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ABSTRACT
This paper presents the design and implementation of Souche, a
system that recognizes legitimate users early in online services.
This early recognition contributes to both usability and security.
Souche leverages social connections established over time. Legiti-
mate users help identify other legitimate users through an implicit
vouching process, strategically controlled within vouching trees.
Souche is lightweight and fully transparent to users. In our eval-
uation on a real dataset of several hundred million users, Souche
can efficiently identify 85% of legitimate users early, while reduc-
ing the percentage of falsely admitted malicious users from 44%
to 2.4%. Our evaluation further indicates that Souche is robust in
the presence of compromised accounts. It is generally applicable to
enhance usability and security for a wide class of online services.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; H.4.3 [Communications Applications]: Sub-
jects—Electronic mail

Keywords
Social graph, vouching, account hijacking, legitimate user recogni-
tion

1. INTRODUCTION
In the early days of online services, users were generally pre-

sumed innocent until proven guilty. This attitude was tenable as
long as large-scale attacks remained rare, and it led to pleasant,
frictionless user experiences. Unfortunately, today, online services
have become a popular platform for attackers to conduct a vari-
ety of malicious activities including sending spam, performing so-
cial engineering attacks, and propagating malware. These activities
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all rely on the use of a large number of attacker-created accounts
and compromised accounts as vectors to deliver malicious contents.
The relentless abuse of online services has led to a more cautious
stance. It has also led to much user annoyance, directed at both the
abuse and some of the defenses, which however do not guarantee
security.

Most existing defense efforts focus on the detection of mali-
cious accounts, often by analyzing user behaviors (e.g., logins or
message postings) [34, 18]. Establishing user reputation through
behaviors can often take a long time [7]. Before a new user has
enough activity history, many service providers impose strict usage
restrictions in order to mitigate attack damage and to prevent new
attacks. Notable examples of such restrictions include aggressively
requiring CAPTCHA tests every now and then (not just for account
creation), and limiting the number of outgoing emails [3]. Unfortu-
nately, such strategies are ineffective at stopping attackers who can
easily outsource CAPTCHAs to third-party cheap labor [2], for ex-
ample. More seriously, they often negatively impact legitimate user
experience. CAPTCHAs are often hard for humans [12], resulting
in both inconvenience and user frustration.

Social connectivity is another basis for defense, since a legiti-
mate user would rarely want to establish connections with attack-
ers. In particular, a number of Sybil defenses have been proposed
to detect attacker-created identities (i.e., Sybil nodes) [32, 31, 15].
These proposals and other work on inferring trust [17] rely on graph
structures for detection. However, recent measurement studies in-
dicate that two of the main assumptions on graph structures re-
quired by Sybil defenses, i.e., fast mixing social networks and the
existence of a tight Sybil community, do not hold on real social
graphs [22, 30]. The existence of compromised accounts further
undermines those assumptions.

Leveraging social connections in a different manner, the goal of
our work is to recognize legitimate users early on, without inconve-
niencing them and without sacrificing service security. Our premise
is that a single social connection originating from a known good
user is often sufficient to endorse the legitimacy of the receiver.
This endorsement is a lightweight process, which we call vouching,
that allows us to recognize legitimate users early. Vouching is more
efficient than methods that rely on entire social network structures.
We show that, unlike typical invitation systems, vouching can be
completely transparent to users without requiring explicit user co-
operation.

However, this approach presents a number of challenges in prac-
tice. How do we define vouching? Who can serve as vouchers?
How do we ensure the robustness of vouching in the presence of
active adversaries? As attackers can compromise legitimate user



accounts [4, 1], how do we prevent these compromised accounts
from aggressively vouching for other malicious accounts?

In this paper, we present a system called Souche 1 that leverages
social connections, established over time, to support vouching. By
carefully monitoring vouching via social community structures, we
show that it is possible to recognize a large subset of legitimate
users as early as they start actively using a service, and at the same
time to limit the growth of the malicious user population despite
strong adversarial models. (Legitimate users that are not recog-
nized by Souche will continue to be subject to the current usage
restrictions.)

Souche builds upon two components. The first component con-
structs a social graph and selects vouchers by computing connected
subgraphs. Our approach is inspired by a key observation on real
data: that there exists only one giant connected subgraph of legit-
imate users, while malicious users are mostly isolated nodes. The
second component limits the growth of the trusted user population
based on community structures defined as a set of vouching trees.
The use of vouching trees restricts the impact of active adversaries
to small local subgraphs, thereby preventing the population of ma-
licious users from growing quickly. Furthermore, it enables us to
generate strong audit trails that permit reconsidering and invalidat-
ing vouching between accounts.

We implement Souche and demonstrate its effectiveness in the
context of an email service where user social connections are rep-
resented by their email communications. Our analysis and experi-
mental evaluation based on an anonymized Hotmail dataset of over
250 million sampled users shows that Souche has the following at-
tractive properties:

• User friendly: Vouching is a lightweight operation, com-
pletely transparent to users. Service providers can apply vouch-
ing either in batch mode or in real time as user requests ar-
rive, without requiring explicit user cooperation.

• Effective in recognizing legitimate users: Souche can iden-
tify a vast majority (85%) of the legitimate users. Among
them, Souche can identify 87% as early as their first day of
sending emails.

• Effective in denying admission of malicious users: Souche
can reduce the percentage of malicious users (w.r.t. the total
number of users) admitted into the system from 44% today
(by CAPTCHAs) to only 2.4%, an order of magnitude reduc-
tion.

