
Hotspots: The Root Causes of Non-Uniformity in Self-Propagating Malware

Evan Cooke, Z. Morley Mao, Farnam Jahanian
Department of Electrical Engineering and Computer Science

University of Michigan
{emcooke, zmao, farnam}@umich.edu

Abstract
Self-propagating malware like worms and bots can dra-

matically impact the availability and reliability of the In-
ternet. Techniques for the detection and mitigation of In-
ternet threats using content prevalence and scan detectors
are based on assumptions of how threats propagate. Some
of these assumptions have recently been called into ques-
tion by observations of huge discrepancies in the quantity
of specific threats detected at different points around the
Internet. We call these deviations from uniform propaga-
tion “hotspots”. This paper quantifies and explains these
influences on malware propagation. We then propose that
hotspots can be explained by two fundamental influences
on propagation: algorithmic factors and environmental fac-
tors. We use measurement data from sensors deployed at 11
locations around the Internet to demonstrate the impact of
these factors on worm and bot propagation. With this un-
derstanding, we simulate the outbreak of new threats with
hotspots and show how algorithmic and environmental fac-
tors reduce the visibility of distributed detectors resulting in
the inability to identify new threats.

1. Introduction
The construction of effective detection and mitigation

systems to combat increasingly sophisticated Internet at-
tacks requires a deep understanding of malicious Internet
behavior. To date, the analysis of Internet threats like worms
has focused largely on more salient features like the scan-
ning algorithm [22, 27]. More recently, there has been in-
creased attention on other features that impact threat propa-
gation like properties of the vulnerable population [13, 19]
and bot targeting behavior [6].

Previous studies often assumed that worms and other
threats had mostly uniform targeting distributions [29, 23].
That is, there was an equal probability a threat would at-
tempt to infect one address as any other address. How-
ever, we are learning that Internet threats have highly non-
uniform propagation behavior. Several studies have pro-
vided empirical evidence suggesting that there are a set of

internal and external processes that bias propagation of In-
ternet threats [18, 5, 13].

This paper quantifies and explains these influences on
propagation. We definehotspotsas deviation from uniform
malware propagation. We then hypothesize that hotspots
can be explained by two fundamental influences on prop-
agation. Algorithmic factorsdescribe host-level and pro-
grammatic characteristics that impact threat propagation.
Environmental factorsdescribe external influences such as
routing and filtering policy, network failures, misconfigura-
tions, and network topology that impact threat propagation.

To validate the existence of hotspots and demonstrate
their influence on propagation we use measurement data
from Internet sensors deployed at 11 locations around the
Internet. We illustrate the impact of algorithmic factors by
showing how the use of hit-lists by bots and pseudo ran-
dom number generator flaws in the Slammer and Blaster
worms produce hotspots. We then demonstrate the impact
of environmental factors by showing how the widespread
use of private address space interacts with CodeRedII prop-
agation and subsequently how the use of filtering in enter-
prises blocks outgoing worm probes and produces hotspots.
These observations empirically demonstrate the existence
and importance of hotspots in real-world threat propagation.

With an empirical understanding of hotspots, we present
evidence that hotspots have serious implications on dis-
tributed detection systems. We argue that alerts from sys-
tems such as those based on prevalence [11, 12, 24] can be
highly inaccurate in the face of hotspots. The core issue
is that detection systems placed at different points around
the Internet can report widely different observations of a
particular threat. The result is that quorum-based detec-
tion algorithms can completely miss the outbreak of new
threats. To demonstrate the impact of hotspots we simulate
the outbreak of a new threat with hotspots caused by algo-
rithmic and environmental influences. The results illustrate
an inherent limitation in globally-scoped detection systems.
We argue that the existence of hotspots demonstrates that
a global detection system alone is not sufficient and local
detection capabilities are still essential for detection.



This paper is organized as follows. §2 provides a back-
ground on malware propagation and discusses related work.
In §3 we define hotspots and hypothesize that hotspots
can be explained by algorithmic and environmental factors.
Next, in §4 we provide empirical evidence of algorithmic
and environmental factors. With this understanding, in §5
we simulate the outbreak of new threats with hotspots and
discuss the implications on distributed detection.

2. Background and Related Work

There has been a significant effort in the research com-
munity to measure and model self-propagating Internet
threats [3, 19, 27]. There are three types of host popula-
tions: avulnerablehost population, aninfectedhost popu-
lation, and animmunehost population. A host moves from
the vulnerable population to the infected population after a
successful infection attempt, and a host can only be a mem-
ber of one population at a time.Propagationdescribes this
process in terms of how a host in the infected population
chooses and infects a vulnerable host.

There are two basic steps in the propagation process,
choosing an address to infect and attempting to infect the
host at that address. Many threats do not know which hosts
are vulnerable ahead of time so they will randomly scan
through address space. This process of choosing the address
of the next target has traditionally been modeled as a uni-
form process. For example, in the simple epidemic model
every possible IPv4 address has an equal probability of be-
ing the next target for an infection attempt [27]. That is, a
worm instance chooses the next target address from a uni-
form random distribution from 0 to 232 in the IPv4 space.
We use uniform random propagation as the baseline upon
which our model of hotspots is constructed.

While many of the most significant worms to strike
the Internet such as CodeRed [22], Slammer [16] and
Blaster [2] use a random number generator in the target
address generation process, that process is highly non-
uniform. For example, CodeRedII and Nimba have been
shown to scan nearby addresses with a higher probabil-
ity [3, 19]. Moore et al. also pointed out how a flawed
random number generator in the Slammer worm could lead
to preference for certain addresses [16].

