms of the number of local profiles. Excepttf@ process dependency
which is fairly stable, we introduce stack signatures arahipartite graphs as the data
abstraction for all other categories.

We observe many such cases in our experiments. For exan@sck signature
0x61AE46F8, QQ [8] — an instant messaging application may receive data ft
least 64 different servers such as 121.14.*.*,219.1335861.*.*, via port 8000. All
servers are found at Guangdong, China, where the headgo&@s) is located. The
size of received data is always a multiple of 10240 bytes.

3.3 Anomaly Detection

As described at the beginning of this section, Ensembletdiperiodically pull the
global profile from the server. The anomaly detection and/gméon are performed
continuously. Before each operation monitored by Ensensbéxecuted, the API call
is intercepted and compared with the global profile usingfttlewing comparison
algorithm.

1. Threshold-based process dependency anomaly detectiolf:a process depen-
dencyD is detected€.g.,a fork or file dependency), we locate its frequentyD) =

f# of 'Oia(')flrgt';"a‘f;rcoc}ﬂ:;'“'”@ in the global profile, iff (D) < thpp, wherethpp is a thresh-
old, thenD is regarded as abnormal.

2. Stack signature analysis:If the operation to be executed by the target application
falls into other categories in Table 1, then its stack sigret is calculated, its objeqt

is identified, anc : © — y is matched against the bipartite graBh = { X, Y} in

the global profile. Let the frequency efandx in B¢ be f(e) and f(x), respectively.
(ie., f(e) = Lolleaprols conaing) | et the degree of in B bed(z). We also in-
troduce thresholdgh., th, anddeg,. We determine whetheris an abnormal action
by several tests searching for the predictable relatiomefdbjects accessed by stack
signatures.

Test 1. Does a fixed stack signature always access a fixed®tgeg.,The program
reads a constant configuration file) Formallyfife) > th., thene passes the test and
no further tests are needed.

Test 2. Does a fixed stack signature always access diffelgetts?(e.g.,A file
editor may open different files) Formally, jf(x) > th, andd(xz) > deg., thene passes
the test and no further tests are needed. This handles theEtilironment Diversity
Challenge.”

Some challenges arise, as we observe that in multiple exesubf the same ap-
plication, a single object may be accessed by differenkssignatures forming one
or more clusters. Figure 1 is an example of reading $és vUCer t . key in 1,305
executions by Serv-U 5.0.0.0 (a commercial FTP server).sthek signatures form a
cluster ranging fron®x1019A500 to 0x1019A5FF. We conjecture two reasons: (1)
The locality of object access. The same object is often aeckat close-by instruction
addresses. For example, the code in Figure 2 is common in @qns. The consecu-
tive calls off r ead satisfy the locality principle. (2) The accumulation of iedies. A
signature is calculated by XORing return addresses stick frames with each frame
having a variety of;, the total variety can be as large|ds._, ;.

Motivated by the above observation, we add two additionsiistéo reduce false
positives.




Ensemble: Community-based Anomaly Detection for Populgpli&ations 7

i
N

o)

Appeared times
e

0><1099A500 0x1019A5FF

Stack signatures

Fig. 1. Frequency of accessirger vUCer t . key from different stack signatures in 1305 local
profiles.

FILE * ifs = fopen(“data.dat”, “r”);

fread(&paral, sizeof(paral), 1, ifs);

if (paral == 1) fread(&para2, sizeof(para2), 1, ifs);
/* read other parameters */

fclose (ofs) ;

Fig. 2. Sample code of reading a file.

Test 3. Does a cluster of stack signatures access a fixedt@hjexdefine a cluster

by a window centering at:
Xwin = {z € Xc;“z —z| < wz’nSize}. Formally, if
cex,.. f(€ 12— y) > the, thene: x — y passes this test.

Test 4. Does a cluster of stack signatures access diffefgiects?Formally, if
Yexy, f(2) >thyandy  d(z) > deg,, thene passes this test. It is a further
generalization of Test 3.

Test 3 and 4 may introduce false negatives; however, thegxgredient alternatives
in the situation where the number of samples is limited. llgeahen the global profile
contains a large enough sample space, Test 3 and 4 can beeciy Test 1 and
2, respectively, since the range of stack signatures isefifitgure 3 illustrates four
patterns in the global profile, corresponding to the above fests.