• Robust to attacks: Our tree-based vouching algorithm is ro-
bust to account-hijacking attacks. Even in the presence of ag-
gressive vouching behavior from malicious accounts, 99.6%
of legitimate users can still be admitted. The use of vouching
trees effectively bounds the increase of the malicious user
population.

Our research is an effort to return to a situation where most legit-
imate users can enjoy online services with few speed-bumps, from
the moment that they join those services. We demonstrate the use-
fulness of Souche for large-scale email services. It can also be ap-
plied to a wide set of applications where we can derive social con-
nectivity, e.g., via messenger communications, tweet mutual men-
tioning, or Facebook interactions.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents the system overview, fol-
1In French, “souche” means tree stump, but also origin or source,
by analogy (often with positive connotations, sometimes with
xenophobic intent). The association with trees and with lineage
seems appropriate for our system, as does the lexical similarity with
“e-social-vouching”.

lowed with details in Section 4 and 5. Section 6 evaluates our ap-
proach. Section 7 discusses attacker counter-strategies and future
work. Section 8 concludes.

2. CONTEXT AND RELATED WORK
In this section, we review related work and the attacks we con-

sider. We also discuss the differences between our work and the
previous Sybil defense solutions.

Despite many defense mechanisms, malicious account creation
continues to be an unsolved problem. Meanwhile, attackers have
also started hijacking user accounts at a large scale, making defense
even more challenging. Account-hijacking is not completely new,
but is increasingly common in the past two to three years [1, 4, 5].
There exist many channels for attackers to compromise a user ac-
count, including phishing, password cracking, keyloggers, viruses,
and malware [5]. Our goal is to develop a solution that could in-
crease service usability despite the existence of both compromised
accounts and attacker-created accounts.

2.1 CAPTCHAs
Reverse Turing tests, including CAPTCHAs, have been ubiqui-

tously deployed to protect open Web services from being abused
by automated efforts. Although CAPTCHAs remain effective in
differentiating humans from bots, the emergence of the human-
solving market has largely defeated their primary purpose of de-
fending against attackers [2, 6]. Motoyama et al. [23] have per-
formed a large-scale study on the economic model of CAPTCHA-
solving services. They show that the price of CAPTCHA-solving
continues to decline, further diminishing their effectiveness for de-
fense.

2.2 Why not Sybil Defense Solutions?
The value of using social networks to detect fake identities has

been widely studied in the context of P2P and other decentralized
systems. A number of solutions have been proposed to detect or
prevent Sybil attacks [16, 32, 31, 15, 26, 24, 25]. However, we
cannot directly adopt these techniques for a number of reasons.

First, existing Sybil defenses are generally designed for decen-
tralized environments, where each user would like to independently
determine the legitimacy of a small set of other users. In such a
setting, the knowledge of an existing good user who wishes to per-
form Sybil tests is a given. On the other hand in our scenario, we
would like to identify new legitimate users based on a collection of
unclassified users.

Second, Sybil defenses and other trust inference work [17] rely
on social graph structures for detection [27]. These solutions are
often heavyweight, e.g., requiring random walks that traverse a
large number of nodes for each test. They also rely on strong
assumptions regarding social graph topologies. However, recent
measurement studies show that two key assumptions required by
Sybil defense algorithms may not hold on real social graphs: these
social graphs are not as fast mixing as required by the existing so-
lutions [22], and real Sybil nodes scatter around the entire graph
instead of forming their own separate communities [30]. In addi-
tion, the existence of many compromised (i.e., hijacked) accounts
may further invalidate the assumptions of Sybil work, where it is
expected that the legitimate user region and the Sybil region are
well separated with a few connections between them. Instead, each
compromised account could connect to a large number of malicious
accounts, making the two regions highly intertwined.

In contrast, our goal is to identify legitimate users early. We
make no assumptions on the social network topologies. Rather than
inferring trust from graph structures as in previous Sybil defense



or trust inference work, we leverage lightweight vouching that re-
flects direct trust from known good users. We guard the growth of
malicious user population using tree-based community structures
to tolerate the existence of both attacker-created and compromised
accounts. By controlling vouching-tree sizes, we can thus effec-
tively bound the number of admitted malicious users. For legiti-
mate users, while we do not provide formal guarantees, we show
that a majority of them can be admitted using empirical evaluations
on large datasets. Further, vouching is a low-overhead operation in
practice and our system is highly efficient, as shown in Section 6.
Finally, both the scale of the graphs and the scale of the attacks we
study are much larger than in most previous research.

2.3 Other Related Work
Social features have also been leveraged to defend against spam-

ming and other social network attacks. For example, the use of
clustering coefficients [11] and page rank [14, 13] can help classify
good vs. malicious accounts. More broadly, there exist extensive
studies to understand the graph properties of large online social net-
works including Facebook and Twitter (e.g., [20, 8, 9, 28]). Among
those, the work by Zhao et al. [28] shows that normal social links
are not an accurate representation of meaningful peer connectiv-
ity on social networks, but instead the interaction graph should be
considered. This observation is helpful in picking activities for con-
structing social graphs.

Although our work does not focus on attack detection, it is com-
plementary to previous approaches for detecting spamming attacks
by email contents, network-level features, or suspicious login ac-
tivities (e.g., [34, 29, 19]). In particular, it can be used in combi-
nation with the user reputation systems deployed by many online
services (e.g., [7]). For example, Souche can pick users with es-
tablished good reputations to vouch for other new legitimate users
early. If an already endorsed account was assigned a low reputa-
tion score later (e.g., after being hijacked), this information can be
used to prevent the account from further vouching for others and to
detect the existence of other malicious accounts based on vouching
causalities (see Section 5.5).

3. SOUCHE OVERVIEW
This section presents the high-level overview of our system de-

sign. We elaborate on its details in the next two sections.