There is also significant empirical evidence of this non-
uniform targeting behavior. Cookeet al. demonstrated that
distinct darknet monitors (unused address space sensors)
observed orders-of-magnitude different amounts of traffic
and different numbers of unique source IPs [5]. These dif-
ferences persisted even when local preference and specific
propagation algorithms were accounted for. Panget al.
also showed that data collected at darknets at three loca-
tions belonging to three distinct networks differed signifi-
cantly [18]. Specifically, they found that the number and
type of packets per IP address across different ports and pro-

tocols, number of unique source IP addresses, and temporal
characteristics of traffic patterns also differed. Kumaret al.
recently illustrated how the Witty worm’s random number
generator produces non-uniform scanning [13].

These observations clearly show that the targeting pro-
cess of malware on the Internet today cannot be de-
scribed by a uniform process. Furthermore, simple ex-
planations like local preference and octet-based targeting
don’t account for the large observed differences between
addresses [3, 5, 19]. This paper systematically explains the
root causes of these non-uniform processes and then ex-
plores their impact on the structure of detection systems.

3. Defining Hotspots

In this section we develop a definition ofhotspotsen-
compassing internal, external, host, and network influences
on threat propagation. Simply put, hotspots are deviations
from uniform propagation behavior. For example, a worm
that targets a subset of possible addresses (e.g., a /24) is said
to exhibit hotspots while a worm that prefers every possible
destination address with equal probability does not.

We can decompose the causes of hotspots into two ma-
jor classes.Algorithmic factorsare programmatic and host-
centric features such as hit-lists, poorly constructed and
seeded PRNGs, and local preferences that bias propaga-
tion. Environmental factorsare external influences such
as routing and filtering policy, network failures and mis-
configurations, and network topology that impact reliability
and reachability and thus threat propagation. It is impor-
tant to highlight that there is no notion of intentionality in
algorithmic or environmental factors. Certain hotspots may
be intended and part of the threat specification, while other
hotspots are unintended and are a consequence of ambigu-
ous specification or incorrect implementation.

3.1. Algorithmic Factors
Algorithmic factors are host-centric, programmatic char-

acteristics that impact threat propagation. They include the
actual malware algorithms, the local operating system, and
run-time services on vulnerable and infected hosts. Algo-
rithmic factors are a superset of scanning strategies. Worm
scanning strategies such as those investigated by Staniford
et al. [27] including hit-list scanning, permutation scan-
ning, topological scanning, and stealth scanning can cause
hotspots, however, algorithmic factors go beyond scanning
strategies and include host context such as sources of en-
tropy and other run-time variables. We now describe three
key classes of algorithmic factors:

Hit-lists are pre-programmed lists of target addresses
stored in the threat payload or obtained remotely from a
server. Hit-lists are used by worms and bots to target spe-
cific address ranges. For example, a hit-list can be used
to speed up the propagation of worms [26] or help avoid

2



known detection systems. Hit-lists can have a very narrow
focus (e.g., target a specific /24 subnet), or specify almost
the entire address space (e.g., scan all the IPv4 space except
for 127.0.0.0/8). Hit-lists are often used by bots to target
specific address ranges known to contain live hosts such as
academic networks [6].

Pseudo-Random Number Generators (PRNGs)are
often used in the target address selection in self-propagating
threats. Obtaining a uniform random number distribution
from a PRNG is challenging and the output of many com-
mon PRNGs is biased. PRNGs require a source of entropy
to seed the generation function, and a poor quality entropy
source can severely bias the PRNG output. Thus, a bad
PRNG, a bad PRNG implementation, or a poor source of
entropy can cause non-uniform threat propagation.

Local Preferencebiases the targeting of a threat toward
nearby addresses and is typically deliberately designed into
a propagation algorithm. When the addresses of vulnerable
systems are clustered, local preference can spread the infec-
tion faster [19]. Local context such as the network address,
hardware address, system fingerprint, or global unique iden-
tifier can all be used to define locality.

3.2. Environmental Factors

Environmental factors are external influences that im-
pact the propagation of a threat. Environmental factors de-
rive primarily from network conditions along the end-to-
end path between an infected host and its target. These
factors impact the reachability of the target addresses due
to failures, misconfiguration, and policy restrictions along
the path. The structure and composition of network nodes
such as link capacities, link latencies, and host addressing
schemes are all considered environmental factors. We now
describe three key classes of environmental factors:

Routing and filtering policy impact the reachability and
path taken by infection packets. For example, a firewall at
the egress router of a network can restrict the targets reach-
able by an infected host. A firewall in front of vulnerable
but not-yet-infected hosts can also prevent those hosts from
being infected by an external attacker but still leave them
vulnerable to infected hosts within the same network.

Network failures and misconfigurations impact the
reliability of infection packets reaching a destination.
Dropped and mangled packets can significantly impact the
probability of a successful infection. Failures can occur due
to network equipment problems, link connectivity issues,
or simply network congestion (which can be self-induced
by the outbreak [16]). Misconfigured routers, switches, and
policy devices can also cause unreliability.

Network topology impacts how nodes on the network
are configured and connected. It determines message la-
tency and bandwidth and thus the rate at which an infec-
tion can progress. The assigned addresses and the rules that

govern the reachability between addresses can also signifi-
cantly impact threat propagation. For example, private ad-
dresses [20] are widely used within networks and behind
network address translation devices (NATs). Vulnerable
hosts within private address space have more reachability
constraints compared to hosts with globally advertised ad-
dresses.

4. Empirical Evidence of Hotspots
To demonstrate how algorithmic and environmental fac-

tors impact real-world malware propagation we now de-
scribe a series of case studies performed using Internet mea-
surement data. We study the Blaster worm, the Slammer
worm, the CodeRedII worm, and live botnets to empirically
demonstrate the existence and severity of hotspots.