Cluster Cluster

i ﬁ QOOP|QAAP)
Obiects DIOIOIO. \éé/’/

Test 1 Test 2 Test 3 Test 4

Fig. 3. Four APl invocation patterns

4 Implementation

The architecture of our Ensemble prototype is illustratedrigure 4. It is designed
to perform online anomaly detection using continuouslyaipd global profiles and
generated local profiles. Existing work is mostly evaluateldnux environments while
our system is implemented on Microsoft Windows XP, which ie@e common attack
target. Our prototype is implemented using about 10,00slwf C++ code.

In our design, we initially tried to implement Ensemble byngssystem call se-
quences (N-gram previously proposed [23, 26, 36]) as theesgmtation of local pro-
files, due to its claimed effectiveness and simplicity. Hegrewe found that N-gram
has surprisingly low convergence speed for Windows API seges in terms of ob-
taining the model of application’s normal behaviors, likdue to a much larger sample
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space than in Linux (the number of Windows APIs is 6 times thmler of Linux
syscalls). We estimate two reasons for such big discrepdinsty there are distinct dif-
ference between Unix/Linux system calls and Windows ARdspad, modern applica-
tions are becoming more and more complicated. System caljsma too find-grained
characterization of program behavior. Note that a lot ofagshers apply N-gram algo-
rithm on virus or malwares, whose binary sizes are much ks kegitimate applica-
tions. Therefore, instead we resort to the simpler frequdrased model as described
in §3.1 that has a faster convergence behavior.

Ensemble Client

Anomély Detection Results
Detection |——»

API Call Module
Traces
Sampling Ensemble

A

Module Server
‘Local Profile
Global
Profile Comm. Global Profile
Module

Local Profile

Fig. 4. The Ensemble Architecture

4.1 Generating Profiles and Anomaly Detection

We used th®etourLibrary [27] to monitor and log 106 APIs calls related to filessgem
(26), registry (8), file mapping (6), messages (8), threddprbcess (8), network (13),
pipe (6), hook (3), clipboard (3), system time (6), DNS (Hntdle management (2) and
user accounts management (11), most of which are Windowasfepdo the best of
our knowledge, they cover most APIs that can cause intesgg®communications, or
result in persistent changes to the file system, the regtbEynetwork, and other system
settings. Note that it is fairly easy to include new APIs te framework. We generate
stack signatures using i8¢ ack\Wal k64 function in Windows Debugging Library.

Given the raw API traces and their stack signatures, thd jocdiles are gener-
ated as described 8.1 (for process dependency) agi2 (for other categories). We
implemented seven categories for profiles. (1) processrdbpey, (2) file access, (3)
directory access, (4) registry access, (5) network commredit) DNS, and (7) IP prefix
access. For (1), we handle 4 types of direct process depeiedesend message, set
hook, create/terminate/suspend process (thread) and/meatl/alloc/dealloc process
memory, and 8 types of indirect dependencies: files, rggifte mapping, network,
named pipes, anonymous pipes, system time and clipboaedtrahsformation from
API traces to other categories.(.,file access, network access) is trivially done by
translating API parameters.

The global profile is generated by grouping various locafifee. Except for the
process dependency, which is represented by a table like P4b), other categories
are represented using bipartite graphs (stack signatuodject names).

Our anomaly detection algorithm described§®.3 is very efficient. For process
dependency, the dependency inference and frequency losk(f ) in run time using
hash tables. For other categories using bipartite grapbes;amputational complexity
for Tests 1 and 2 i®)(1); while Test 3 and 4 are alg9(1) given that the window size
is a small constant.



Ensemble: Community-based Anomaly Detection for Populgpli&ations 9
4.2 Operational Model

Finally, we present an overview of Ensemble’s operationadieh. At each client, En-
semble is running as a system service and is transparenettatget application.
CAPTCHA is used when subscribing or unsubscribing Enserséieices to prevent
tampering from bots.

When the application is running, tiEensemble sampling moduteriodically logs
its API calls with stack signaturésnd generates the local profile.g.,every 3 hours,
one local profile is generated from 1-min sampling of API d¢edices). TheEnsem-
ble communication modulgeriodically submits the local profile to the server, anadals
fetches the global profile from it. THensemble Anomaly Detection Modikeps mon-
itoring target application’s API calls and matching thenmhathe global profile. If an
alarm is triggered, the requested operation is denied eodétision is left to the user.