3.1 Our Goal
When a user creates an account with an online service, the user

will typically receive a CAPTCHA to solve. However, after the
user successfully solves the CAPTCHA and registers an account,
the user will often continue receiving CAPTCHAs at an aggressive
rate (e.g., after sending every ten emails) and being subject to usage
limitations until the user establishes a good reputation.

Souche does not aim to eliminate the CAPTCHA tests at the ac-
count signup time. The primary purpose of Souche is to recognize
new legitimate users earlier, after they have created accounts, but
before they establish long legitimate usage histories, so that we can
remove unnecessary CAPTCHAs or other service restrictions for
new users. Users who are recognized as legitimate by Souche are
considered trustworthy and can benefit from relaxed service usage
policies. In contrast, those who are not identified by Souche will
be subject to the current practice (CAPTCHAs, various usage lim-
itations, etc.), until they establish reputation gradually. While false
negatives (legitimate users not identified by Souche) are undesir-
able, these users may be treated no worse than they are today.

As we focus on early recognition of legitimate new users, Souche
is not an attack detection system in that unidentified users are not

vouching 

vouchee 

Social graph 

voucher 

Figure 1: Vouching from trusted users on the social graph.

always malicious. However, the new user accounts recognized by
Souche may later be compromised by attackers. While Souche does
not address attack detection, one of our design goals is to ensure
that the system is robust in the presence of both compromised ac-
counts and attacker-created accounts and to restrict the growth of
the malicious account population.

3.2 Vouching
Souche leverages social connectivity for determining user legit-

imacy in a lightweight manner. Its core idea is to let good users
help identify other good users through a vouching process, as illus-
trated in Figure 1. Once being vouched for, a user (called vouchee)
can in turn vouch for others and become a voucher, and so on. If
a vouchee is later seen to be either a malicious or a compromised
user, it will be devouched and will not be able to vouch for any new
users subsequently.

Vouching activity is thus directional and reflects direct trust. It
does not necessarily need to be an explicit action, but can be im-
plicit based on many different forms of user activities. For exam-
ple, in an email-service application, vouching activity can be natu-
rally defined as sending emails. In online social network or instant
messaging applications, vouching activity can take the form of ex-
tending invitations, making recommendations, or tweet following.
In file-sharing applications, vouching activity can be defined based
on the data-sharing relationship between users, e.g., where user A
sharing data with user B implies A vouching for B.

Finally, the vouching process is performed by service providers
at the back end and can be fully transparent to users. Service
providers can either batch all vouching activities to process peri-
odically (e.g., on an hourly or daily basis), or process each activity
as it happens in real time to identify legitimate users instantly. In
addition, service providers can strategically choose the subset of
activities that qualify as vouching.

3.3 Security vs. Usability
Souche focuses on identifying and protecting legitimate users.

With significantly improved ability to recognize a large subset of
good users (especially active ones), service providers may further
increase the frequency of CAPTCHAs or enforcing other authenti-

new new old old bad
good bad good (malicious or compromised)

detected undetected
w/o Souche X X 7 removed abuse
w/ Souche 7 XX 7 removed abuse + vouch

Table 1: Security and usability models with and without Souche.
Xmeans CAPTCHAs and service restrictions;7means otherwise.
XXmeans more aggressive CAPTCHAs and restrictions. “Removed”
means the account is removed from the system.



cation channels (e.g., using SMS) for the remaining set of users, so
as to raise the cost significantly for attackers.

Table 1 summarizes the usability and security models with and
without Souche, depending on the user category. We define a newly
registered user as a new user. Without Souche, a new (good or
bad) user will receive CAPTCHAs and other service limitations
before the user establishes reputation, at which point the new user
becomes an old user. With Souche, our goal is to avoid imposing
CAPTCHAs or service restrictions on new good users, while still
applying these measures to new bad users. For old, undetected bad
users (compromised or malicious accounts, but with good reputa-
tions), without Souche, they will send spam or perform other mali-
cious activities to abuse the service. With Souche, these old, unde-
tected bad users may additionally vouch for new malicious users.
However, Souche is designed to restrict the number of new ma-
licious users that will be vouched for to be in proportion to the
population size of the undetected compromised users. We assume
compromised users are usually a small fraction of the entire user
population. In the extreme case where attackers successfully com-
promise a large percentage of good users, Souche will not be effec-
tive. However, at that point, the service will become unusable and
we can only resort to attack detection and recovery systems.

For services with higher security requirements and less usabil-
ity concerns, Souche can be used in combination with CAPTCHAs
to enhance the security of the existing CAPTCHA-based defense
solutions. Even if attackers can solve CAPTCHAs with costs, it
is still difficult for them to establish vouching relations from trust-
worthy accounts to malicious accounts.

3.4 Challenges and Design Overview
In the ideal case, vouching reflects trust from one legitimate user

to another. In practice, there are two major challenges in the design
of Souche. The first is the selection of vouchers. How should we
pick vouchers to bootstrap the system? Over time, how does the
set of vouchers grow? The second challenge is to limit the number
of malicious accounts being admitted. Given that attackers are con-
stantly creating user accounts and compromising existing accounts,
how do we prevent attackers from polluting the voucher set?

To support vouching, Souche builds upon two components. The
first component bootstraps the system by constructing a social graph
and leveraging graph properties to identify a set of trusted users
to serve as the initial set of vouchers. We analyze two real, large
datasets to motivate our design choices. Our study helps us se-
lect existing good users as vouchers by computing connected social
graph components. This approach is general and independent of the
specific user activities in different applications. The second com-
ponent determines when and whether vouching is allowed. We ex-
plicitly build community structures in the form of vouching trees so
that we can monitor and control the growth of the voucher popula-
tion. In the presence of active adversaries, the use of well separated
communities restricts their damage and growth to small local sub-
graphs, thereby preventing the population of malicious users from
growing quickly or polluting the voucher set globally.