4.1. Measurement Methodology
The data analyzed in this paper is from two sources:

darknets and live network capture. The darknet data was
collected over two months in 2004 and 2005 as part of
the Internet Motion Sensor distributed darknet monitoring
project [1]. Darknets are blocks of unused address space.
Any traffic observed at darknets must be the result of mis-
configuration, backscatter from spoofed source addresses,
or scanning from worms and other network probing. Dark-
nets are also known by other names such as network tele-
scopes [15], blackholes [1, 25]. These efforts have pro-
duced a new understanding of denial of service attacks [17],
worms [1, 2, 16, 22], and malicious behavior [18].

The IMS darknet data used in this study was from 11 dis-
tinct address blocks at 9 organizations including ISPs, aca-
demic networks, and a large enterprise. The address blocks
ranged in size from a /25 (CIDR notation, 128 addresses) to
a /8 (16 million addresses). Throughout the paper we refer
to these blocks by their anonymized label which also indi-
cates the size of the block: (A/23, B/24, C/24, D/20, E/21,
F/22, G/25, H/18, I/17, M/22, Z/8). The IMS sensor record-
ing the traffic at each of these blocks actively responded to
TCP SYN packets with a SYN-ACK packet to elicit the first
data payload on all TCP streams [1]. This approach pro-
vided the necessary payload data to uniquely identify the
threats studied in this paper.

In addition to darknet data, we also used data cap-
tured from a large live network to investigate bot propa-
gation. We looked for the specific command signatures of
Agobot/Phatbot [4], rBot/SDBot [14], and Ghost-Bot in the
payload of traffic captured in a large academic network. The
academic network was allocated a single /15 address block
and included approximately 10,000 live hosts.

4.2. Algorithmic Factors
In this section we empirically demonstrate how algorith-

mic factors influence real-world malware propagation. We

3



Bot Propagation Command Bot Propagation Command

ipscan i.i.i.i dcom2 -s advscan wkssvcENG 100 0 0
ipscan s.s.s.s dcom2 -s ipscan r.r.r.r dcom2 -s
advscan dcass 300 5 0 141.x.x.x advscan lsass 100 5 999 -b
advscan dcass 300 5 0 140.142.x.x ipscan 69.27.s.s dcom2 -s
ipscan s.s mssql2000 -s ipscan s.s.s lsass -s
ipscan s.s webdav3 -s ipscan r.r.r.r dcom2 -s
ipscan 194.s.s.s dcom2 -s ipscan 194.116.s.s dcom2
ipscan 192.s.s.s dcom2 -s ipscan 128.s.s.s dcom2 -s

Table 1. Botnet scan commands captured on
a live /15 academic network.

show how hit-lists cause hotspots using data from botnets
and show how bots target specific networks. Next, we il-
lustrate how errors and bad parameters in random number
generators cause hotspots in propagation using the Blaster
and Slammer worms as examples.

4.2.1. Hit-lists: botnet targeted attacks
Hit-lists are a simple and prevalent cause of hotspots. To
demonstrate how they impact real-world malware propaga-
tion we investigated the behavior of bots. Bots have recently
gained attention for their flexible design and ability to per-
form targeted attacks against specific subnets [6, 28].

Bots typically wait for commands from a bot controller
to initiate propagation. These commands can be inter-
cepted and analyzed. To gather bot propagation com-
mands we looked for the specific command signatures of
Agobot/Phatbot [4], rBot/SDBot [14], and Ghost-Bot in the
payloads of traffic captured in a large academic network.
We then extracted the specific parts of the commands in-
structing bots to start propagating. For example,advscan
dcom135 300 5 9000 10.x.x.x -r -b -s is a bot com-
mand we captured as it was sent through IRC.

Table 1 shows a sample of the commands from approx-
imately 11 bots detected by the system during a month in
2005. Each command instructs the bot to begin scanning
a range of IP addresses. The bot commands show that hit-
lists are used by malware today to restrict propagation to
certain subnets. It is hard to determine if the motivation for
the targeted behavior is to avoid detection or increase the
probability of infections, however, we can say that hit-lists
are used by botnets today.

4.2.2. PRNG: Bad entropy in the Blaster worm
In this subsection we empirically show how a poorly seeded
random number generator impacts malware propagation
and produces hotspots. The Blaster worm uses the system
clock on the infected computer to initialize its random num-
ber generator. The system clock is a bad source of entropy
and we empirically demonstrate how hotspots in Blaster
propagation can be directly correlated with system clocks
and the time since the last reboot.

The Blaster worm uses the WindowsGetTickCount()
system call as a source of entropy for its pseudo-random
number generator (PRNG) [2]. The system clock is a very

Figure 1. Observed unique source IPs of
Blaster infection attempts by /24.

poor source of entropy because the count starts from 0 after
each reboot. Because the Blaster executable is started au-
tomatically at boot time, the initial seed for the PRNG of a
Blaster instance started as the result of a reboot will be re-
stricted to a small subset of the possible 32-bit values of the
clock.

To measure the number of clock ticks it takes to launch
the worm after a reboot we wrote a simple program that
calledGetTickCount()and logged the result to a file. The
program was launched at boot time using the same registry-
based launching mechanism as the Blaster worm. The pro-
gram then instructed the computer to reboot, and the process
repeated.

We gathered tick count distributions from three genera-
tions of Intel-based systems: a Pentium II, a Pentium III,
and a Pentium IV. The results revealed a mean boot time of
about 30 seconds with a 1 second standard deviation. Thus,
there was very restricted range of possible boot times for
each generation of hardware. A more detailed analysis can
be found in [7].

The restricted range of possible initial seeds means that
the resulting Blaster scanning behavior should be biased.
Figure 1 shows the distribution of persistently infected
Blaster hosts observed at distributed IMS sensors over a
month in August 2004. Hotspots are clearly visible in the
middle of the I sensor block. The question is whether these
hotspots can be correlated with probable initial seeds for the
Blaster PRNG.