Initially our anomaly detection is sampled: a local profdegenerated periodically
and compared with the global profile. Then we found that ef/#freianomaly detection
is performed continuously, the extra overhead is accept@bss than 2%), given that
in most cases, the applications’ API calls are not invokeal ‘fbursty” manner.

The Ensemble server can be maintained either on a large(gcglgby the applica-
tion vendor), or on a small scale.@.,within an enterprise network). Its tasks include
collecting local profiles, generating the global profile artder management function-
alities. Ideally, each version of the application shouldehiis own global profile. De-
pending on the specific application, one global profile map aharacterize several
versions with minor differences.

4.3 Limitations of the Prototype

Our current prototype has the following limitations whicte anot fundamental to our
design. At the client side, the sampling module is impleradrt the user level, using
a third-party library. For future work we plan to move theiemsystem into Windows
kernel. At the server side, in order to prevent pollution tftal profiles, we plan to
investigate the use of reputation systems that establisth &among community users.
Currently, we envision our system to be mainly deployed itegrise environments
where trust can be assumed.

The latest Windows Vista adopts Address Space Load RandtionZ ASLR) tech-
nigue [1], which hampers the functionality of Stack Sigmetu We can address this
problem by using the relative offset of the return addressfthe module’s start ad-
dress, together with the module signature. We plan to egjlas as future work.

5 Evaluation and Experiments

In this section, we systematically evaluate Ensemblet Riesdescribe a small-scale
deployment for a community of 12 use§b(1). Based on the negative results due to
the limited size of the community, we introduce our testbed @rget applications used
for experiments§5.2), then analyze the generated local profilgs3) and the result-
ing global profiles §5.4). Next, we measure false positivé$.6) and estimate false
negatives using a recent malware collectig®.§). Finally we present the performance
evaluation of our systeng$.7).

! To capture process dependency, some APIs called by otheegses also need to be logged.
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5.1 Small Scale Real Deployment

We deployed Ensemble among 12 real users, ugiimgdows Live MessengéMSN)
as the target application. All users were using Win XP SP2itlt different software
and hardware configurations. Before the experiment, we adgnupgraded their MSN
to the same version (2008 Build 8.5.1302.1018) and ensheesltstems are virus-free.
Users were not familiar with technical details of Ensembled were told to use MSN
as usual. For each user, we collected 50 API call traces,laatihg 1 minute, during a
5-hour period. We used this dataset to evaluate false pesiti

We used 5-fold cross validation on 600 traces to evaluase fabsitives. For each
trace in the test group, if any API call triggered a false mlathen the local profile
was counted as one false positive. For the paramet&z & we empirically seth, =
1%, thy, = 1%, deg, = 10, winSize = 4K B (We tried different parameters such that
the < 2%,th, < 2%,deg, < 20, and obtained similar results). We found that the
false positive rates were too high to be accepted (greaser 30% for file access and
registry access). The reason is that 12 users are not sofficidorm a community to
cover diverse application behavior.

5.2 Experimental Infrastructure

To test the impact of a larger community, we created an autedrtastbed to simulate a
community environment. The idea is simple: to execute thgetaapplication multiple
times on the testbed. In each execution, a local profile iatetkand fed to the global
profile generator, as if it was submitted by a real commun#gruThen we use the
global profile to test against normal and abnormal beha@ndsevaluate false positives
and negatives. We have two design goals for the testbed.

— Diverse User BehaviorsRandom user actions are injected during each trial. The
distribution of the randomness should roughly conform tt tf a real community.

— Diverse System Environment.During each trial, the system environment should
also vary to simulate hardware and software variations @ahcommunity. For ex-
ample, a VoIP client may adjust its voice encoding strateggoading to available
network bandwidth, leading to different local profiles.

We manually created a Finite State Machine (FSM) for eadetaapplication to
describe most of its main functionalities from an end uspésspective. FSM can be
generated in a more automated fashion by combining userstiaed adding some per-
turbation to include additional usage behavior. Despiterttanual effort, FSM based
representation for understanding application usage, @gproximate, can aid in gener-
ating more diverse usage scenarios for a given applicafigare 5 is a simplified FSM
for MSN. In each automated execution, the testbed pariieitgtes the FSM based on a
Markov chain model, which characterizes the popularityggdlecation’s different func-
tionalities. Each state transitidiy, — S, in the FSM represents a user action. A weight
is assigned te indicating the probability that the next stateSig given the current state
is S,;. For example, in Figure 5, “Login” is the initial state whdtee user starts the
application. The probability that the user successfulgslin (ﬁ = 77%) is much
higher than the probability that the user enters an invédidt password{%).