3.5 Datasets
We have access to the following two datasets, and primarily fo-

cus on the email dataset for our study since it is larger and has user
reputation scores for evaluation. We also use the Twitter dataset to
study the generality of important graph properties that we explore.

Email service dataset: We use an anonymized dataset contain-
ing coarse-grained email communication information on 269.7 mil-
lion uniformly sampled user accounts (referred to as Sampled-users,
see Table 2), collected during a 900-day period from October 2007

to April 2010 at Hotmail. Each entry contains a user ID hash and
its communication history summary with another user ID hash, in-
cluding the number of emails the two users have exchanged and the
first and the last sending timestamps.

We additionally have access to a reputation dataset from Hot-
mail, containing a superset of 660 million sampled users, referred
to as All-users (Table 2). Each user is associated with a registra-
tion date and a reputation score derived from user sending history
to help detect spamming accounts. The reputation scores are not
completely accurate, but can help sanity-check the legitimacy of an
account after the account has been active for a while.

We use the term internal users to refer to the user accounts from
Hotmail. Since the communication records of the sampled internal
users may also involve users from other email services, we refer
to the users from other services as external users. Both the set of
All-users and the set of Sampled-users consist of internal users.

Twitter dataset: We collect one month of public tweets, in total
1,475,522,405 tweets, from August 2011. The Twitter community
follows a few stylistic conventions when composing tweets, one of
them the convention of mentioning other Twitter users by prefixing
their Twitter user IDs with the @ character. We use this convention
to extract user IDs for constructing a mutual-mention graph.

4. BOOTSTRAPPING VOUCHING
In this section, we present how to bootstrap Souche with an ini-

tial set of vouchers. For new services with a small number of users,
one may afford to pick known good users manually. For large ser-
vices with existing user populations, one may leverage existing user
reputations or attack detection systems to select initial vouchers.
These detection systems often rely on application-specific user ac-
tivities for establishing user reputation, so may not be effective at
labeling new users. Nevertheless they could help classify old users
after they have long enough usage histories.

We use a more general method that leverages the social graph
structure (combined with user reputation systems if they already
exist) to help select initial vouchers. We take a data-driven ap-
proach and study distinguishing graph characteristics that result
from collective user behaviors on two different datasets.

4.1 Social Graph Construction
We use social graphs to represent the connectivity among users

based on their communications or activities that reflect their social
relationships. Our social graphs are more general than the com-
mon friendship graphs such as those explicitly built in Facebook or
Google+.

To prevent malicious accounts from connecting to a large num-
ber of legitimate users, we require strong mutual user connections
that are less likely to be gamed by attackers. For example, for
the Twitter application, if two users have mutually mentioned each
other in their tweets, it implies that a social bond does indeed exist
and it is hard for attackers to spoof such connections with legiti-
mate users. Thus we use an undirected graph Gu = (Vu, Eu) to
model a social graph, where a node represents a user and an edge
represents mutual user actions (e.g., friendship invitation and con-
firmation, mutual email exchanges).

Different applications could explore application-specific seman-
tics for graph construction. For instance, instant messaging appli-
cations may construct graphs based on frequent mutual messages.
Web forums could construct user mutual post-reply graphs. Even
in social network applications such as Facebook and Google+, it
may be more desirable to use the actual user interaction graph (e.g.,
who commented on whose page) than using the default friendship
graphs [10, 28]. The reason is that many users may not be prudent



in confirming friendship requests, and may unintentionally estab-
lish friendship connections with sophisticated malicious users.

4.2 Email and Twitter Graphs
In the email application, we construct the social graph based on

mutual email exchanges. We consider only user pairs in which each
user has sent at least two emails to the other one in the pair (i.e.,
≥ 2 emails from A to B, and ≥ 2 emails from B to A) to preclude
weak connections because of unintended, accidental events (e.g.,
clicking the “reply” button to an unsolicited email). We remove
all users who have sent to a large number (≥ 5000, a threshold
set empirically) of unique recipients, as they likely correspond to
newsletters or spammers rather than normal users. Using the com-
munication records of the 269.7 million Sampled-users, we obtain
an email-friendship graph with 255,096,776 nodes (with both in-
ternal and external users) and 436,872,175 undirected edges, with
an average degree about 3.425. Note that not all Sampled-users
are on the graph due to our graph construction requirements. Two
factors might explain the relatively small degree. First, the email
friendship graph is an interaction graph and requires two email mu-
tual exchanges to have an edge. Second, the graph is built from a
sampled dataset, where we do not have access to the email commu-
nications among external users.

Using the Twitter dataset, we construct the tweet-mention graph
derived from tweets by extracting user pairs that have mutually
mentioned each other at least once. The corresponding graph con-
tains 10,410,144 nodes and 176,551,621 undirected edges from
1,265,660,845 related tweets.

4.3 Giant Connected Component
The small-world phenomenon and previous work both suggest

that there exists a giant connected component (GCC) on social
graphs [21]. The questions are “to what degree is this hypothesis
true?” and “how can we leverage this observation?”

All-users Sampled-users GCC-users GCC-I users
(internal) (internal) (internal, external) (internal)

660M 269.7M 237.3M 73.5M

Table 2: Categories of users derived from the email datasets.