Using the decompiled Blaster source code [21] and
a range of possible tick count values from1000 to
10,000,000, (i.e., boot times ranging from 1 second to 2.8
hours since 1 tick is a millisecond) we generated a map-
ping from seeds to IP addresses. Using this mapping we
correlated the address ranges that observed the most Blaster
sources in Figure 1 with initial seeds. The large spike in
observed Blaster hosts at the I block maps back to a seed
value corresponding to aGetTickCount()of 2.3 minutes.

Using the seed-to-target mapping, the other spikes in
Figure 1 were mapped back to possible seeds. Resulting

4



seed values ranged from about approximately 1 minute to
20 minutes with the distribution centered around 4-5 min-
utes. To cross check the results we also mapped the ad-
dresses that observed very few Blaster hosts back to ini-
tial seeds and found they corresponded to improbable boot
times of hours to days. These values confirm our earlier
observations.

The evidence presented on Blaster propagation strongly
suggests that the worm is heavily influenced by a poor
source of entropy used to seed the PRNG. Because the
Blaster worm continues to sequentially scan through the
IPv4 address space after choosing an initial starting point
(based on the PRNG), the effect of hotspots is not as pro-
nounced as it could be. Nevertheless, the data suggests
hotspots generated by algorithmic factors like errors in the
PRNG implementation are real and can significantly impact
propagation.

4.2.3. PRNG: Error in Slammer worm PRNG
In this subsection we extend our understanding of the im-
pact of algorithmic factors and the importance of the PRNG
by showing how a poorly designed generator function can
cause significant hotspots. To demonstrate the importance
of PRNG flaws we use empirical data on Slammer worm
propagation to definitively show a significant targeting bias
by Slammer infected hosts. To our knowledge, this is the
first real evidence that the flaw found in the Slammer [16]
worm actually impacts real-world propagation.

The Slammer target generation algorithm is a simple lin-
ear congruent generator (LCG) [10] of the forms(i + 1) =
a∗ s(i) + b mod p. The worm chooses an IPv4 address
using this simple PRNG and then attempts to infect the tar-
geted address with a single UDP packet. The generator con-
tains a serious flaw that impacts the randomness of the re-
sulting number stream.

In the case of Slammer, the value ofa is 214013 and p
is 232 because the value is stored as a 32 bit integer. The
b parameter however is not fixed. Although it may have
been the intention of the worm author to fix the value ofb at
0xffd9613c (which is a commonly used value ofb in many
LCGs), it appears the author made an error and used theOR
instruction instead ofXOR to clear a register. The result is
that 0xffd9613c becomesOR’ed with a value left over in
the ebx register. This leftover value is thesqlsort.dll
Import Address Table entry which can vary with the ver-
sion of the DLL. Three versions have been widely reported
(0x77f8313c, 0x77e89b18, and0x77ea094c) [8, 16].

In order to determine the value ofb in the Slammer
LCG we take the three possible leftoverebx register values
andXOR them with0xffd9613c. Thus, the possible values
of b (more if other DLL versions exist) are0x88215000,
0x8831fa24, 0x88336870. Unlike the value ofb that ap-
pears to have been originally intended, thesebvalues are not

Figure 2. Observed unique Slammer infected
source IPs by destination /24s.

optimal for producing the greatest possible range of random
numbers. The result is that certain choices of the initial seed
may cause the LCG to loop over a small subset of the pos-
sible 32-bit values. The implications of these imperfections
are enormous for Slammer targeting behavior. If the choice
of initial seed forces Slammer into a small cycle with pe-
riod of less than 1000, the resulting target distribution will
be extremely restricted.

Figure 2 shows the number of observed Slammer infec-
tion attempts from the IMS by /24. There are a few im-
portant observations. First, the M block did not see any
Slammer infection attempts. This is due to policy blocking
the worm deployed at its upstream provider. Second, the
H block shows almost 8000 fewer Slammer sources than
the other blocks. Recall that these observations were made
over a period longer than one month so temporal effects (es-
pecially considering Slammer’s fast propagation) are mini-
mized.

Based on the flaws in the Slammer PRNG described
above, it is possible to make certain testable predictions
about Slammer scanning patterns. If a significant number
of Slammer hosts chose a bad initial seed, they will scan
a specific subset of the IPv4 space. To test this hypothe-
sis we tracked individual Slammer infected IPs across IMS
sensors. Host A in Figure 3 shows the number of Slammer
infection attempts by /24 from a single Slammer source IP.
Notice how block D observed no infection attempts from
this particular source while block H observed some and
block I received the most. Host B in Figure 3 shows an-
other unique Slammer source. In this figure the intra-block
variance is quite high and there is a distinct pattern. The im-
portant implication of Figure 3 is that there can exist huge
non-uniformity in the scanning patterns of individual Slam-
mer infected hosts.

The hotspots exhibited by the hosts in Figure 3 appear to
indicate that Slammer infected hosts can get into PRNG cy-
cles. To identify the PRNG cycles in Slammer we compute
the length of all cycles of the LCG described above for each

5



(a) Slammer Host A (b) Slammer Host B (c) Possible LCG cycles

Figure 3. (a, b) Slammer infection attempts from two unique hosts by destination /24s. (c) Period of
all possible cycles in the Slammer LCG for b of 0x88215000.

value ofb. We find that there are 64 cycles for eachb value
and the lengths are very similar in each case. Cycle lengths
for b equal to0x88215000 are shown in Figure 3(c). Notice
that the log plot shows many small cycles and seven cycles
having a period of only one. A Slammer instance stuck in
one of these short cycles will repeatedly attempt to infected
a handful of addresses appearing very much like a targeted
denial of service attack.

Because certain addresses can be part of longer PRNG
cycles and newly infected hosts have a higher probabil-
ity of being a member of longer cycles, certain addresses
should observe more unique Slammer source addresses.
This means we can predict the relative number of Slammer
observations at different addresses based on the length of
the PRNG cycles that traverse each address.