The testbed not only randomly chooses the action, but alsout®s some actions
with randomness. For instance, it is able to operate anrihstassenger by selecting a
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Fig. 5. A simplified finite state machine of MSN. Labels on edges iaticstate transition proba-
bility.

random user and chatting with him/her via random text messagmotion icons, hand-
writings or Flash winks. In another example, the “make phcal€ action in Skype is
carried out by dialing a number from 3000 toll-free numbeesasllected.

We admit that our approach contains subjective elementgharsdnay not perfectly
simulate a community environment. However, a communisffiis a set of subjective
users and has a tendency to change from time to time. Also, iivehew in §5.3 the
heavy-tailed distribution of simulated users’ behavievkich are usually the case in a
real community.

To tackle the system environment randomness, the testliedhatically changes
the hardware/software configurations for each trial. Alpesiments were conducted
on virtual machines (VMware 6.0.2) for ease of managemere.viried configuration
includes memory, number of processors, installed softyweaisting running processes,
system workload, firewall settings, system time, netwonkdveidth, DNS servegtc.

The testbed includes a FSM script parser, an action exethbrmaintains the
state synchronization and sends mouse/keyboard inpuét@ibet application, a con-
figuration manipulator that changes the system environ@edta communicator that
communicates with the Ensemble kernel. The testbed isumiitg about 3,000 lines of
C++ code.

We chose four applications running on Microsoft Windows XP2Sas our ini-
tial target applicationsSkype3.5.0.239Windows Live MessengéMSN) 2008 Build
8.5.1302.1018Tecnet Q8] (2007 Beta 4, 7.0.374.204), an ICQ client with typically
more than 30 million daily online users in Chingerv-U[9] (5.0.0.0), a commercial
FTP server. These applications were selected due to theid@adty and past history of
attacks targeting them.

5.3 Local Profiles

Table 3 shows the number of local profiles, sampling times/dlog sizes of local
profiles of each target application. The sampling time wasoseonform to a Gaussian
distribution. The sampling process started either at @rdfte application starts, and
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Table 3. Statistics of local profiles

Target| #of Sample Sample APITrace LP
App | local Time Time Size Size
profiles (Mean) (Std Dev) (Mean) (Meah)

Skype| 550 60secs 5secs 3.40MB 0.20MB
MSN | 1298 75secs 5secs 1.17MB 0.09MB
QQ | 1118 60secs b5secs 1.18MB 0.09MB
Serv-U 1305 45secs 5secs 0.23MB 0.03MB

Table 4. Statistics of global profiles

Target| Process File File Dir Dir Reg Reg Connections IP DNS
App |Dependency Read Write Read Write Read Write Prefixes Query
Skype 8 209 237 178 208 4,587 328 135,844 115864 |0
MSN 10 2,884 244 795 90 54,506 2,749 6,417 554 0
QQ 4 6,549 8,029 6,541 8,021 59,491 229 11,867 9823 10,691
Serv-U 1 2,609 835 305 7 146 O 23,295 2 1

stopped either at or before the application terminates. fiitee collection of local
profiles lasted for one week.

As mentioned, we created randomness during each trial tolatedifferent user
behavior in the community. Thus each “user” may explore &diht subset of the
application functionalities. Figure 6 illustrates thetdisution of FSM patterns for
Skype, MSN and QQ. A pattern defines the states iterated byestibed in a single
trial. If there aren possible states in FSM, then there exi&ts— 1 possible patterns
0,0,...,0,1),....,(1,1,....,1,1). For pattern(a, as, ..., a,,), a; = 1 iff the i-th state is
visited at least once in a trial. The heavy-tailed distritn$ in Figure 6 demonstrate
the diversity of user behaviors generated by our testbeavedisas the similarity of
most users’ behaviors. Although this may not exactly malehactual user behavior,
we believe our method adds sufficient randomness to clopgisoaimate general user
activities.
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Fig. 6. FSM Pattern distribution for Skype (474 patterns), MSN @ p&tterns) and QQ (584
patterns). The X-axis is log-scaled.
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5.4 Global Profiles

Table 4 presents statistics of global profiles. The numiretise table are the numbers
of process dependencies and, for other categories, theetuhbdges in the bipartite
graphs.

