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Abstract level agreements (SLAS) and moreover provides strong

. . incentives for ISPs to enhance their service quality.
Internet routing events are known to introduce severe

disruption to applications. So far effective diagnosis of st work on diagnosing routing events has relied
routing events has relied on proprietary ISP data feedn routing feeds from each ISP. These techniques have
resulting in limited ISP-centric views not easily acces-Proven to be effective in pinpointing routing events
sible by customers or other ISPs. In this work, we pro-2€ross multiple I1SPs [5] or specific to a particular
pose a novel approach to diagnosing significant routingSP [6]. However, given that most ISPs are reluctant
events associated with any large networks from the per2P0ut revealing details of their networks, they normally
spective of end systems. Our approach is based on scaf€€P their routing feeds publicly inaccessible. Today, the
able, collaborative probing launched from end systemdrgest public routing data repositories, RouteViews and
and does not require proprietary data from 1SPs. UsRIPE, receive data from only around 154 I1SPs [7, 8], in

ing a greedy scheme for event correlation and cause if1'0St cases with at most one feed from each AS. These
ference, we can diagnose both interdomain and intraddf€eds have been shown to be insufficient to localize rout-
main routing events. Unlike existing methods based o9 €vents to a particular ISP [9]. As a result, customers
passive route monitoring, our approach can also mea@'€ in the dark about whether their service providers
sure the impact of routing events on end-to-end networ#neet their service agreements. Similarly, ISPs have lim-

performance. We demonstrate the effectiveness of ouft€d Ways to find out whether the problems experienced

approach by studying five large ISPs over four monthsPY their customers are caused by their neighbors or some

We validate its accuracy by comparing with the exist-"€mote networks. They usually have to rely on phone
ing ISP-centric method and also with events reported off@!lS or emails [10] to perform troubleshooting.

NANOG mailing lists. Our work is the first to scalably =~ Motivated by the above observations, we aim to de-
and accurately diagnose routing events associated witkelop new technigques for diagnosing routing events from

large networks entirely from end systems. end systems residing at the edge of the Internet. Our ap-
_ proach differs markedly from existing work on pinpoint-
1 Introduction ing routing events by relying only on probes launched

The end-to-end performance of distributed applicationdrom end-hosts and not requiring any ISP proprietary
and network services is known to be susceptible to routinformation. Using active probing on the data plane,
ing disruptions in ISP networks. Recent work showedOur system can in fact more accurately measure the per-
routing disruptions often lead to periods of significant formance of actual forwarding paths rather than merely
packet drops, high latencies, and even temporary reachnowing the expected routes used based on routing ad-
bility loss [1, 2, 3, 4]. The ability to pinpoint the network Vertisements. Furthermore, our techniques can be easily
responsible for observed routing disruptions is critical@Pplied to many different ISPs without being restricted
for network operators to quickly identify the problem to any particular one. This is especially useful for di-
cause and mitigate potential impact on customers. In re2gnosing inter-domain routing events which often re-
sponse, operators may tune their network configuration§uire cooperation among multiple ISPs. Our inference
or notify other ISPs based on the inferred origin loca-results can be made easily accessible to both customers
tion of the routing disruption: internal networks, border and ISPs who need better visibility into other networks.
routers, or remote networks. They may also find alter-This is also helpful forindependent SLA monitoring and
nate routes or inform impacted customers about destingh@nagement of routing disruptions. In addition, end sys-
tions expected to experience degraded performance. tem probing can be used for both diagnosing and mea-
From the perspective of end users, the ability to di-Suring the performance impact of routing events. It of-
agnose routing disruptions also provides insight into thef€rs Us a unique perspective to understand the impact of
reliability of ISP networks and ways to improve the net- 'outing events on end-to-end network performance.
work infrastructure as a whole. Knowing which ISPs In this paper, we consider the problem of diagnosing
should be held accountable for which routing disruptionsrouting events for any given ISP based on end system
helps customers assess the compliance of their servicgrobing. Realizing that identifying the root cause of
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Figure 1: System Architecture

routing events is intrinsically difficult as illustrated by work is an important first step to enable diagnosis of
Teixeira and Rexford [9], we focus on explaining rout- routing disruptions on the global Internet accounting for
ing events that the ISP should be held accountable foend-to-end performance degradations.

and can directly address,g.,internal routing changes

and peering session failures. In essence, we try to tackld ~ System Architecture

the similar problem specified by Wet al. [6] without  \e present an overview of our system in this section.
using ISP’s proprietary routing feeds. Given that end, diagnose routing events for any given ISP (which
§ystems do not have any direct visibility into the rout- o calla target ISP), our system must learn the con-
ing state of an ISP, our system overcomes two key chalgn s routing state of the ISP. Based on the change in
lenges: i) discovery of routing events that affect an ISPy, ing state, it identifies and classifies individual rout-
from end systems; and i) inference of the cause of routjg events. Because a single routing disruption often
ing events based on observations from end systems. Wgiroduces many routing events, our system applies an
present the details of our approach and its limitations inperence algorithm to find explanations for a cluster of
terms of coverage, probing granularity, and missed routgyents occurring closely in time. It then uses the latency
ing attributes irg3. measurements in the probes to quantify the impact of

We have designed and implemented a system that dthese routing events. As shown in Figure 1, our system
agnoses routing events based on end system probing composed of four components:

Our system relies on collaborative probing from end sys—c laborati bing:  Thi . h
tems to identify and classify routing events that affect an ofiaborative probing. 'S component fearns the
routing state of a given ISP via continuous probing from

ISP. It models the routing event correlation problem as ftip| d svst Gi the | ber of desti
a bipartite graph and searches for plausible explanatioﬂﬁlu Ipie end systems. iven the large number of destl-

of these events using a greedy algorithm. Our algorithn{]at'ons on thetl)nternet, the key challengeés o feéﬁ.a an
is based on the intuition that routing events occurring"’lpprOp”‘”lte subset to ensure coverage and scalability.

close together are likely explained by only a few causesEvent identification and classification: This compo-
which do not create many inconsistencies. We also us@ent identifies routing events from a large number of
probing results to study the impact of routing events onend-system probes. These events are then classified into
end-to-end path latency. several types based on the set of possible caesgs,

We instantiate our system on PlanetLab and use it tanternal changes, peering failures, or external changes.
diagnose routing events for five big ISPs over a period Ovaent correlation and inference: This component

fc_)u_r _'T‘O’?ths- AIthough each end-host has only IImItGdsearchesforplausible explanation for routing events. Al-
V|S|b|I|_ty into the routlng _s'Fate of the_se ISPs, oursystemthough each routing event may be triggered by many
can discover many 5|gn|f|<_:ant rout_mg everdg., hot- ssible causes, we seek to identify a small set of causes
potato changes and peering session resets. Compar t can explain all the events occurring close in time.

o ex.lsﬁng ISP-Icen(tjnc methc;d, our ap_pI:oach czr; (;';We model the inference problem as a bipartite graph and
tinguish internal and external events with up to 92.7% )« i with a greedy algorithm.

accuracy. Our system can also identify the causes for

four out of the six disruptions reported from NANOG Event impact analysis: This component extracts la-

mailing lists [10] during that period. tency information from end-system probes. It enables
We summarize our main contributions. Our work is US to study the impact of routing events on path latency

the first to enable end systems to scalably and accuratefec0rding to the cause of events and the impacted ISPs.
diagnose causes for routing events associated with lar ote that this information is not readily available in rout-
ISPs without requiring access to any proprietary datdn9 feeds used in previous work on routing diagnosis.
such as real-time routing feeds from many routers in- . .
side an ISP. Unlike existing techniques for diagnosing3 Collaborative Probing

routing events, our approach of using end system baselor a target ISP, we need to know its routing state to
probing creates a more accurate view of the performancilentify and diagnose its routing events. Unlike previous
experienced by the data-plane forwarding path. Oumvork that uses many routing feeds from a single ISP [6],



Destination prefix head. Third, probing needs to be launched frequently to

rR : .
Eg,ess\ \ accurately track the dynamic routing state.