Using the logic above, the H block should have fewer
long cycles than the other blocks because the distribution of
unique Slammer hosts depicted in Figure 2 shows a clear
bias away from the H block. We can check this by com-
puting the total length of all cycles that traverse each block.
The sum of the lengths of the cycles for the D, H, I blocks
are 42.67, 29.33, 42.67, (divided by 1610) respectively. This
shows that the H block is traversed by far fewer long PRNG
cycles than the D or I block confirming the prediction.

This analysis has demonstrated that there are two forms
of hotspots in the Slammer worm. First, each individual
Slammer instance enters a PRNG cycle that is a subset of
32-bit space and thus propagation from individual Slam-
mer infected hosts can have a significant bias. The second
class of hotspots emerges when observing Slammer infected
hosts in aggregate. Because there is a higher probability to
enter longer cycles, address ranges that are not part of as
many longer cycles do not observe as many Slammer hosts.
These results have demonstrated that flaws and problems
with PRNGs are algorithmic factors that can cause signifi-
cant hotspots in malware propagation.

4.3. Environmental Factors

In this section we empirically show how environmen-
tal factors influence real-world malware propagation. We
show how Internet topology and the widespread use of pri-
vate address space is an environmental factor that causes
huge hotspots in CodeRedII propagation. Subsequently, we
show how Internet filtering impacts the propagation of the
CodeRedII, Slammer, and Blaster worms.

4.3.1. Network topology: NATs & CodeRedII
Network topology is an environment factor that has a large
influence on propagation. One important topological fea-
ture is the wide adoption of private address space inside
homes and enterprises spurred by the use of NATs [9].
An implication of this feature is the significant loss of bi-
directional reachability for hosts on the Internet. This has
implications on how vulnerable hosts become infected and
how infected hosts propagate.

To investigate how private address space influences mal-
ware propagation we analyzed the targeting behavior of
the CodeRedII worm. CodeRedII has a large local pref-
erence in its propagation algorithm which means that infec-
tions can progress much more quickly in clusters of hosts
in nearby address space. This also means that when a
CodeRedII infected host is assigned a private address like
192.168.1.2 behind a NAT device, the infected host will
continue to prefer the local /8 (192.0.0.0/8) and the local /16
(192.168.0.0/16). Since 192.168.0.0/16 is the only private
/16 in 192.0.0.0/8, CodeRedII infection packets to other /16
networks in 192.0.0.0/8 will leak out into the Internet and
produce a large hotspot.

To investigate CodeRedII hotspots we measured
CodeRedII infection attempts at IMS sensors for more
than a month. Figure 4(a) shows the number of unique
CodeRedII source IP addresses detected by /24. The distri-
bution is clearly not uniform and there is a large hotspot in
the M block. The propagation distributions from individual
CodeRedII infected hosts reveal two classes of behavior: a

6



(a) Observed CodeRedII (b) Quarantinenon-192/8 Address (c) Quarantine 192/8 Address

Figure 4. (a) Observed unique CodeRedII source IPs by destination /24s. (b, c) Infection attempts by
destination /24s from two quarantined CodeRedII hosts.

uniform scanning behavior, and a scanning behavior with a
large bias for the M block as illustrated in Figure 4(a).

A hint about the origin of this abnormal host behav-
ior is the address of the M block. The M block is lo-
cated inside 192.0.0.0/8 which supports the hypothesis
that many CodeRedII infected hosts are behind NATs in
192.168.0.0/16 private address space and thus prefer the
192.0.0.0/8 address block. The challenge is that the hypoth-
esis is difficult to test without tracking down each actual in-
fected machine. Instead, we attempted to replicate the con-
ditions of a CodeRedII host behind a NAT and then mon-
itored the scanning preference. Using a honeypot running
VMWare, the CodeRedII worm was captured and placed in
a controlled environment with sensors in the same addresses
as the sensors in Figure 4(a).

Using the captured worm we performed two experi-
ments. First, we configured the infected VMWare host
with an address outside 192.0.0.0/8. Figure 4(b) shows the
scan targets plotted over the same /24s as in Figure 4(a).
Even though a total of 7,567,093 infection attempts were
recorded from the quarantined host, only a small number of
attempts reach the monitored blocks. The CodeRedII worm
has a very large local preference and a completely random
target address is chosen only 12.5% of the time so packets
to the sensors were very rare.

In the second experiment, the vulnerable host run-
ning under VMWare was configured with the IP address
192.168.1.50. Figure 4(c) shows the scan targets plotted
over the same /24s as in Figure 4(a). During this run, a total
of 7,567,361 infection attempts were recorded from the in-
fected host. However, this time, the graph shows a distinct
spike at the M block just like the distribution observed on
the IMS darknets. While the number of samples is not huge,
there is clearly a significant effect due to local preference.

These two experiments demonstrate a strong correlation
between the scanning behavior of a CodeRedII infected
host behind a NAT device and the empirical observations
of CodeRedII propagation. The implication is that network
topology is an environmental factor that can dramatically

FT100-Corp Total IPs CRII IPs Slammer IPs Blaster IPs

Corp-Banking 6129672 1 68 16
Corp-Media 1273256 9 2 67

Corp-Logistics 8985520 0 5 44

Broadband ISP Total IPs CRII IPs Slammer IPs Blaster IPs

ISP-A 5336880 40251 88165 20517
ISP-B 19501064 2277 26261 3285
ISP-C 19448864 1340 5798 28

Table 2. The top 3 Fortune 100 enterprises
and top 3 broadband ISPs with worm infec-
tions detected by IMS.

influence propagation and result in large hotspots.

4.3.2. Network filtering: Fortune 100 filtering
Filtering on the Internet has become pervasive. The use of
routing policy and filtering devices like firewalls are com-
mon on most networks. We now demonstrate how filtering
is an important environmental factor that causes hotspots.