We compute all the connected components on both the email-
friendship graph and the tweet-mention graph. On both graphs,
there indeed exists a GCC that includes the majority of users. For
the email-friendship graph, we find that the GCC contains 237.3
million nodes, accounting for 93% of nodes on the constructed
graph. We refer to the particular set of 237.3 million users as
GCC-users; they include both internal and external users. For the
tweet-mention graph, the GCC has 9.17 million nodes (88% of all
nodes). We find that the remaining connected components are all
very small. The second largest connected component on the email-
friendship graph has only 283 nodes, and on the tweet-mention
graph, it has only 556 nodes. Their sizes are orders of magnitude
smaller than those of the giant connected components.

Next, we are interested in where good and malicious users are lo-
cated on the graphs. We use the reputation dataset of All-users from
the email service to examine user legitimacy. (We do not have rep-
utation scores for Twitter users.) Among 237.3M GCC-users, 73.5
million are internal users for whom we have reputation scores (re-
ferred to as GCC-I users). Table 2 lists the sizes of these different
user populations. Figure 2 shows the reputation distribution into
four categories from good to bad: good, marginal, suspicious, and
malicious. Because of a lack of history, new users will by default
be classified as marginal. Compared with All-users, we find that
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Figure 2: The reputation score distribution of GCC-I users

GCC-I users are predominantly (93.0%) good users. Only 1.6% of
GCC-I users are classified as bad, as opposed to 44.4% of All-users.
Summary of key findings: Our study thus not only confirms the
existence of a big “island” of a majority of users, but also generates
the following findings:

• There exists only one giant connected component (GCC) of
users on a social graph with strong mutual connections; the
remaining connected component sizes are orders of magni-
tude smaller.

• GCC users are predominantly good users. Very few mali-
cious nodes are on the GCC; they are more likely isolated
nodes.

Our study indicates that computing GCCs on social graphs is
a practical way for identifying a large set of legitimate users as
vouchers. If account-hijacking is a concern, service providers may
select historical snapshots of graphs without many compromised
users. In addition, they could also combine the knowledge of a
GCC with existing systems for user reputation or attack detection
to further remove already identified malicious users.

5. THE VOUCHING ALGORITHM
While GCC users provides a starting point for voucher selection,

relying on computing the GCC periodically alone for identifying all
legitimate users has two problems. The first problem is the delay
for recognizing new users, as strong mutual social connections may
be relatively slow to establish. The second, more important issue
is the robustness to compromised and attacker-created accounts.
There may exist on the GCC a very small number of malicious
users from the beginning. Attackers may also wish to pollute the
set of GCC users by compromising a subset of them over time, and
let each of them connect with many attacker-created accounts.

To address the above problems, Souche monitors the graph dy-
namics and controls the growth of the vouched user population
over time. In particular, we rate-limit the number of new vouchees
based on community structures represented as a set of vouching
trees. Therefore, even in the presence of compromised or malicious
vouchers, we can effectively restrict the growth of the malicious
user population within their individual small communities.

The growth rate usually depends on the population growth model
and the application. A service provider can pick a growth rate
based on its resource provisioning, the historical rate, and its spe-
cific growth phase (e.g., an initial booming phase or a stable phase).
The selected rate does not need to reflect the true population growth
demand accurately. In particular, applications can determine the
specific rate to control vouching coverage vs. security. A more
conservative rate does imply that fewer users will be vouched for.
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Figure 3: Good user population growth and its growth rate over a 10
year period. The left Y-axis shows the daily growth rate. The right
Y-axis shows the population size.

But since the remaining users will fall back to the existing service
restrictions (e.g., receiving CAPTCHAs), they will be treated as
they are today.

5.1 Population Growth Rate Selection
We analyze the email reputation dataset to study the population

growth. The purpose is not to generalize the particular growth rate,
but to provide an example normal-user growth model for a real,
large service, and to show that it is feasible and practical to derive
a growth rate for a specific time period based on history.

We extract all users with good or marginal reputation scores and
plot the user population growth (using the registration dates) for
the past 10 years until April 30, 2010 (marked as Day 0 on the X-
axis) in Figure 3. We also plot the daily growth rate of the user
population (smoothed using a 10-day sliding window) on the same
graph. We observe from the figure that while the user population
grows exponentially over time, the growth rate is relatively stable
over time, between 0.001 to 0.002.

The growth of the good user population has a stable rate, which
can be used to throttle vouching periodically, for example, on a
daily basis. With a fixed rate, however, simple throttling schemes
have many problems. Below, we discuss two straightforward so-
lutions and their pros and cons. We then present the algorithm we
propose and its security properties.

5.2 Strawman Solution I: Global Quota
With a prior selected growth rate r, one straightforward solution

is to compute a global quota in terms of the total number of new
vouchees that are expected to be admitted into the system period-
ically. Let us assume that time is a discrete sequence t0, t1, t2, ...
(for example, ti represents day i).

We use ni to represent the number of vouchers present at time ti,
so n0 is the number of vouchers at the beginning. We useQi to de-
note the global quota at time ti and we allow quota to be fractional.
Then Qi can be computed as:

Qi = ni−1 × r

We allow all vouching operations to succeed until the number of
new vouchees reaches the quota Qi for ti. Any subsequent vouch-
ing will then be queued, until the system has new quota at the next
time ti+1. So ni ≤ ni−1 +Qi.

Pros: The global quota system is simple to implement and ensures
that the total number of vouchers increases according to a specified
global rate.

Cons: Even when a small number of vouchers are compromised,
attackers can aggressively vouch for new malicious accounts and
greedily use up all the quota in the system at every time step, deny-
ing quota for legitimate users.