PoP \ \\ To address the first two challenges, we devise a

B»?I% scheme to select an appropriate set of destinations for

T 2 each end system to probe. We start with a set of pre-

_ . cater End system fixes extracted from BGP tables. Each end system ac-
BN & Tal get ISP = quires its own routing view by conducting traceroute
Endsystem N\ _, B to one IP in each of these prefixes. Using the exist-

ing method developed in Rocketfuel [11], we can in-
) fer whether each traceroute probe goes through the tar-
Figure 2:Collaborative probing to discover routing events. get ISP and the PoPs traversed. Combining the routing
views from all the end systems, we obtain a complete set
our system relies on end systems that do not have angf PoP-prefix pairs visible to our system. We then try to
direct visibility into ISP’s routing state. Note that it is select a minimum set of traceroute probes that can cover
important to obtain a comprehensive view of the rout-all the visible PoP-prefix pairs with a greedy algorithm.
ing state across major Points of Presence (PoPs) of th&st each step, we select a traceroute probe that traverses
target ISP in order to diagnose routing events associatetthe maximum number of uncovered PoP-prefix pairs and
with the ISP. Utilizing public routing repositories is in- remove these newly-covered pairs from the set of uncov-
sufficient due to only one or at most two feeds from eachered pairs. This process continues until there is no un-
ISP, in addition to issue of a lack of real-time data feedscovered PoP-prefix pair left. The selection process has
The key question in our design is how to learn the rout-been shown to be effective in balancing between cover-
ing state of an ISP from end-system probing alone. age and overhead [12]. Note that because ISP network

i ) . . topology and routing evolve over time, each end system
3.1 Learning routing state via probing periodically refreshes its routing view. Currently, thés i

A router’s routing table contains the traffic forwarding done once a day to achieve a balance between limiting
information,e.g.,the next hop, based on the destinationProbing overhead and capturing long-term changes.
prefix. Although an end system may not have direct ac- To address the third challenge, we developed a cus-
cess to the routing tables, it could learn this next hop iniomized version of traceroute which enhances the prob-
formation usingracerouteif the forward path from the ing rate by measuring multiple destinations and multi-
host to the destination happens to traverse the router. Agle hops in parallel up to a pre-configured maximum
illustrated in Figure 2, traceroute probing from two end rate. To prevent our measurement results from being af-
systems to one particular destination experiences egreégcted by load-balancing routers, all probe packets have
PoP shifts due to the target ISP’s internal disruption. Idethe same port numbers and type of service value. With
ally, we can learn the next hop from any router to anyour improvement, all the end systems can finish probing
destination by probing from an appropriate source. Thigheir assigned set of destinations in rougtgnty min-
is not always be possible because we may not have a¢ites This also means that our system can obtain a new
cess to such a source or the router may not respond tguting state of the target ISP every twenty minutes, the
our probes. details of which are shown it6.

We focus on diagnosing inter-domain routing events . .
that affect a target ISP. We aim to find explanations for3'2 Discussion
events that the ISP should be held accountable for andlthough learning an ISP’s routing state via collabora-
can directly addres®.g.,internal routing changes and tive probing does not require any ISP proprietary infor-
peering session failures. For internal or intra-domainmation, it has three major limitations compared with di-
routing events it is obvious which ISP should take re-rect access to BGP routing feeds: (i) given a limited
sponsibility for them. Therefore, we do not focus on number of end systems, we cannot learn the route for ev-
constructing detailed intra-domain routing tables. In-ery PoP-prefix pair; (ii) given limited CPU and network
stead, we keep track of the inter-domain routing tablegesources at end systems, we cannot probe every PoP-
(BGP tables) of each major PoP within the ISP. prefix pair as frequently as desired. This implies we may

There are three challenges associated with constructniss some routing events that occur between two con-
ing BGP tables. First, given a limited set of end systemssecutive probes; and iii) we can only observe forwarding
the system attempts to obtain as many routes betweegpath changes but not other BGP attribute changes.
PoP-prefix pairs (PoP to destination prefix) as possible. The first problem of coverage is a common hurdle for
Second, end systems have limited resources (CPU amgl/stems finding root causes of routing changes as de-
network), and our system must have low probing over-scribed by Teixeira and Rexford [9]. They presented an



idealized architecture for cooperative diagnosis whichfrom end systems’ traceroute probes.
requires coverage in every AS. Similar to the work by A traceroute probe only contains the router’s interface
Wu et al, our work addresses a simpler problem of di- address along the forwarding path from the source to
agnosing routing changes associated with a large ISP bihe destination. We map an IP address to a PoP in the
purely from end system’s perspectives. Our ability to ad-target ISP using the existing tool based on DNS names
dress this relies on the coverage obtained. (undng [13]. For instance, 12.122.12.109 reverse-
A straightforward solution to improving coverage is resolves tabr2-p012601.phlpa.ip.att.nghdicating it is
to use more end systems. In this paper, we use all th@ the AT&T network, located in Philadelphia (phlpa).
available PlanetLab sites (roughly 200) to probe five tar-undnscontains encoded rules about ISPs’ naming con-
get ISPs. We will explain the detailed coverage resultsyentions. For IP addresses not in the target ISP, we map
in §6. Note that a single major routing disruption nearthem to ASes based on their origin ASes in the BGP
the target ISRe.g.,a hot-potato change or a peering ses-tables [14]. One IP address may map to multiple ori-
sion failure, often introduces a large number of routinggin ASes (MOAS) and we keep a set of origin ASes for
events and affects many different PoPs and prefixes. 18uch IP addresses. After performing IP-to-PoP and IP-
§7, we will show that our system is able to correctly to-AS mappings for each traceroute probe, we know the
identify many such major disruptions despite coveringtraversed PoPs in the target ISP and the AS path to the
only a subset of the affected PoP-prefix pairs. As fu-destination prefix. Given that errors in IP-to-AS and IP-
ture work, we plan to study how better coverage will im- to-PoP mappings are sometimes inevitable, we present
prove our inference accuracy. Besides the coverage lima greedy algorithm that lowers the number of incorrect
itation, topology discovery could be affected by ISPs’ mappings by reducing total conflicts in event correlation
ICMP filtering policy. Fortunately, we find this is per- and inferenceg).
formed mostly by ISPs on their edge routers connecting Note that not all traceroute probes are used for rout-

to customers, which has little impact on our inference. jng event identification and classification. They may be
We consider the second problem of limited probingdiscarded for several reasons:

frequency to be less critical. Our system focuses on di-

agnosing routing changes that are long-lived enough tdVot traversing the target AS:  Traceroute probes may

warrant ISP’s corrective action rather than transient one§0t traverse the target ISP when the source hosts do not

that may repair by themselves quickly. Reporting everyhave up-to-date routing views or the probes are con-

transient event may actually overwhelm ISP operators. ducted during temporary routing changes. Such probes
The third problem is more fundamental to systemsare discarded because they do not contribute any routing

that rely on end-system probing, given that BGP data caiformation about the target ISP.