Large companies typically have hundreds of thousands
of hosts in their networks. The size and complexity of these
networks means stamping out all infections is nearly impos-
sible. The result is that there will inevitably be a number
of infected hosts inside large enterprise networks that will
make outgoing infection attempts. We can use the outgoing
infection attempts made by these infected hosts to estimate
the prevalence of filtering.

To measure the number of infections from large enter-
prises, we can compare the list of worm infected IPs de-
tected by the IMS to the addresses managed by Fortune
100 companies. To find the addresses of large enterprises
we took the companies in the Fortune 100 during 2004 and
looked up the IP addreses allocated to each enterprise by
ARIN. We removed Tier 1 ISPs and broadband providers
from the list because their addresses can be reallocated to
other organizations. We then tested to see if the persistently
infected IPs from the CodeRedII, Slammer, and Blaster
worms were present in the IP ranges allocated to the For-
tune 100 companies.

The results are shown in Table 2. Despite the size of
the companies and the huge number of addresses they man-

7



age, there were almost no external indication of infections.
To check these results we also studied the top 3 broadband
providers and looked at the number of infections leaking
from their networks. The results are also shown in Ta-
ble 2 and reveal 10’s of thousands of infections from the
broadband providers. Since there is little outgoing filtering
from broadband providers today, these results support the
idea that there is outgoing filtering at enterprises. While
not conclusive because enterprises could be exceptionally
good at patching, it does highlight how filtering can result
in hotspots when threats such as CodeRedII use local con-
text to bias propagation.

5. Impact of Hotspots on Distributed Detection

The existence of significant hotspots in malware prop-
agation – as evidenced by the Slammer, CodeRedII, and
Blaster worms – has significant implications on distributed
detection systems. One important issue is that alerts from
systems such as those based on content prevalence [12, 24,
11] can be inaccurate due to hotspots. The problem is that
one IP address may observe a large number of infection at-
tempts while another address observes few or no infection
attempts. The result is that detection systems placed at dif-
ferent points around the Internet may report widely different
observations of a particular threat.

We now investigate how hotspots in malware propaga-
tion impact detection systems. We analyze two processes
that could significantly increase the prevalence of hotspots:
(1) the move to more targeted attacks as illustrated by the
rise of botnets, and, (2) the continuing loss of bi-directional
connectivity due to greater use of NATs, private address
space, and filtering at the customer edge.

In this section we demonstrate how hotspots generated
by algorithmic and environmental factors consistent with
these two trends reduce the effectiveness of distributed mal-
ware detection. To illustrate the influence of algorithmic
factors we simulate the outbreak of a new threat that uses
hit-lists and investigate the impact on distributed detection
systems. Next, we simulate the outbreak of a threat that uses
local preference inside private address space and demon-
strate the impact of environmental factors on distributed
detection. Because hotspots are inherently difficult to pre-
dict, these results illustrate the danger hotspots pose to dis-
tributed detection systems.

5.1. Simulation Platform
To model hotspots we constructed a simulation envi-

ronment to reproduce the outbreak of a CodeRedII-type
worm. The platform was designed to model a uniform
scanning worm, a hit-list worm, and the internal propa-
gation algorithm of the CodeRedII worm. To ensure that
the CodeRedII algorithm was accurate, we used the disas-
sembled CodeRedII code to construct the propagation code.

This includes how the random generators were seeded and
how the target addresses were chosen. To provide com-
parable results to [12], we fixed the scanning rate at 10
probes/second and used a randomly chosen seed population
of 25 hosts for each worm. The vulnerable population for
each worm was set to the actual infected IPs as discussed in
Section 4. The vulnerable population for CodeRedII worm
included 134,586 unique addresses that were clustered in 47
/8 networks.

5.2. Algorithmic Factors and Detection

In this subsection we demonstrate how hotspots due to
algorithmic factors impact distributed detection systems. To
illustrate the point we investigate how hit-lists, an algorith-
mic factor increasingly used by bots, produce hotspots. We
use the observation that bots will often target specific /24
and /16 networks described in Section 4.2 as a basis for a
simulation. Using this information we built a worm that
uses a list of prefixes that specify /16 IPv4 networks as tar-
gets. Each newly infected host may only propagate to the
addresses covered by the prefixes in the hit-list.

In the first experiment we investigate the impact of dif-
ferent lengths of hit-lists on the threat propagation. We used
4 hit-list sizes: 10 /16’s, 100 /16 networks, 1000 /16’s, and
4481 /16’s. Each /16 was chosen to cover as many remain-
ing vulnerable hosts as possible. The 10-item list covered
10.60% of the vulnerable population, the 100-item list cov-
ered 50.49%, the 1000-item list covered 91.33%, and the
4481-item list covered 100%.

Figure 5(a) shows the result of the first experiment. The
threat using the smallest hit-list infected all the possible
hosts in its hit-list quickest. This is due to the higher vulner-
able population density. However, the threat using the larger
hit-list reached a larger percentage of the total vulnerable
population but did so more slowly. The result demonstrates
the importance of a high ratio of vulnerable addresses to
total addresses for speed [27, 26].

With an understanding of the propagation rates, the next
step is to model the impact of hit-lists on detection. In this
experiment we randomly placed a /24 detector (i.e., each
detector monitored 256 contiguous addresses) in each of the
4481 /16 networks with at least one vulnerable host. Each
sensor was set to generate an alert after observingn worm
infection attempts (similar to many network-based detec-
tion systems [12, 24]). Our detector had no false positives
and was set to generate an alert after observing 5 threat pay-
loads. We then released the same hit-list-based threat and
observed the alert rate across all the sensors.