The process dependency categories of QQ, MSN and Skype awnsh Fig-
ures 9(a), 10, and 11(a), respectively. Only parts withdslihie represent the observed
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dependencies; while the dotted lines indicate detectedeh#vior §5.6). The percent-
age on the edge denotes its occurrence frequency. The difgenfite graphs is usually

much larger.
[1118] [1118] [1113]

(b) Registry Write Category of Skype
2]

1819104555
[625]

[625]

458221870 458221885
&1 18]
625 9] 9] L
- = \

(c) Directory Write Category of MSN

Fig. 7. Examples of bipartite graphs. From top to bottom: (a) Regisrite category of QQ (b)
Registry write category of Skype (c) Directory write categof MSN

Figure 7 shows examples of the bipartite graphs. For eacfigsub, the upper part
X is the set of stack signatures; the lower pgrts the set of objects (registry keys,
directory namesgtc), which are represented by a number (object ID). The numibers
square brackets are the frequencies.

— Subfigure (a) is a common case where a fixed stack signatcesses a fixed object.
For example, stack signatude7BF74721 always reads 3 registry keys:
\REG STRY\MACHI NE\SOFTWARE\Cl asses\QQCPHel per. ..
\REG STRY\MACHI NE\SOFTWARE\Cl asses\CLSI D\23752AA7. . .
\REG STRY\MACHI NE\SOFTWARE\Cl asses\CLSI D\23752AA7. . .

— Subfigure (b) illustrates a random event problem. For edeh Stack signature
1814742014 (0x6C2AC3FE) writes different registry keys under
\REG STRY\MACHI NE\SOFTWARE\Cl asses\CLSI D\ and
\REG STRY\MACHI NE\SOFTWARE\Cl asses\TypeLi b\.

— Subfigure (c) illustrates the slight variation of stacknsitures, as explained in
§3.3. We can observe two clusters of stack signatures in sufig): 458221877,
1819194?7??. Both clusters access the user cookie dirdds@tiR- DOC\cooki es.

5.5 False Positives

We used the same methodology (5-fold cross-validation)thagarameters as in the
real deployment§5.1) to evaluate the false positives for the testbed. In€rapthe col-
umn “LPs” indicates the number of local profiles in the testug; the columns “Worst”
and “Best” indicate the highest and lowest number of falsstpes (traces that con-
tain at least one API call that triggers the false alarm)peesvely, in 10 independent
experiments (each experiment has 5 passes).

Table 6 presents a fine-grained false positive measurer8enilar as above, we
employed 5-fold cross-validation and the experiment wagaéed for 10 times using
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Table 5. Coarse-grained false positives (counting the number & Ipfiles)

Target App Skype MSN QQ ServU
Category LPs Worst Best.Ps Worst BegL.Ps Worst BegtLPs Worst Best
Process Dependendy10 O 0262 O 0226 1 0196 O 0
File Read 110 O 01262 O 01226 O 0(261 O 0
File Write 110 O 01262 O 01226 O 0(261 O 0
Directory Read [110 O 01262 O 01226 O 0(261 O 0
Directory Write {110 O 0262 O 0226 O 0261 O 0
Registry Read (110 O 01262 4 21226 1 0(261 O 0
Registry Write (110 O 01262 1 01226 O 0|0 O 0
Connections N/A 262 4 2226 1 0(261 O 0
IP Prefixes N/A 262 0 01226 O 0(261 O 0
DNS Query 0 ©O 0|0 O 01226 O 0(261 O 0

the same parameters. In Table 6, the column “Avg E” denotesatierage number of
API callg in the test group, which were fed into Ensemble Anomaly Dietadviodule;
the columns “Worst” and “Best” indicate the highest and Istweumbers of API calls
that are mistakenly detected as abnormal, respectively.