be inherently proprietary. This implies we might iden-

tify or locate a routing change but might not knaeviny

it occurs. We give an example of this # where we

Contiguous “*” hops: Traceroute paths may contain
“** hops when routers do not respond to probes due to

] , . {CMP filtering or rate-limiting. A “*” hop is treated as
cannot distinguish a route change triggered by dlfferena wildcard and can map to any ISP or PoP. To simplify
attribute changes. The focus of our work is on deter- P y ' P

mining whether an ISP should be held accountable for Epath match_mg for event identification, we ‘(‘j:,,scard tracer-
. L . oute containing two or more consecutive “*” hops.
routing problem and providing useful hints for the ISP to

diagnose it. We believe the responsible ISP can subsg-oops: Traceroute paths may contain transient loops
quently use its own data to perform root cause analysisthat likely capture routing convergence. Such traceroute
e e paths are not stable and somewhat arbitrary because they
4 Event Identification and Classification depend on the subtle timing when routers explore alter-
In this section, we first describe how we identify indi- nate paths. Since our goal is to infer the likely causes
vidual routing events from the time sequence of routingof routing events, we are interested in the stable paths
state captured for a target ISP. We then present our evehefore and after a routing event rather than the details of

classification method based on likely causes. the transition. We discard traceroute paths that contain
. IP-level, PoP-level, or AS-level transient loops.
4.1 Data processing Some traceroute paths may contain loops that persist

As explained in the previous section, we focus on thefor more than 20 minutes. Since most routing conver-
inter-domain routing state of the target ISP. Given a PoPgence events last for several minutes [15], these loops
prefix pair, we identify the next hop and the AS pathare likely caused by routing misconfigurations [16]
from the PoP to the destination prefix. The next hop camrather than unstable router state during convergence. We
be either a PoP in the target ISP or another ISP. This imstill make use of such traceroute paths after truncating
plies that we need to extract the ISP and PoP informatiottheir loops, since the partial paths represent stable paths



4.2 Event identification and classification 1. Ignore if the next hop is unreachable

. . . . 2. Highest local preference
We now describe how we identify inter-domain rout-| 3 shortest AS path

ing events that affect the target ISP from the continuq 4. Lowest origin type

ous snapshots of routing state obtained from traceroutes. Lowest Multiple-Exit-Discriminator (MED) value
probes. Aninter-domain routing evenis defined as a among routes from the same AS

path change from a PoP to a destination prefix, in which 6. eBGP learned route over iBGP learned route
either the next hop or the AS path has changed. Since7. Lowest IGP cost (hot-potato)

our system acquires a new routing state of the target ISp8: Lowest router ID

periodically, we can identify an event by observing a Table 1: BGP decision process
path change between the same source and destinationin _
two consecutive measurements. question is how we can discover and make use of the

Given that there could be “*” hops and multiple- "€/€vancy among events.

origin-ASes (MOAS) hops, we choose to be conservag q
tive in comparing two paths by trying to search for their ~
best possible match. For instangeith(A, =, C)is  Before describing our inference model used for event
considered to matchath(A, B, C) because “*’ can correlation, we make an assumption that each routing
match any ISP or PoP. Similarly, a MOAS hop can matchevent can be explained by only one cause. This is a stan-
any AS in its origin AS set. dard assumption made in many existing work on root
When observing path changes between two consecigause analysis [5, 9] and fault diagnosis [17]. Note that
tive measurements, we classify them into three types adhis assumption does not prevent us from inferring mul-
cording to their likely causes. The classification is moti- tiple simultaneous causes as long as the events triggered
vated by our goal of inferring the causes of the change®Y different causes are independent.
relative to the target ISP. We start by defining some terminology to facilitate
_ ) our discussion. Since each event is identified by observ-
Type 1: Differentingress PoP changes can be caused g the change between two consecutive probes, we call
by routing events in the upstream ISPs, the target ISRye earlier path probe amld path and the later one a
or downstre_am ISPs. Realizing it is difficult to enumer- payy path. We call the egress PoP on the old/new path
ate all possible causes, we do not currently use them fofe o|d/new egress respectively. In the previous section,
event correlation and inference. we classify individual routing events into three types.
Type 2: Same ingress PoP but different egress PoP Current!y, we do not.u§e.the e\{ents of the first type for
changes can be caused by internal disruptions in thecorre_latlon because it is |nfeaS|t_)Ie to enumerate aII_the
target ISP €.g.,hot-potato changes), failures on its bor- possible causes for them. We identify all the possible
der .g., peering session reset), or external change§auses for the latter two types of events based on how
propagated to the target ISB.¢..prefix withdrawals). ~ BGP selects a single best route for each prefix. When
multiple routes are available, BGP follows the decision
Type 3. Same ingress PoP and same egress PoP process in Table 1 to select the best one.
changes are easier to deal with compared to the pre-

vious two types. They may involve internal PoP path Same ingress PoP but different egress PoP changes

changes, external AS path changes, or both. We will exc@n be triggered by a prefix withdrawal, a prefix an-

plain how to use such information for event correlation "OUncement, or a change in any of the eight steps in Ta-

Inference model

and inference in the next section. ble 1. We ignoreStepg since router ID rarely changes.
] Stepg is irrelevant because both the old and the new
5 Event Correlation and Inference egress use external paths. The following causes com-

It is well known that a single major routing disruption prehensively cover all the remaining possibilities:

often leads to a burst of routing events and affects many e A change inStep; is explained by either a®Id-
PoPs and prefixes simultaneously. Our goal is to diag-  Peering-Downor a New-Peering-Up The former
nose which inter-domain routing events are triggered by implies the peering between the old egress and its
those major disruptions that the target ISP should be held  neighbor AS is down. The latter means the peering
accountable for and can take action on. between the new egress and its neighbor is up.

In many cases, it is extremely difficult to infer the e A change inStep, can be explained by either an
cause of an individual routing event because an event  Old-Lpref-Decreaser aNew-Lpref-IncreaseThe
may be explained by many different causes. An obvious  former implies the local preferencéjgref) at the
solution is to improve inference accuracy by correlating old egress decreases. The latter impliesithpee f
multiple “relevant” events together. However, the key at the new egress increases.



Bvidence Graph Conflict Graph conflict with each of the remaining six causes:
e Old-Peering-Downa new path still uses a peering

Event p A,..Measurement
NOde% :
Cause L
“ Node that is inferred to be down.