5.3 Strawman Solution II: Local Quota
We could also compute a local quota for each voucher vj and

independently determine whether vj can vouch for another user.
With a fixed growth rate r, for a single user vj who gets admitted
into the system at time bj , the maximum number of total users for
whom vj could have vouched at time twill be (1+r)t−bj −1. If vj
has already vouched for cj users (i.e., cj vouchees) by t, then the
remaining number of users vj can vouch at t, defined as the local
quota qj for vj at t, can be computed as:

qj = (1 + r)t−bj − cj − 1

Pros: The local quota system is also simple to implement. Since
the growth rate of each node is at most r, it ensures the global
growth rate will be no more than r. Further, the scheme is more
robust to account-hijacking attacks and ensures the growth rate of
malicious accounts to be no more than r as well.
Cons: Although local quota enables fair sharing of vouching quota
among users, it is too restrictive in admitting new users. In prac-
tice, the number of social connections among users often has a
wide variation, which cannot be accommodated by the local quota
scheme. Further, given that the growth rate r is typically small,
e.g., 0.001 or 0.002 on a daily basis, a new legitimate voucher will
not be able to vouch for any user during almost its first year. On
the other hand, many old legitimate vouchers may be inactive in
vouching for new users, hence they are unable to fully utilize their
quota.

5.4 Our Solution: Tree-based Quota
The global and local quota schemes are the two extremes of the

solution space. The local quota scheme isolates quota and is se-
cure, but not practical to use. In contrast, the global quota scheme
enables quota sharing, but not secure.

To address this dilemma, our solution includes two key ideas.
First, we allow quota sharing, but within only a subset of users in
order to enforce quota isolation. Second, since vouching reflects
one type of social connectivity, we leverage the vouching relations
among users to build tree-based communities for quota sharing and
isolation. Specifically we use a set of vouching trees to represent
the user vouching relationship. On each tree, a parent node is the
voucher of its children nodes, with the root being an initial voucher.
Figure 4 shows an example.

With vouching trees, nodes can share quota with a selected sub-
set of other nodes on the same tree, but nodes on different trees
cannot share quota with each other. Intuitively, when a node who
wishes to vouch for a new user does not have enough quota (e.g.,
a new node A in Figure 4), instead of examining the node in iso-
lation, we could determine whether to allow vouching based on its
surrounding nodes on the vouching tree. If the parent of A is rep-
utable with additional quota, or A has reputable siblings with few
vouchees, then A is also likely legitimate. So we may allow A to
vouch by borrowing quota from others. On the other hand, if A’s
parent or siblings have aggressively used up their quota, then A is
also suspicious and should not be allowed to vouch.

Finally, we limit the vouching tree sizes. The use of vouching
trees supports both quota sharing and quota isolation. We describe
our detailed vouching algorithm in Section 5.4.1, the security prop-
erties in Section 5.4.2, and how to limit tree sizes in Section 5.4.3.
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Figure 5: An example vouching subtree.

Note that a vouching tree is one way to represent a community.
An alternative way is to use a subgraph (e.g., all email communi-
cation neighbors). We favor a tree structure because it is simpler,
so we understand its security properties better. Exploring graph
structures for different vouching strategies may be an interesting
direction of future work.

5.4.1 The Algorithm
To support quota sharing on a vouching tree, each node vj ad-

ditionally maintains a quota debit dj to keep track of how much
quota vj has lent to other nodes and hence needs to be deducted
from its own local quota. With debit, a node vj’s quota at time t
will be computed as

qj = (1 + r)t−bj − c′j − 1 − dj

where c′j is the number of vouchees that have been vouched for
by vj using vj’s own quota without borrowing from others. When
vj borrows quota to vouch for a new user, the set of nodes who
lent quota to vj will have their debits increased to maintain the
tree quota balance. Thus, the quota qj for vj should not be further
reduced in such cases.

We use the example in Figure 5 to describe the algorithm for
determining whether a user A is allowed to vouch for B at time t
in the following two steps:

Step 1: quota search. In this step, A searches for available quota
for vouching. The process begins with A computing its own local
quota. If A has enough local quota qA to vouch (i.e., qA ≥ 1),
then vouching is allowed. Otherwise, A seeks to borrow quota
from nearby nodes by computing the sum of the quotas from the
vouching subtree T rooted at A’s parent (illustrated by the dashed
triangle in Figure 5). The set of nodes on the vouching subtree is
the only set of nodes that can share quota with A, including A’s
descendants, node F who vouched for A, A’s siblings and their
subtrees. If the sum of the quotas on T (including A’s local quota
qA) is greater than 1, then vouching is allowed.

Step 2: quota deduction. Without quota borrowing, qA ≥ 1, so
quota deduction is straightforward. With quota borrowing, qA <
1, all the nodes on A’s vouching subtree will be affected equally
by incrementing each of their debit by max(1−|qA|,1)

m−1
(since the

amount of borrowed quota won’t be more than 1), assuming the
vouching tree has in total m nodes, including A.

5.4.2 Guarantees
This basic tree-based algorithm has the following two properties.

(See Appendix A.)

User population growth property: If the growth rate is a constant
r, then the global user growth rate across all vouching trees will be
no more than r.

Malicious-user population growth property: In a simplified sce-
nario where trees are of the same height and every node behaves
identically, i.e., has the same out-degree and vouches for new nodes
with rate r exactly, then with α fraction of nodes being compro-
mised and uniformly distributed in the system, the percentage of
admitted nodes that are malicious will be no more than (k − 1)α
at any time, where k is the depth of the trees at the time when the
malicious nodes first start vouching.