Figure 5(b) shows the result of the hit-list detection ex-
periment. It shows that even if all the sensors had no false
positives, and were able to instantaneously communicate
with each other, a quorum-based alerting approach would
likely never alert as very few of the sensors ever alert. When

8



0 200 400 600 800 1000
Time (Seconds)

0

0.2

0.4

0.6

0.8

1

%
 o

f V
ul

ne
ra

bl
e 

H
os

ts 
In

fe
ct

ed

10 Prefix Hit-List
100 Prefix Hit-List
1000 Prefix Hit-List
4481 Prefix Hit-List

Infection Rate With to Different Hit-List Sizes
/16 Per Hit-List Prefix, CodeRedII Vul Pop: 134,586 IPs, 25 Seed Hosts, 10 scans/sec

0 200 400 600 800 1000
Time (Seconds)

0

0.2

0.4

0.6

0.8

1

%
 o

f S
en

so
r A

le
rti

ng
 (4

48
1 

/2
4 

Se
no

rs
) 10 Prefix Hit-List

100 Prefix Hit-List
1000 Prefix Hit-List
4481 Prefix Hit-List

Sensor Detection Rate With to Different Hit-List Sizes
/16 Per Hit-List Prefix, CodeRedII Vul Pop: 134,586 IPs, 25 Seed Hosts, 10 scans/sec

0 200 400 600 800 1000
Time (Seconds)

0

0.2

0.4

0.6

0.8

1

%
 o

f S
en

so
rs

 A
le

rti
ng

Placed 192/8
Randomly Placed
Placed Top 20 /8s
20% Vulnerable Infected

Effect of Sensor Placements on Alert Generation
Alert=5 worm payloads, CodeRedII worm, 134,586 IPs, 25 Seed Hosts, 10 scans/sec

(a) Hit-list Infection (b) Hit-list Detection (c) Detection & NATs

Figure 5. (a, b) Infection and detection rate during the simulated outbreak of a new threat using hit-
lists of different lengths. (c) Detection rate with vulnerable hosts placed in private address space
using different sensor placement strategies.

more than 90% of the vulnerable population has been in-
fected, only slightly more than 20% of the detectors have
alerted. This is a important result. It means that even with
pre-knowledge of the vulnerable population, and the ubiqui-
tous placement of detectors, hotspots caused by algorithmic
factors reduce visibility of distributed detectors.

5.3. Environmental Factors and Detection

In this subsection we demonstrate how hotspots caused
by environmental factors impact distributed detection sys-
tems. To illustrate the point we investigate how the in-
creasingly complex topology of the Internet contributes to
hotspots and creates new challenges.

The large increase in broadband subscribers has helped
drive fundamental changes in the structure of the Internet.
In particular, the wide adoption of NAT devices and the in-
creasing use of private addresses has reduced the ability to
make bidirectional connections. These environmental fac-
tors have serious implications on hotspots and detection.

To illustrate how changes in Internet topology create
hotspots and detection challenges we simulated the out-
break of a new threat in an Internet environment with pri-
vate address space. The threat was based on the decompiled
CodeRedII code with the same local bias.

To model the private address usage among vulnerable
hosts on the Internet we estimated the number of hosts in-
side 192.168.0.0/16 in the real CodeRedII vulnerable popu-
lation. Using the data plotted in Figure 4(a), we were able
to compute an estimate. By comparing the number of hosts
observed with source addresses in 192.0.0.0/8 with the total
number of hosts observed with any address we can estimate
the number of hosts with 192.168.0.0/16 private addresses
at 15%. This is a crude estimate, as it may significantly un-
derestimate the real percentage of vulnerable hosts inside
private address space. Using the same simulation environ-
ment as before, we configured 15% of vulnerable hosts as if
they were NAT’ed with 192.168.0.0/16 addresses.

In the first run of the experiment we placed 10,000 /24
sensors randomly throughout the IPv4 space and released
the CodeRedII-type worm. Figure 5(c) shows the resulting
alert rate as a function of time. The figure shows that it takes
more than 11 minutes for just 10% of the sensors to generate
an alert. After 11 minutes the worm has already infected
more than 50% of the vulnerable population making global
containment difficult or impossible.

For the second run of the experiment we assumed that or-
ganizations around the Internet were able to collaboratively
determine where potentially vulnerable hosts were located
and we placed 10,000 sensors randomly inside the top 20
/8 networks with vulnerable hosts. Because the vulnerable
population was clustered inside certain networks (the top
20 /8 networks include 94% of the vulnerable population),
there was a better chance of detecting the outbreak because
the sensors were nearby and the threat had a local prefer-
ence. Figure 5(c) shows the resulting alert rate when the
sensor were placed in the top 20 /8 networks. The figure il-
lustrates that placement closer to the vulnerable population
results in faster detection, however, only 20% of the sen-
sor have alerted when 20% of the vulnerable population has
been infected.

In the third experiment we tested whether the empirically
measured hotspot detected in 192.0.0.0/8 could be lever-
aged for detection. We placed 255 sensors in each of the
/16 networks inside 192.0.0.0/8 avoiding 192.168.0.0/16.
The result is plotted in Figure 5(c). Every single sensor
generated an alert before the worm has infected 20% of
the vulnerable population. Thus, even with only 15% of
the vulnerable population within 192.168.0.0/16 private ad-
dress space, a single detector can be hugely effective at pro-
viding early warning. However, these results again demon-
strate that even with pre-knowledge of the vulnerable pop-
ulation, and the ubiquitous placement of detectors, hotspots
– in this case produced by environmental factors – reduce
the visibility of distributed detectors.

9



6. Conclusion

This paper has introduced the idea of hotspots and
demonstrated how hotspots impact malware propagation on
the Internet. We showed how hotspots are caused by algo-
rithmic factors inherent to the specification and implemen-
tation of a threat and by environmental factors in the net-
work. We empirically demonstrated how algorithmic fac-
tors cause hotspots in bots and in the Blaster and Slam-
mer worms and how environmental factors cause hotspots
in the CodeRedII worm. We then demonstrated the impact
of hotspots by showing how they reduce the visibility of dis-
tributed detectors raising the possibility that new outbreaks
may be missed.