Figure 3: The bipartite graphs for cause inference * New-Peering-Upan old path already used a peer-
ing that is inferred to be up.

e A prefix withdrawal, an announcement, or achange e Old-Lpref-Decreasea new path still uses an egress

in Steps_s can be explained by either adld- that is inferred to have a lowdrpref even when

External-Worseror a New-External-ImproveThe there are other egresses with a highgre f.

former means the old route to the prefix worsens e New-Lpref-Increasean old path already used an

due to an external factoe(g.,a prefix withdrawal, egress that is inferred to have a highkpref

a longer AS path, a higher origin type, or a higher (therefore used to have a lowepref) even when

MED value). The latter implies the new route to there were other egresses with a highgref.

the prefix improves due to a prefix announcement, e Old-External-Worsena new path still uses an old

a shorter AS path, a lower origin type, or a lower route to a prefix even when it is worse than a new

MED value. route to the same prefix, or an old path already used
e A change inStep; can be explained by a®Id- a new route to a prefix even when the old route to

Internal-Increaser aNew-Internal-Decreasel he the same prefix was better.

former implies the cost of the old internal path in- e New-External-Improvea new path still uses an old

creases due to a more costly PoP-level link. The route to a prefix even when a new route to the same
latter implies a less costly new internal path. prefix is better, or an old path already used a new
route to a prefix even when it was worse than an

Same ingress PoP and same egress PoP changes )
old route to the same prefix.

e When the internal PoP path changes, it can be . . .
explained by arDld-Internal-Increaseor a New- We encapsulate the relationship among all the possi-
Internal-Decrease ble causes and their conflicting measurement traces us-

e When the next hop AS changes, it can be explainedng aconflict grap_h as shown in Figure 3. Similar to an
by an Old-Peering-Down a New-Peering-Up an evidence graph, it has two types of nodes: cause nodes
Old-External-Worseyor aNew-External-Improve &t the bottom and measurement nodes at the top. An
e When the AS path changes but no next hop ASe_dge between acause node and a measurement node in-
changes, it can be due to &xternal-AS-Change dicates a conflict betweer_w the cause and the measure-
which is not directly related to the target ISP. ment trace. For each evidence graph, we construct a
conflict graph accordingly by inspecting all the measure-

Using the above rules, we can map each event 10 @,ot traces in the same pair of consecutive routing state.
set of possible causes. By aggregating events that 0cCy{{jhan a measurement trace conflicts with some causes in

closely in time (identified between the same pair of con-y,» avidence graph, we insert a measurement node and

secutive routing state), we constrcbipartite graph o corresponding edges into the conflict graph.
calledevidence graphas shown in Figure 3. There are

two types of nodes in an evidence graph: cause nodes &.2 Inference algorithm
the bottom and event nodes at the top. An edge betweeWe now present our inference algorithm that uses the ev-
a cause node and an event node indicates the event catence graph and the conflict graph to infer likely causes.
be explained by the cause. An evidence graph encaps®@ur inference is guided by two rules: i) Simplest ex-
lates the relationship between all the possible causes amlanation is most likely to be true. We try to find the
their supporting evidence (events). minimum set of causes that can explain all the evidence
Conflicts may exist between causes and measuremefgvents). ii) We should take into account the noise and
traces due to noise and errors. For instanceQ#fr  errors in our measurement by minimizing conflicts be-
Peering-Downwill conflict with a new trace which tra- tween inferred causes and measurement traces.
verses the peering that is inferred to be down. Conflicts We use a greedy algorithm to infer causes. In each
stem from two major sources: i) the subtle timing differ- iteration, it selects a cause from the evidence graph with
ence when traceroute probes from different end systemthe maximum value of ' — «C'), whereFE is the number
traverse the same peering or measure the same prefigf supporting events and is the number of conflicting
and ii) errors in the IP-to-AS or IP-to-PoP mappings. traces (computed from the conflict graph). Intuitively,
A measurement trace will never conflict with @id- it selects a cause that explains many events but raises
Internal-Increaser aNew-Internal-Decreaskecause a  few conflicts. It then removes the events that have been
cost change on a PoP-level link may not prevent a patlexplained by the cause from the evidence graph before
from using the link. However, a measurement trace mayentering the next iteration. This process continues until
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We plan to study multiple ASes simultaneously in the
future to better diagnose routing events at a global scale.
- Table 2 shows the number of probing source hosts used
250 and the number of PoPs covered. Note that there is some
200 variability across the number of source hosts used as not
150 all hosts are useful for improving the coverage of PoP-
100 prefix pairs. This provides room for probing multiple
52 |l Ll IS ASes at the same time. We verified our PoP coverage
0 200 400 600 800 1000 1200 1400 1600 completeness using the data from Rocketfuel [11] and

. _ ber of d Time(lgi”)h router configuration files from the Abilene network. Ta-
Figure 4: Number of detected changes on Sep. 25, 2004jq 5 4150 shows the average number of probes to acquire

Number of char‘ges ‘

Number of changes

AS Name Periods | #of | #of | #of | Probe the routing state of a target ISP. Depending on the ISP,
ASN (Tier) Src | PoPs| Probes| Gap each source host has to probe between 187 and 371 desti-
AT&T 3/23-4/9 | 230 | 111 | 61453 | 18.3 nations on average. As expected, our system can refresh
\7/(3;2 ©) o455 218 T a5 81024 fgn?) the routing state roughly evegighteermminutes.
2914 (1) 9/13-9/22 min Before delving into details, we first use one example
E:(eutsgggoT(ezlgé 4/23-5/22/| 149 | 64 | 27958 | 17.5 to illustrate that our system is able to detect significant
S;’v“\"/is e T;'L network disruptions that generate a large number of rout-
3561 (1) min ing events. Figure 4 shows the number of routing events
Abilene 9/23-9/30 | 113 | 11 | 51037 | 184 detected using our system for Abilene over time on Sep.
11537 (3) 2/3-2/17 min 25, 2007. It is clear that the routing event occurrence
Table 2: Summary of data collection is not evenly distributed. We do observe a few spikes
across the day. The constant background noise is often
all the events have been explained. due to routing events that only affect individual prefixes.

The parameter allows us to tune the relative weight The spike around40min is an internal disruption caus-
between evidence and conflicts. A largemakes our ing the egress PoP to shift from Washington DC to New
algorithm more aggressive in avoiding conflicts. Cur- York, affecting 782 source-destination pairs. The next
rently, we setx = 1 in our experiments. However, we Spike around765min is due to one neighbor AS2637
find our results are not very sensitive to the choicerof Withdrawing routes to 112 prefixes from the Atlanta PoP.
between 0.1 and 10. This is likely due to the fact that theT he last spike arount069min is due to a peering link
number of evidence significantly outweighs the numbeffailure, resulting in the next hop AS in Washington DC
of conflicts for most causes (s&@). changing from AS1299 to AS20965. All these causes

Given that the inputs to our algorithm (the evidencehave been confirmed using the BGP and the Syslog data
graph and the conflict graph) are limited by the coveragef Abilene.
of our eystem and measurement noise and errors, it mag 1 Data cleaning process
report incorrect causes or miss true causes. To highlight
the reliability of inferred causes, we introduce a notionAs mentioned irg4, we first need to remove the noise
of inference confidender each cause a8 —aC, where  in our dataset. Table 3 shows the overall statistics of av-
E andC have the same meaning as in the above. Intuerage daily traces removed due to various reasons. It is
itively, causes with a higher inference confidenice,,  expected that a relatively small percentage (0.75%) of
with more evidence but fewer conflicts, are more reli- traces are ignored due to contiguous “*” hops and tem-
able. We will demonstrate how inference confidence afforary loops. We also found that 0.025% of the traces

fects the accuracy i§7. contain persistent IP or AS loops usually occurring close
g . to the destination, which confirms observations from a
6 Results of Event Identification and Clas- previous study [16].