This property indicates that the fraction of quota that may be
obtained by malicious nodes is tightly related to the vouching tree
depth, which essentially determines the tree sizes in the simplified
scenario. More generally, when nodes have diversified behavior,
with varying degrees and vouchees, the vouching tree size is the
important factor impacting the degree of quota sharing. In the ex-
treme case of one global tree for all nodes, malicious nodes may
use up all the available quota. Smaller trees provide better quota
isolation and are thus more robust to attacks. One way to enforce
tighter quota bounds for malicious nodes is to split big vouching
trees into multiple small ones.

5.4.3 Optimizing Quota Search
In practice, users often have diverse behavior, so the vouching

trees may have different sizes. To limit tree sizes and penalize ag-
gressive borrowing of quota, e.g., from compromised accounts, we
use three heuristics to optimize quota search:

• Small-tree heuristic: We periodically split large trees to limit
the scope of quota search. The tree splitting is a recursive
process starting from the leaf nodes. Whenever we encounter
a node with its subtree size more than a threshold (set to 50
in our experiment), we split the node and its subtree from the
remainder of the tree.

• Old-node heuristic: When a node A needs to borrow quota
from others, we generate a quota path that records the set of
nodes that share quota with A. The sum of the quota on the
quota path will be scaled by the fraction of old nodes to total
nodes on the quota path.

• Vouching-delay heuristic: If A borrows quota to vouch, then
A cannot borrow quota immediately again. It has to wait for
at least a pre-set damping period ∆t. Similarly, a new node
cannot vouch immediately after it joins and needs to wait for
∆t. Note that after the pre-set delay timer expires, the quota
may no longer be available because of other requests that
occurred during the wait period.

These three heuristics work together to limit aggressive quota
borrowing. The vouching-delay heuristic rate limits quota borrow-
ing, and the old-node heuristic disallows quota borrowing com-
pletely if a subtree is growing too quickly with many new nodes.
Finally, the small-tree heuristic limits the range of borrowing and



ensures the total number of nodes who can share quota with each
other is relatively small. We evaluate the vouching robustness to
attacks with and without these heuristics in Appendix B

5.5 Devouch and Traceback
The ultimate purpose of attackers compromising and creating

accounts is to perform malicious activities such as spamming and
malware propagation. The focus of this paper is not on attack de-
tection, but Souche can work with existing attack detection systems
(e.g., [34]). With attack detection, a subset of these attacker-created
or compromised accounts will be captured over time, so removed
from the voucher sets to prevent further damage.

In addition, the use of vouching trees enables us to track back and
identify the parents and ancestors of the malicious accounts on the
trees, so that we can potentially detect many more attacker-created
or compromised nodes. For example, in Figure 5, when we detect
node A as a malicious user, then the entire subtree rooted at A may
be malicious. Further, A’s parent F and the sibling G may also be
suspicious. Thus Souche enables us to generate strong audit trails
on the causality of the accounts to improve the system robustness.

6. EVALUATION
We implement Souche using Dryad/DryadLINQ [33] on top of

a 200-machine computer cluster. Our system takes the raw data
of the user email communication summary as input, constructs a
social graph, and computes connected components. The identified
GCC-users are then used to bootstrap vouching. With the use of
vouching trees, vouching can be performed in parallel across mul-
tiple machines, with each data partition maintaining a subset of
trees. Parallelizing vouching improves system efficiency signifi-
cantly, since each vouch operation involves accessing the states of
a set of nodes up and down the tree. In our experiment, the total
time to process 1 million vouch events in a batch DryadLINQ job is
below 5 minutes, so it is completely practical to support even near
real-time vouching for most service providers today.

We evaluate Souche in two respects using the email dataset de-
scribed in Section 3.5. (We do not have the reputation scores for
Twitter data for evaluation.) First, we use the dataset to evaluate the
feasibility of vouching. We are interested in whether users vouched
for by GCC-users are indeed legitimate users, how many legitimate
users we can recognize, and how fast a new user can be vouched
for after joining a service. Second, we use trace-based simulation to
evaluate the coverage and the security properties of the tree-based
vouching algorithm: whether the vouching trees provide enough
quota to legitimate users, and the robustness of the algorithm in the
presence of compromised users.

6.1 Vouching Feasibility
We first study the feasibility of applying vouching to identify

legitimate users in the ideal case with no or very few attacks. We
do not apply any quota limitations in this ideal scenario. We define
vouching from user A to user B as A sending at least one email
to B. We take the GCC as described in Section 4 and identify the
set of users who received emails from GCC-users but are not GCC-
users themselves. We call these users GCC-vouchees. We then use
the reputation dataset to study the reputation score breakdown for
GCC-vouchees, which include only the (vouched) internal users.

6.1.1 How Many Users Can Benefit From Vouching?
We first examine the entire set of GCC-vouchees and their rep-

utation distribution across the four categories from good to bad, as
summarized in Table 3. (Good and marginal categories have pos-
itive reputation. New and inactive users by default have marginal

Internal user Good Marginal Suspicious Bad
All-users 660M 41.0% 11.3% 3.3% 44.4%

Sampled-users 269.7M 65.5% 8.5% 2.0% 24.0%
GCC-I users 73.5M 93.0% 4.6% 0.8% 1.6%

1-sender 95.4M 86.0% 11.0% 0.6% 2.4%
2-sender 50.3M 88.1% 9.1% 0.6% 2.2%
3-sender 31.4M 89.1% 8.2% 0.5% 2.1%

Table 3: Reputation distribution of GCC-vouchees. For com-
parison, we also include the reputation breakdowns for All-
users, Sampled-users, and GCC-I users.