Table 6.Fine-grained false positives. (counting the number of sdg®DGs or bipartite graphs)

Target App Skype MSN QQ ServU
Category |Avg E Worst BestAvg E Worst BestAvg E Worst BesfAvg E Worst Best
Proc. Dep.| 498 0 0| 2203 0 0| 844 1 0| 196 0 0
File Read {13271 O 031650 O 040578 O 0(6290 O 0
File Write | 1938 0 0| 3623 0 0140138 O 0(3473 O 0
Dir Read |10214 O 0(22292 O 0(39903 O 0(2758 O 0
Dir Write | 1650 O 0| 2711 0 040114 O 0(1810 O 0
Reg Read|43398 0 01611294 55 37415532 1 01]23943 O 0
Reg Write 33639 0 0(25441 1 0(23805 O 0| O 0 0
Connectiong N/A 23398 12 418074 11 0]7194 O 0
IP Prefixes N/A 17974 O 0(16385 O 0| 516 0 0
DNS Query O 0 0 0 0 0|17085 O 0| 258 0 0

For Skype and ServU, no false positives were observed. FaX M&d QQ, al-
though their fine-grained false positives of Registry Read @onnections categories
were slightly higher even when the false positive rate cage® (shown in Figure 8),
the mistakenly detected API calls concentrated in a fewllpoafiles (Upon manual
inspection of the logs, it was highly possible that during eneration of these local
profiles, the application terminated unexpectedly.). liged they were indeed appli-
cation’s natural behaviors, then as the pool of trainingdetcomes larger, the initial
“strange” behaviors will become normal, and the large siz&aining data is exactly
the advantage of a community.

When we were testing Skype, it produced unacceptable falséiye rates for
network-related behavior (two categories whose falsetpesilabeled as “N/A’ in Ta-
ble 5 and Table 6). Upon manual inspection, we found that thekssignatures from
network related APIs were almost uniformly distributedtie entire address space, and

2 To be precise, “Avg E” is the number of process dependencigiseonumber of edges in the
bipartite graph.
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the dumped stack frames were also abnormal. Based on owatisin, Skype may em-
ploy some obfuscation techniques to protect their codenayegverse engineering [10].
In summary, we believe that the false positives of Ensemigl@eceptable.

Furthermore, we used 600 API call traces obtained in redbgepent to test against
the global profile generated by 1,298 MSN local profiles frbvn testbed. We obtained
false positive rates of 0% (process dependency), 6% (fild)rd&o (file write), 2% (di-
rectory read), 1% (directory write), 11% (registry read)s fregistry write), 9% (con-
nections) and 3% (IP prefixes), using the metric in Table Sortmanual inspection,
the main cause of false positives was the incompletenessrdf®V model, in which
some use cases such as video chat were not covered.

We also measured the relationship between the communiyesid the false pos-
itive rate using a 5-fold cross-validation, and presengsrésults using the worst case
(the highest number of false positives in 10 independenégxgnts). As shown in
Figure 8 for three applications, it is clear that the finekgyed false positive rate sig-
nificantly decreases with increasing number of local prsfied converges to a stable
value (We discussed the high false positives of QQ and MSheear this section). A
real active community is believed to have orders of mageitafimore local profiles
submitted by users, thus ensuring a low false positive rate.

—e—File Read
—=—File Write
——Registry Read
—Registry Write

Number of false positives
@
3

“ QQ-YQ\A
% 50 100 150 200 _ 250 300 350 400 450
Number of local profiles as training data
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120 ~=—File Write
——Registry Read
100F ——Registry Write .
——Network C

Number of false positives

0 100 200 800 900 1000

300 400 500 600 700
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40- ——Network Connection

Number of false positives
w
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s
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Nilégber o‘f‘?gca\ pr%?i(ljes asst?giningzoacl’a
Fig. 8. Convergence of fine-grained FP as local profiles increasm: ($kype; Middle: MSN;
Bottom: QQ)

5.6 False Negatives

We evaluate false negatives on a total of 57 known malwargrprms and exploits
for each target application by performing online comparibetween the application
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Table 7.0ur malware/exploit collection used in false negative eatbn

|Target App# of Malwares/Exploitf Descriptions |

Skype 3 Worm
MSN 25 Worm, password trojan
QQ 27 Password trojan
Serv-U 2 Buffer overflow exploit$

behavior monitored in real time and the global profile, whigks generated from local
profiles described in Table 3. We used the same parameters thg ifalse positive
evaluation.

Table 7 summarizes our selected malwares and exploitsstganget applications.
They were selected from a malware collection obtained frameypots, Web page
crawling, and spam traps. It seems that these 57 malwaregxgidits have some-
what common exploit techniques. However, we argue that ¢tine merit of anomaly
detection system is that, no matter how sophisticated aclattill be, as long as the
application’s behavior deviates from the baseline, thevaalp can be detected without
prior knowledge.