sification Note that 3.2% of the traces are discarded due to not
In this section, we present the results of event identitraversing the target ISP, as we cannot distinguish be-
fication and classification using our framework over atween the target ISP losing reachability or any of the
period of 132 days for five backbone ISPs. We validatepreceding ISPs changing routes. One noteworthy obser-
the identified routing events using BGP data from manyvation is that 35% of the traces stop before entering the
vantage points at the end of the section. destination network. Most of these networks appear per-

The summary of data collection is shown in Table 2.sistently unreachable over time, likely due to ICMP fil-

We study three Tier-1 ASes, one Tier-2 AS, and onetering at the edges between a provider and its customers.
Tier-3 AS. As the first step, we study one AS at a time.We still use these traces as they can help detect routing



P PoP AS P PoP AS No Persistent| Persistent
loop loop loop star star star | targetAS| IP loop AS loop

Removed traces 12643 | 9934 1053 14055 | 5836 9573 | 2466927 1738 445
(percentage) | 0.18% | 0.14% | 0.015% | 0.2% | 0.08% | 0.13% | 3.2% 0.02% 0.005%

Table 3: Statistics of data cleaning: avg number of remoraazes per day for each type of anomalous traceroute.

Target | Total Ingress Ingress same, Ingress
AS events same Egress same change

(%all | Egress| internal | external | | Gvent detection rate

traces) | change | pop path| AS path

[=}
©

=

o

g —

7018 | 277435| 33325 | 213562,76.9% | 30548 go of s
0.35% | 12.1% | 51% | 35% 11% R =

2914 | 415778 113507 | 261525,62.9% | 40746 B4 2
0.31% | 27.3% | 48% | 19% | 9.8% Mk 2

] o

3320 | 437125| 21419 384233, 87.9% 31473
0.66% 4.9% 8.5% | 80.7% 7.2%
3561 | 311886 | 34307 233915, 75% 43664

o
[N}

0

0.35% | 11% 45% | 31% 14% 0 0 60 80
11537 | 145034 | 19776 99309, 68% 25949 _ Probing interval (min) _
0.24% | 136% | 37% | 40% 17% Figure 5: Impact of probing interval on detection rate
Table 4: Statistics of event classification and bandwidth.

we validate our results in two aspects: tthestination

changes in the_ partie_ll_path before filtering.. . prefix coverageand therouting event detection ratéVe
6.2 Eventidentification and classification  omit AS3320 here due to lack of access to its BGP data.

We first classify routing events according to the ingress To evaluate the destination prefix coverage of our
and egress PoP changes. Table 4 shows the statistics @taset, we map the destination IP to the longest prefix
event classification for each ISP during our study. Only ausing the latest routing table of each AS. Then by com-
very small fraction of the traces contain routing changesparing the set of probed prefixes with all the prefixes in
Among these changes, a small percentage (7.2% - 17%he default-free routing table of each target AS, we com-
is found to be ingress PoP changes, because most @lte the coverage, as shown in the second column of
the probing sources enter the target AS from an ingresSable 5. Although the coverage is only between 6% to
PoP near its geographic location. The majority (62.9% -18%, our traces cover all the known distinct PoP-level
87.9%) of the events are in the category of both ingressinks within each target AS (compared to the Rocketfuel
and egress staying the same. This category contains edtata [11]), suggesting that we can detect significant rout-
ther internal PoP-level path changes and/or the externahg changes originated inside the target AS.
AS path changes. The remaining events (4.9% - 27.3%) \\e use the following methodology for validating
involve egress PoP changes. Some of these events M@}anges detected using BGP data. For the five ASes
impose significant impact on the target ISP as a larggye stydied, we only have BGP feeds for four ASes.
amount of traffic to many prefixes shifts internal pathsgq each of them, we first identify the corresponding
simultaneously. _ PoP where the BGP feed comes from. Because dif-
Abilene, the educational backbone network, was exferent PoPs in an AS usually experience different rout-
pected to be stable due to its simple topology. Surpnsmg changes, we compare BGP-observed changes with
ingly, we found that it has a larger fraction of iNgress yaceroute-observed changes only when our traces tra-
changes. This is observed mainly from three sourcgerse the PoP where the BGP feed comes from. The
hosts, switching their ingress PoP to various destinagirg column of Table 5 shows the ratio of the probed
tions. Two of them are universities in Oregon, with ac- gestination prefixes that traverse the PoP of the BGP

cess links to Abilene in both Seattle and Los AngeleStee relative to the total number of prefixes in a default-
The other one is a university in Florida, which has ac-fqe routing table.

cess links in both Atlanta and Kansas City. We confirm
this via the Abilene border routers’ configuration files.
We believe this could be due to load-balancing or traffic
engineering near the sources.

The subset of destinations which can be used for com-
parison varies across ASes due to the different number
of available BGP feeds. We focus on examining for any
S . BGP-observed routing change of this subset of destina-
6.3 Validation with BGP data tions, whether we also detect it using our traces. More-
Using public BGP feeds from RouteViews, RIPE and over, we only account for BGP routing changes with ei-
Abilene, in addition to 29 BGP feeds from a Tier-1 ISP, ther AS path changes or next hop AS changes, which can



Target Dst. prefix Dst. prefix traversing Detected events Missed events

AS coverage PoPs with BGP feeds (AS change, nexthop change)(short duration, filtering, others
7018 | 34145 (15%) 3414 (1.5%) 64714, 11% (10.3%, 3.2%) 89% (75%, 13%, 1%)
2914 | 40881 (18.6%)| 40039 (18.1%) 73689, 23% (19.1%, 8.6%) 77% (73%, 4%, 0%)
3561 | 17317 (7.8%) 2317 (1.1%) 55692, 6% (5.8%, 0.5%) 94% (80%, 9%, 5%)
11537 | 13789 (6%) 13789 (6%) 66706, 21% (17.3%, 5.8%) 79% (61%, 15%, 3%)

Table 5: Validation with BGP data for dst. prefix coverage anent detection rate.

be detected via traceroute. By comparing the two sets/.1 Result summary
we calculate the fraction of changes our system can de-. . . . o
tect, as shown in the fourth column of Table 5. This rateOur mferencg algorithm takes the set of |dent|f|¢d events
varies between 6% to 23%. Note that we can also dete nd automatically clusters them based on their causes.

many internal PoP path changes which are not observe ble 6 shows both the total number.and the relative
in the BGP data (thus not included in this table). percentage for each type of causes inferred for each

_ ISP. We observe that different ISPs can have a non-
Changes missed by our system are due to two maiRegjigible difference in the cause distribution. For ex-
reasons. First, the routing changes last too short to bgmpje, for the first three ISPs, the largest fraction of
detected by two consecutive probes, accounting for theents are caused lExternal-AS-Changeln contrast,
majority of the missed routing events. As explained in ppijene (AS11537) has more events causediy-
§3, we do not focus on these short-lived routing eventsgyiarnal-Worserand New-External-Improve This is
We are able to detect most events with duration |argefnainly caused by its five neighbor ASes. The most dom-
than 20 minutes (probing interval). Given that we can-jnant one is the neighbor AS20965 peering in New York

not detect routing events that last shorter than the probgnich switches routes to around 390 destinations fre-
ing interval, we may increase the event detection rat‘?quently over time.