Although the impact of hotspots in Internet threats can
often be explained after the fact, hotspots are nearly impos-
sible to model in general. The core problem is that hotspots
are very difficult to predict. The result is that it is not pos-
sible to pre-position detection systems and many or all sen-
sors in a distributed detection system may never alert. The
main message of this study is that while global distributed
detection systems have an important function, it is critical
to invest in local detection systems to protect networks from
the targeted impact of hotspots.

Acknowledgments
This work was supported by the Department of

Homeland Security (DHS) under contract number
NBCHC040146, and by corporate gifts from Intel Corpo-
ration and Cisco Corporation.

References

[1] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson.
The Internet Motion Sensor: A distributed blackhole moni-
toring system. InProceedings of Network and Distributed
System Security Symposium (NDSS ’05), San Diego, CA,
February 2005.

[2] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and J. Nazario.
The Blaster Worm: Then and Now.IEEE Security & Pri-
vacy, 3(4):26–31, 2005.

[3] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of
active worms. InIEEE INFOCOMM, 2003.

[4] Computer Associates. Win32.Agobot. http:
//www3.ca.com/securityadvisor/virusinfo/virus.
aspx?id=37776, July 2004.

[5] E. Cooke, M. Bailey, Z. M. Mao, D. Watson, and F. Jahanian.
Toward understanding distributed blackhole placement. In
Proceedings of the 2004 ACM Workshop on Rapid Malcode
(WORM-04), New York, Oct 2004. ACM Press.

[6] E. Cooke, F. Jahanian, and D. McPherson. The Zombie
roundup: Understanding, detecting, and disrupting botnets.
In Proceedings of the Steps to Reducing Unwanted Traffic on
the Internet (SRUTI 2005 Workshop), Cambridge, MA, July
2005.

[7] E. Cooke, Z. M. Mao, and F. Jahanian. Worm hotspots: Ex-
plaining non-uniformity in worm targeting behavior. Techni-
cal Report CSE-TR-503-04, University of Michigan, 2004.

[8] eEye Digital Security. ANALYSIS: Microsoft SQL Server
Sapphire Worm. January 2003.

[9] K. Egevang and P. Francis. RFC 1631: The
IP Network Address Translator (NAT). 1994.
http://www.ietf.org/rfc/rfc1631.txt.

[10] P. B. Garrett. Making, Breaking Codes: an Introduction
to Cryptology. Prentice-Hall, Inc., Upper Saddle River, NJ
07458, USA, 2001.

[11] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishna. Fast
portscan detection using sequential hypothesis testing.Pro-
ceedings 2004 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 9–12, 2004, 2004.

[12] H.-A. Kim and B. Karp. Autograph: Toward Automated,
Distributed Worm Signature Detection. InProceedings of the
2004 USENIX Security Symposium, San Diego, CA, USA,
August 2004.

[13] A. Kumar, V. Paxson, and N. Weaver. Exploiting underly-
ing structure for detailed reconstruction of an internet-scale
event. Proceedings of the USENIX/ACM Internet Measure-
ment Conference, Oct. 2005.

[14] McAfee. W32/Sdbot.worm.http://vil.nai.com/vil/
content/v_100454.htm, April 2003.

[15] D. Moore. Network telescopes: Observing small or distant
security events. In11th USENIX Security Symposium, In-
vited talk, San Francisco, CA, Aug. 5–9 2002. Unpublished.

[16] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer worm.IEEE Security &
Privacy, 1(4):33–39, 2003.

[17] D. Moore, G. M. Voelker, and S. Savage. Inferring In-
ternet denial-of-service activity. InProceedings of the
Tenth USENIX Security Symposium, pages 9–22, Washing-
ton, D.C., Aug. 2001.

[18] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Pe-
terson. Characteristics of Internet background radiation. In
Proceedings of the 4th ACM SIGCOMM conference on In-
ternet measurement, pages 27–40. ACM Press, 2004.

[19] M. A. Rajab, F. Monrose, and A. Terzis. On the effectiveness
of distributed worm monitoring. InProceedings of the 14th
USENIX Security Symposium, Baltimore, MD, August 2005.

[20] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear. RFC 1918: Address allocation for private inter-
nets, 1996. http://www.ietf.org/rfc/rfc1918.txt.

[21] Robert Graham. Decompiled Source for MS RPC DCOM
Blaster Worm. http://robertgraham.com/journal/
030815-blaster.c, 2003.

[22] C. Shannon, D. Moore, and J. Brown. Code-Red: a case
study on the spread and victims of an Internet worm. In
Proceedings of the Internet Measurement Workshop (IMW),
Dec. 2002.

[23] C. Shannon, D. Moore, G. M. Voelker, and S. Sav-
age. Internet quarantine: Requirements for containing self-
propagating code. InINFOCOM, Dec. 21 2003.

[24] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In6th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’04), pages 45–60,
San Francisco, CA, Dec. 6–8 2004.

[25] D. Song, R. Malan, and R. Stone. A snapshot of global Inter-
net worm activity. FIRST Conference on Computer Security
Incident Handling and Response, June 2002.

[26] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top
speed of flash worms. InWORM ’04: Proceedings of the
2004 ACM workshop on Rapid malcode, pages 33–42. ACM
Press, 2004.

[27] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the In-
ternet in your spare time. InProceedings of the 11th USENIX
Security Symposium. USENIX, Aug. 2002.

[28] The Honeynet Project. Know your enemy: Tracking botnets.
http://www.honeynet.org/papers/bots/, March 2005.

[29] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring
and early warning for Internet worms. InProceedings of
the 10th ACM conference on Computer and communication
security, pages 190–199. ACM Press, 2003.

10