For QQ, we tested 27 password stealer trojans, all of whictewetected by En-
semble. Figure 9 shows a representative case. The trojaessd 180. EXE) sets a
keyboard hook t6€)Q EXE and tries to log users’ keystrokes. The trojan also caused ab
normal file accesse&ERNEL32. DLL andl SI GNUP. SYS. The latter was extracted
by the trojan.

/ S

/ \
b
HOOK  FILE
P .
5

| Stack Addresb File Pathname |
(aaexe) 0x157C278F|PROGRAMFI LES\I nt er net Expl orer \
Connection W zard\i si gnup. sys
rofc wda Mo ik 0x157C2746 Ker nel 32. DLL

(b) file read category

(a) process dependency
Fig. 9. Anomaly detection results of the QQ trojan

We attempted two buffer overflow exploits using the Metagi@mework [6]
against Serv-U. Both exploits were detected by Ensemble.e2ploit caused ServU to
spawn a command line shell, which could be remotely corgdotly the attacker. An-
other exploit made ServU to download a file and execute it.eXpdoit was constructed
in Metasploit by providing a URL pointing to an executable f{in our experiment,
the downloaded executable wast t y. exe, which was then renamed & exe and
executed). In Table 8, a series of events before the execafia. exe were clearly
revealed by failing to match abnormal edges with bipartitggs in the global profile.

For MSN, we tested 25 worms that hijack MSN to send out maligicontents to
the user’s contacts. In one example shown in Figure 10, tHe/ana process with a
long file name tried to modify registry keys and files that M%Jsd later.

Skype consists oBkype. exe andSkypePM exe. We tested three worms that
abused the Skype API to send malicious links to deceiveversto click them. Since
the Skype API on Windows is implemented using the messagaanéam, Ensemble
detected the worm namest W nsDat . exe that sent messages 8kype. exe, as
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Table 8. Anomaly detection results of the Serv-U buffer overflow @xp(unusual file and net-
work access)

| Stack Signature(s) |Object Type Object Name |
6607A2DC 6606A17F File Read || ETEMP\Cont ent . | E5\HOSBCDNG\put ty. exe
112CF1F2 660AC700 660AC7D1| File Write {| E TEMP\Cont ent . | E5\HOSBCDN6\putty. exe
11201534 11211697 File Write |SYSTEM32\a. exe
6606A17F 6607A2DC Dir Read || ETEMP\Cont ent . | E5\HOSBCDNG
11211697 11201534 Dir Write |SYSTEM32\
660AC7D1l 660AC700 112CF1F2| Dir Write || ETEMP\Cont ent . | E5\HOSBCDNG\
60814BDC 17A77DFF Connection193. 201. 200. 66: 80 TCP
1B772B23 1B7729D0 IP Prefix |193. 201. 200. 0/ 23

(Omitted: 106 registry read edges and 26 registry write sfige

REGISTRY
87%

lexplore.EXE

Fig. 10. Anomaly detection results of the MSN worm (process depetigen

shown in Figure 11. Ensemble also detected that Skype redid!$t W nsDat . exe
from two stack addresses that never appeared in the globf#kpr

As part of the real-deployment igb.1, we manually executed 25 MSN worms on
3 real machines with different configurations. All abnorriehaviors were detected by
Ensemble. Furthermore, it seems that all above anomaliglseaovered by the process
dependency category. However, we argue that other catesgare necessary. For one
reason, it is possible that some attacks can happen witlmooegs dependence.g.,
anomalies caused by network packets such as Apache-Knaxgiait [3]). Further-
more, as shown in Figure 9(b), Figure 11(b) and Table 8, athgories provide more
detailed information about the anomaly.

| Stack Addresb File Pathname |

0x6C37D084 |SYSTEM32\st wi nsdat . exe|
0x6C37EFFD|SYSTEMB2\st wi nsdat . exe|
(b) file read category