by reducing the probing interval. Figure 5 illustrates

how the probing int_erval affects the eve_nt gletectior_1 rat&iihm in clustering related events together in Figure 6(a).
and probing bandwidth. When the probing interval is 10A cluster is defined to be the set of events explained

minutes, we can detect _60% of the events while usingOy a single cause. The figure shows the CDF of the

roughly 0.2 Mbps bandwidth. number of events per cluster over the entire period for
Second, because traceroute may be incomplete due five ASes. While most of them have less than ten

packet filtering, certain changes cannot be detected agvents per cluster, there are some clusters with many

the changing path segment is invisible from our probesevents, indicating significant routing disruptiorigew-

Most filtering happens in the path segment after the nexinternal-DecreasgOld-Internal-IncreaseOld-Peering-

hop AS and close to the destination AS. Since we onlyDown, andNew-Peering-Ughave relatively larger clus-

use the next hop AS information for event correlation,ters than others, confirming previous findings that hot-

missing these changes does not have any impact on ogbtato changes and peering session up/down can impose

inference results. significantimpact [18]. Other types of causes have much

Only a small fraction (up to 5%) of the missed smaller clusters, because they usually only affect indi-
changes are due to other factoesy.,inaccurate IP-to-  Vidual prefixes.
AS mappings or mismatched forward paths compared to Another metric to evaluate the accuracy of inferred
the BGP data. In summary, our system is able to captureause is based on the number of conflicts introduced by
most routing changes to the probed destinations that arthe cause, as shown in Figure 6(b). According;5o
useful for event correlation and inference. only six types of causes may have conflicts. Overall, the
number of conflicts per cluster is small compared to the
7 Results of Event Correlation and Infer-  number of events per cluster, indicating that the incon-
ence sistencies in our traces introduced by incorrect mappings
or differences in probing time are rare.
In this section, we first present the results of our in- We use the confidence metric introduced in the pre-
ference algorithm. Then we validate our system invious section to assess the likelihood of causes. Fig-
three ways: comparing with the BGP feed based inferure 6(c) shows that different types of causes have dif-
ence using BGP data from a Tier-1 ISP, comparing withferent distributions of confidence value. For exam-
both BGP data and Syslog data from the Abilene netple, Old-External-WorsepNew-External-lmprov,eOld-
work, and comparing with disruptions reported from the Lpref-DecreasgandNew-Lpref-Increasgenerally have
NANOG email list [10]. much lower confidence values as they affect only indi-

We study the effectiveness of our inference algo-



Target Old-Int. New-Int. Old Peer- | New Peer Old-Ext. New-Ext. Old-Lpref | New-Lpref Ext. AS
AS -Increase | -Decrease| ing Down -ing Up -Worsen -Improve -Decrease| -Increase Change
7018 5223,4.5%| 3843,3% | 5677,5% | 4955,4.3%| 18142, 16%| 20961, 18%| 302, 0.2% | 397,0.3% | 55216, 48%
2914 10366, 5% | 8135,4% | 6666,4% | 7024, 3.7%| 38748, 20%| 49075, 26%| 124,0.1% | 164,0.1% | 69190, 36%
3320 1622, 0.5%| 954,0.2% | 20751, 5% | 10204, 3% | 80385, 21%| 81761, 21%| 751, 0.2% | 1002,0.2% | 185683, 48%
3561 | 4410,3.6%| 4007,3% | 6017,5% | 7667,6.3% | 23232,19% | 45495, 37%| 85,0.1% | 105,0.1% | 30540, 25%
11537 | 2161,1.8%| 1632,1% | 2771,2% | 1401, 1.1%| 44516, 37%| 43375, 36%| 112,0.1%| 104, 0.1% 9589, 8%
Table 6: Statistics of cause inference.
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Figure 6: Events, conflicts and confidence value distriloupier cluster.

vidual prefixes. Thus we need to set appropriate threshehange, internal path change (using iBGP routes with
olds to filter out different types of causes with low con- nexthop change), loss of egress point (changing from
fidence. Throughout the rest of this section, we use &BGP to iBGP route), gain of egress point (changing
confidence value of 30 for reporting hot-potato changegrom iBGP to eBGP route), and external path change
(Old-Internal-Increas@ndNew-Internal-Decreageand  (both using eBGP route with nexthop change). This
150 for reporting peering session changekl{Peering-  step is accurate even with incomplete data. By correlat-
DownandNew-Peering-Up A lower confidence value ing events from individual router§Vu generates a vec-
increases the likelihood of false positivesy.,misinter-  tor of events for each destination prefix to summarize
preting multiple simultaneous prefix withdrawals from how the route for each prefix has changed. The types of
a peering as a®ld-Peering-Down These two confi- changes includetransient disruptioninternal disrup-
dence values filter out 92% of the hot-potato changesion (all routers experience internal path chang@)gle
and 99% of the peering session changes inferred withexternal disruptior{only one router has either loss/gain
out using any thresholds. We will evaluate the impactof egress or external chang@)ultiple external disrup-
of the confidence value on our inference accuracy in thé¢ion (multiple routers have either loss/gain of egress or
next section. We do not set any threshold for other typegxternal changes), arldss/gain of reachabilitfevery
of causes since most of them have only one eventin eactouter experiences loss/gain of egress). This step may
cluster. introduce inaccuracy due to data incompleteness. Note
. . . . that incomplete data set can only cauWgeto falsely cat-
7.2 Validation with BGP-based inference  ggorize external events into internal events.

for a Tier-1 ISP We first validate our event classification results by

Most previous work on diagnosing routing disruptions c0mparing withWus vector change report. We map
relies on BGP data. The closest one to ours is byeach of our events (per source-destination based rout-
Wu et al. [6] using BGP updates from all the border ing change) to the corresponding eventin, the prefix
routers to peers to identify important routing disrup- of which covers our destination. Each event is associ-
tions. To directly compare with their approach, we im- ated with one cause from our algorithm and one vec-
plemented their algorithm, calléd/u for convenience. tor change type iWWu Note that the set of causes and
We collected data via eBGP sessions to 29 border routef§€ set of vector change types do not have direct one-to-
in a Tier-1 ISP. Note thatvurequires BGP data from all ©ne mapping. To perform comparison, we combine our
the border routers and focuses on peer routes only. GivefRUSES into two big categories:

the lack of access to such complete data, causes reported . includes New-Internal-Decrease Old-
by Wuon our data may be inaccurate accounting for POStnternal-Increase, Old-Lpref-Decrease, New-Lpref-

sible m|§matches. ) ) Increase which should matchVu’s internal disruption
We briefly summarizéVus algorithm and our com-

parison methodologyWau first groups a routing event External includes Old-External-Worsen, New-
from one border router’s perspective into five types: noExternal-Improve, Old-Peering-Down, New-Peering-



Root Internal Single | Multiple | Loss/gain of Target AS Hot potato Session reset
cause| disruption | external | external | reachability Wu [ Our| Both | Wu] Our| Both
Inte- | 34914 5947 | 4494 10 Tier-1 | 14711851 101 9 1 6
-mal | (76.9%) | (13.1%)| (9.9%) | (0.02%) ISP 68%,55% 66%,40%
Abilene | 79 | 88 60 7 | 11 7
Exte- 16344 44948 6538 391 (11537) 76%,68% 100%,63%
-mal | (24.2%) | (65.9%) | (9.6%) (0.6%)
Table 7: Event based validation: with a Tier-1 ISP’s Table 8. Validation for two important clusters
BGP data over 21 days. (confidencenot Potato=30,con fidencesession=150)
Up, which should matciWu'’s single/multiple external 1 & .
; ; : Tier-1 [SP fal a ]
disruption 0.9 “Abilene false pos,

- Tier-11SP false heg. —6—

These two aggregate categories are of interest because : i
Abilene falseneg. —<—

our main goal is to distinguish internal disruptions from
external ones. The caugternal-AS-Changdoes not
have any corresponding type\ku, which is thus omit-
ted from comparison. Similarly, we omit our Same-
Ingress-Same-Egress type of events with only internal 0 r L e
PoP path changes, as it is not consideretioy 20 0 20 40 60 80 100 120 140 160
As shown in Table 7, each column is the type of vec- confidence
tor change inVu, while each row shows our aggregate Figure 7: Inference accuracy for hot-potato changes — a
categories. For each routing event, we identify the type ' : . .
. . common type of routing disruption.
y inferred from Wu as well as the categarynferred by
our system. By comparing them, we generate the per- ) )
centage in the table rowcolumny which is the fraction  INg disruptions (68% of hot-potato changes and 66% of
of events in our aggregate categarshat is categorized SE€SSION resets). . .
as typey in Wu The cell with bold italic font means  We study the impact of confidence value on our in-
valid matches. 76.9% of our internal events matdis ~ férence accuracy of hot-potato changes in Figure 7. As
internal disruption while 75.5% of our external events €xpected, with larger confidence values, the false posi-
matchWu’s single/multiple external disruptionWhile tlvg rate degreases while the false negative r_ate increases
the match rate of around 75% is not very high, we be-With a conﬂdence_ t.hreshold of 30, we attain a balance
lieve our end-system based approach shows promise ipetween false positives (45%) and false negatives (32%).

inferring routing disruptions and the rate can be furtherSimilarly, for session reset, the false positive and false
improved with more vantage points. negative rates are 60% and 34% respectively with a con-

The third step inVuis to group together event vectors fidence value threshold of 150.

of different destinations belonging to the same type an 3 Vvalidation with BGP-based inference
transition trend. There are two types of clusters reported ° d Svsl Ivsis for Abil
in the third step: hot-potato changes and peering session and Syslog analysis for Abliene

resets. For each of the causes reported by us, we exarii¥e also validate our inference results witfiuis algo-
ine if it is also reported byWu To be more specific, for rithm executed on the BGP data from all 11 border
eachNew-Internal-DecreasendOld-Internal-Increase  routers of the Abilene network [19]. This provides a
we search for the corresponding hot-potato changes renore complete view of routing changes for the entire
ported within that probing interval. Eadbld-Peering- network compared to the Tier-1 ISP case. Besides BGP
Down and New-Peering-Upis mapped toWu’s peer-  data, router Syslog messages are also available [19] from
ing session reseh the same probing interval associated all the Abilene border routers. Syslog reports error mes-
with the same egress and neighbor AS. sages such as link down events due to hardware fail-
The comparison for these two important clusters isure or maintenance. We can thus validate inferred link
shown in Table 8. We use the confidence value of 30up/down causes directly using Syslog messages.
for hot-potato changes and 150 for session resets based Table 9 compares the routing event inference between
on their distinct confidence distributions shown in the Wuand our system. The match rate for Abilene is higher
previous section. The two algorithms reported 101 com-compared to the Tier-1 ISP case, due to the improved
mon hot-potato changes and 6 common session resetaccuracy ofWu given full visibility. 7.3% of the inter-
Given that our system does not rely on any ISP propri-nal disruptions are mis-classified as external disruptions
etary data, it is quite encouraging that we can correctlymost likely due to the limited coverage of our system.
diagnose a reasonably large fraction of significant rout\When an internal path is traversed only a few times, it

percentage of clusters
o
(6]

0.1 gy




Cause d'_”te":_a' Sitng'el 'V'Ut'“P'el '—055(196;:_’;, of Level3 to those traversing AS3491 in the Seattle PoP.
Isruption external external reacnablli
P vy 3. Jun. 14, 2007, NANOG reported a core router out-
Internal 4463 1059 837 2% .
(85%) 7.2%) | (8%) (0.01%) age ground 6am EDT in the Qwest network (A8209)_,
External 2929 21642 2355 79 affecting the performance of several networks and their
(7.3%) | (86.4%) | (6.2%) (0.1%) customers. The target AS studied at the time was

AS3561. Our system reported 24 events clustered into
23 causes oExternal-AS-Changswitching from paths
through AS209 to those traversing AT&T (AS7018)
around the outage time, affecting 6 probing sources and

. . . 24 destinations.
is less likely to be selected by our greedy algorithm as
Sep. 19, 2007, 13:00 EDT, NANOG reported

the cause of routing events. This problem could be mit-" ) )
igated by using more vantage points or increasing th hat 25 rputerg n the Broadv_vmg. network (AS_6395)
confidence level threshold. ad a misconfiguration resulting in BGP session re-
The comparison for the two important clusters is moval. It caused multiple single-homeq customers dis-
shown in Table 8. From the Abilene Syslog, the SeVenconnected from the Internet. Immedlate_ly after that,
r system detected 81 events clustered into 64 causes

session resets were caused by peering link down evenf!

which lasted for more than fifteen minutes, possibly dueOlc Old-External-Worsenfor 76 destinations from 10

to maintenance. Overall, we correctly inferred 76% of SOUrces. The target AS, AS2914, switched from the

the hot-potato changes and 100% of the session resetgl.d routes E[rav?rsmg I_.evel?h(ASSBSG) aAnngé)rS)adv(\j/mg
The false positive rates are 32% for hot-potato change Sg%"i’f;ou €s traversing other peeesg., an
and 37% for session resets respectively. :

L . . . We missed two NANOG-reported events related to
7.4 Validation with NANOG mailing list routing and performance disruptions during our study.

Given that operators today often use the NANOG (NorthThe first was on May 16, 2007, from 13:10 to 14:20
American Network Operators Group) mailing list [10] to EDT, related to a hardware problem on the peering link
troubleshoot network problems, we study the archivedetween AT&T and Broadwing in Dallas. Our system
of the mailing list messages over the time period of ourdid not capture any routing changes during this time pe-
study. All together we analyzed 2,694 emails using key-iod at that location. The second event was on May 30,
word searches and identified six significant routing dis-2007, around 13:00 EDT, related to significant perfor-
ruptions with details described below. One interestingmance degradation, along with temporary loss of reach-
observation is that even though we did not directly probeability from Sprint in the Pittsburgh area, as confirmed
the problematic ASes described in the emails, we arérom Sprint. The target AS probed was AS3561. Al-
still able to identify the impact and infer the causes rela-though our system did not report routing changes related
tive to the target ASes for the following four events dueto Sprint, it did observe abnormal incomplete traces
to their wide-spread impact: from PlanetLab hosts in Pittsburgh.