MSG FILE MAP
MSG  FORK
38%  80% 2% 9%

(a) process dependency

Fig. 11. Anomaly detection results of the Skype worm



18 Feng Qian, Zhiyun Qian, Z. Morley Mao, and Atul Prakash
5.7 Performance Evaluation

Using four target applications mentioned above, we medsineoverhead of our pro-
totype in terms of time and space. The evaluation was donecammanodity Dell In-
spiron 530 PC (2.33G Core2 Duo CPU, 2GB memory, with WinXP BBtalled). We
believe that the overall overhead is acceptable. Extraydetarred by local profile col-
lection is less than 15%. Note that this happens infrequéat.,1 minute per 3 hours),
and Ensemble does not collect local profiles for two apgbeetsimultaneously. Extra
overhead caused by anomaly detection is less than 2%. Thatpgize of API traces
is less than 0.25 MB/min per application. The global profite s less than 10MB per
application. Like software update, the Ensemble servertarsfer a “patch” of the
new version of the global profile, with a much smaller size.

6 Limitations of Ensemble

While we found Ensemble’s approach to be a promising divadtr addressing a diffi-
cult problem of using run-time profiles for detecting codgations and other run-time
anomalies, we also noted limitations that would need to lkeesed in the future.

We expect that some applications to be too complex for psofdeconverge using
limited system-call sampling. Our experiments indicatat tinis is the case for com-
plex plug-in enabled applications such as IE and MS Wordespiag-ins may behave
differently from the original applications. Additionalsgling and larger communities
may help in such cases.

We plan to evaluate Ensemble in a real community with hureloédisers. Privacy
concerns must be addressed, even though only summary dath system calls is
exchanged with a server.

If a significant fraction of community of users mounted a cboated attack to
pollute the global profile, it is conceivable that the glopadfile can be corrupted. This
is more likely in open communities, where sybil attacks [28} possible. In closed
communities as in enterprise environments, such attaeksach less likely.

Different applications may require different types of pliofi. For example, if an
application purposely randomizes addresses at functidnstruction level €.g.,the
network access module of Skype mentionedt5 to obfuscate its behavior), then
stack signatures are ineffective. Alternative methodshs&s path profiling [15], can be
added to handle such applications.

In our design, the stack signature is generated by XORingueieturn addresses
of stack frames. The probability of collision is non-negig in 32-bit OS, but very
unlikely in 64-bit systems which are becoming increasirpyular.

6.1 Over-generalization

Each application has a set of “normal behaviors” (true liaskl False negative may
happen when the detector-defined normal behaviors go bethentlue baseline.g.,
over-generalized) because the features or methods are eibthwosen or the model
is not precise enough.€., an imperfect detector). For almost all practical IDS, the
detector-defined normal behaviors are broader than thebaseline, thus allowing
mimicry attacks. This is a problem with any detectors not jug's. The aggregation
process should not introduce much additional over-gerzaitédn. Consider the aggre-
gation of local profiles whose diversities are causedByJser randomness. Different
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users can generate different profiles but they mostly fathinitrue baseline assuming
profiles are trusted (User randomness can be regarded assixgrdifferent normal
execution paths in the applicatiolij) System environmentrandomness. We admit that
different system environment may have different set of fnarbehaviors”. However,
this should introduce limited over-generalization, if a@tall. In the worst case, we can
have separate aggregations/pools for different OSes dtvesse versions as mentioned
in §4.2.

6.2 Mimicry Attacks

A perfect detector should leave no opportunity for mimictiaeks which are due to
over-generalization. Note that the aggregation processlependent of what features
or approaches are used for anomaly detection. The existénuienicry attack is mainly
due to limitations in feature selection and detection tégpines, not in profile aggrega-
tion. Our focus is to show that with a reasonable detector tve can reduce false
positives rather than making the features rich enough tiedte the possibility for
mimicry attacks.

7 Conclusions

We have described the design of Ensemble, an unsupervisedain detection and
prevention system relying on a user community to detect evgat anomalies in pop-
ular applications. Local behavioral profiles are combin&d ia global profile, which
can be used to detect or prevent code-injection or behawatifying exploits. Hosts
participating in Ensemble only need to contribute summanytime profile data (about
0.5 MB) periodically. Ensemble addresses the problem ofymgmrofiles from hosts
that may have different operating environments. From etaa based on 57 test ex-
ploits for four candidate applications, we found that thalgy of global profiles, and
the resulting false positive rate, significantly improvegtae community size grows to
approximately 300 users, demonstrating that the use of aamtres is a practical way
to automatically generate behavioral profiles without monamual training, and the re-
sulting behavioral profiles are effective for run-time aradyndetection and prevention.
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