1. Apr. 25, 2007, between 19:40 to 21:20 EDT, To summarize, our system may miss some localized
NANOG reported a Tier-1 ISP Cogent (AS174) experi- disruptions due to limited coverage. However, it is able
enced serious problem on its peering links causing manjyo capture disruptions with global impact even when
route withdrawals. The target AS during this time wasthey are not directly caused by the target AS being
AS3320. Our system observed increased number oprobed.

routing events: 120 detected events were clustered intg Performance Impact Analvsis

96 causes oExternal-AS-Changeaffecting 7 sources P y

and 118 destinations. 87 of the events were associatdgouting events are known to introduce disruption to net-
with 42 destinations which were Cogent's customerswork path performance. Unlike the past work that re-
They all switched from routes traversing Cogent. Sig-lies on routing feeds to diagnose routing events, end-host
nificant delay increase was also observed. probing used in our system enables us to understand the
2. May 21, 2007, around 21:50 EDT, NANOG re- impact of routing events on path performance. In this
ported a backbone link fiber cut between Portland andsection, we study to what extent end-to-end latency is
Seattle in the Level3 network (AS3356), resulting in affected by different types of routing events and its vari-
reachability problems from Level3’s customers. Theation cross different ISPs.

target AS at that time was also AS3320. Our sys- Figure 8 illustrates the latency change for different
tem detected 45 events clustered into 36 caus&@ladf type routing eventsin AS7018. For clarity, we only show
External-Worsen affecting 5 probing sources and 12 five types of events:Internal (Old-Internal-Increase
destinations. They all switched from routes traversingNew-Internal-Decreage Peering (Old-Peering-Down

Table 9: Event based validation: with Abilene’'s BGP
data over 21 days.
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Figure 9: Delay change distribution across ISPs

event identification, classification, and inference. We

T Exemal A
069: - ﬁﬁgﬁ' evaluate our system on a commodity server with eight
085 | —o Lpret 3.2GHz Xeon processors and 4 GB memory running
L 08 Extemal ) Linux 2.6.20 SMP.
S °;,7§ J The memory usage of our system is composed of: i)
0.65 7 .(’ o the two most recent routing state of the target ISP ex-
06 7 ~ tracted from the traces; and ii) the evidence and the
0.55 y}f/‘/ . .
05 L= \ conflict graphs constructed from the two routing state
10 100 1000 100001000001e+06 1e+07 1e+08 (see §3). The former is relatively static over time

delay change (in microsec for AS7018 path . .
Y change ( path) since the overall topology and routing of a target ISP

Figure 8: Delay change distribution of each category fordo not change frequently. The latter is more dynamic
AS7018. and depends on the number of detected routing events.
Throughout our evaluation period, the former is domi-
nant because the number of traces outweighs the num-
ber of routing events. The total memory footprint of our

External-Improvg and External-AS-ChangeBecause system stays under 40 MB. We also evaluate whether

we use log scale on the y-axis, the graph does nof Y’ _system can kgep up with the.cont.mually incoming
rRutlng state. We find the processing time of two recent

show the cases where latency change is negative. Giver . q iahth of the d I
that almost all the curves start from 0.5, it implies la- r_outlr_19 st:;te nevert;xcee Soneeig thoft ﬁ. ata collec-
tency has the same likelihood to improve or worsen af—tlon time between the tV.VO routl_ng state._ This suggests
ter these events. A noteworthy observation is exter_ou_rsystem can ppe_r_ate n rea_l t|me_to qu_|ckly detectand
nal eventsExternal-AS-Chang&xternal andPeering raise alerts on significant routing disruptions.
have much more severe impact, suggesting that AT&T’s
network is engineered well I?nternall%/TqWe o%serve simi- 10 Related Work
lar patterns for the other ISPs studied. Much work has been proposed to use end-host based

Figure 9 illustrates how the latency change inducedorobing to identify various network properties. For
by the same event type varies across different ISPs. Wexample, Rocketfuel [11] discovers ISP topologies by
omit External-AS-Changhere because this type is not launching traceroute from a set of hosts in an intelligent
directly related to a target ISP. Figure 9(a) shows littlemanner to ensure scalability and coverage. iPlane [20]
difference among the five target ISPs in terms of latencyestimates the Internet path performance using tracer-
change caused by internal events, as most changes asates and prediction techniques. There exist many other
relatively small. Turning to Figure 9(b) and (c), the dif- research measurement infrastructures [21, 22, 23, 24,
ference between the ISPs becomes much more notic&s] for measuring network distance with performance
able. AS11537 appears most resilient to external eventsetrics such as latency and bandwidth. Another exam-
in terms of latency deterioration while AS2914 appearsple is PlanetSeer [26] which uses active probes to iden-
worst. The relative difference between the ISPs is contify performance anomalies for distributed applications.
sistent in both graphs, suggesting that customers sensihe key difference from these measurement efforts is
tive to performance disruptions should take great care inthat our work focuses on using collaborative traceroute
selecting the appropriate ISP providers. probes to diagnose routing changes associated with large
networks.

The closest related work on identifying routing dis-
In this section, we show that our system imposes auptions is that by Wiet al. [6]. Using BGP data from
small amount of memory and CPU overhead to performmultiple border routers in a single ISP, their system iden-

New-Peering-Ujy Lpref (Old-Lpref-Decrease New-
Lpref-Increasg, External (Old-External-WorsenNew-

9 System Evaluation



tifies significant BGP routing changes impacting large [7]
amount of traffic. A follow-up work by Huanet al.[27]
performs multivariate analysis using BGP data from all [8l
routers within a large network combined with router
configurations to diagnose network disruptions. In con- 1
trast, we do not rely on such proprietary BGP data, and
we can apply our system to diagnose routing changes fqno]
multiple networks. Another closely related work is the
Hubble system [28] which attempts to identify reacha-[11]
bility problems using end-system based probing. In con-
trast to their work, we attempt to both identify routing 17
events and infer their causes relative to the target AS.
There are also several projects on identifying the loca-
tion and causes of routing changes by analyzing BGP!3!
data from multiple ASes [5, 9]. However, it is difficult

to have complete visibility due to a limited number of |1,
BGP monitors. Note that our system is not restricted by
the deployment of route monitors and can thus be widely
deployed. (5]

11 Conclusion

In this paper we have presented the first system to accu-
rately and scalably diagnose routing disruptions purely17]
from end systems without access to any sensitive data
such as BGP feeds or router configurations from ISP net-
works. Using a simple greedy algorithm on two bipar- (18
tite graphs representing observed routing events, possi-
ble causes, and the constraints between them, our syggj
tem effectively infers the most likely causes for routing
events detected through light-weight traceroute probes.
We comprehensively validate the accuracy of our red20
sults by comparing with an existing ISP-centric method,
publicly-available router configurations, and network
operators’ mailing list. We believe our work is an im- [21]
portant step to empowering customers and ISPs for at-
taining better accountability on today’s Internet.

©

[16]

[22]
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