Tested users GCC+GCC-vouchees Recall
Good 176.6M 150.4M 85.2%

Good+marginal 199.6M 164.3M 82.3%

Table 4: Recall of identifying legitimate users.

reputation because of lack of history.) Intuitively, the more GCC
users vouch for the same recipient, the more likely the recipient is
a legitimate user. So we further classify GCC-vouchees according
to their number of unique GCC senders to study whether vouching
from multiple users is more reliable.

As a comparison, we also show the reputation breakdown for
All-users, Sampled-users, and GCC-I users, as listed in Table 2.
The statistics for All-users reflect the reputation of users already ad-
mitted through existing CAPTCHAs. Compared with All-users, the
Sampled-users in general have slightly better reputations as very
new users (many of them malicious accounts) are less likely to be
sampled to appear in the email communication dataset.

Table 3 shows that regardless of the number of GCC-senders,
the majority of GCC-vouchees are likely legitimate with positive
reputation. The percentage of vouched users with bad reputation is
very small. (There may also be a small fraction of hijacked users.)
Compared with CAPTCHA, using Souche in addition can effec-
tively identify legitimate users by reducing the percentage of ma-
licious users significantly to 2.4% (1-sender vouchees) from 44%
for All-users and 24% for Sampled-users—an order of magnitude
reduction.

We further examine our recall at identifying legitimate users.
We take the Sampled-users and compute among them the set of
users with good or marginal reputation as our base. These are
the set of all possible good users we target to identify. Table 4
shows that among these users with good or marginal reputation
(269.7M×(65.5%+8.5%)=199.6M), Souche can identify 82.3% of
them by combining GCC-I users and GCC-vouchees. If we con-
sider only good-reputation users (269.7M×65.5%=176.6M), the
coverage is even higher at 85.2%. Thus Souche can potentially
recognize most of the legitimate users.

Finally, Table 3 shows that users who received emails from mul-
tiple GCC senders (2-sender and 3-sender cases) are only slightly
better in reputation, yet the coverage is much smaller (x-sender
vouchees are a subset of x − 1-sender vouchees, where x = 2, 3).
This trend suggests that receiving emails from even one GCC user
is already a good indication of a user’s legitimacy for vouching to
be effective in the email application context.

6.1.2 What is the Vouching Delay for New Users?
We now study how fast a legitimate new user can be vouched for

after joining the service. Since “being vouched for” matters only
when a user starts to actively use the service, we use two metrics
for our evaluation here:

• Number of days during which a new user sends emails before
the user is vouched for.
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Figure 6: Vouching delay in terms of the number of active
email-sending days and the number of email recipients before
being vouched for by another GCC user.

• Number of email recipients a new user sends to before the
user is vouched for.

From Figure. 6, we observe that 87% of GCC-vouchees have
received emails from other GCC senders on their first day of email-
sending. Further, 95% of GCC-vouchees have sent to no more than
10 email recipients before they receive emails from other GCC-
users. Thus, for a large portion of users, vouching happens nat-
urally as they start actively using the service. Most of them will
potentially be vouched for on their first day of email activity.

6.2 Effectiveness of the Vouching Algorithm
The previous section shows the results in the case where we al-

low GCC users to vouch for as many users as they wish based
on real data. It is thus the best case scenario where attackers do
not leverage compromised accounts for vouching for malicious ac-
counts. In this section, we include active adversaries that compro-
mise user accounts and evaluate the robustness of the tree-based
vouching algorithm using trace-driven simulations.

6.2.1 Simulation Setup
We use our email dataset to derive a sequence of events based on

legitimate users joining the service and communicating with each
other. Specifically, we pick GCC-users computed in Section 4.3 as
our legitimate user set. We use the first-sending timestamps (accu-
rate to the seconds) to derive events representing who is talking to
whom at what time between GCC-users. We then order the events
based on time and feed them into our implementation to simulate
the process of vouching over time.

Given that we have only 900-day data, we do not have a com-
plete view of user communication history from the very beginning.
We select the subset of GCC-users that are active during the first
year of our data collection (from October 2007 to September 2008)
for bootstrapping Souche. In total, we identified 90 million users
(out of 237.3 million GCC-users) as the initial set of vouchers. In
addition, we identified all the vouching relationships among them
to have an initial set of vouching trees. After bootstrapping, our
simulation runs using the set of 334 million events derived from
the data pertaining to October 2008 to April 2010.

We compare the vouching effectiveness of the tree-based algo-
rithm against the global quota and the local quota schemes. Once a
user is vouched for, the user can start vouching for others. For all
three algorithms, we pick r = 0.002 as the population growth rate
and keep it constant, and for consistency, a new node cannot vouch
immediately and needs to wait for ∆t = 14 days before its first
vouching. For the global and the local quota schemes, to increase
the robustness to attacks, we limit the total number of vouchees per
voucher to be at most 50, so that no single user can aggressively
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Figure 7: Number of legitimate users growing in the system
over time without attacks. We start with 90 million users.

vouch for many malicious users. We consider scenarios both with
and without attacks.

6.2.2 Coverage of Legitimate Users
Ideally, we would like all legitimate users to be vouched for

eventually. So we first examine the number of GCC-users that can
be vouched for over time without attacks. Figure 7 shows the com-
parisons among the three algorithms.

Without attacks, using the global quota scheme, almost all GCC-
users (234 million out of 237 million) can be admitted into the
system, including the initial 90 million initial vouchers. In con-
trast, the local quota system is very restrictive and admits only 119
million users. The tree-based quota scheme performs in between
and admits 164 million users, which is 70% of what global quotas
can achieve. Since vouching from GCC users can potentially cover
85% all legitimate users (see Section 6.1.1), the tree-based vouch-
ing algorithm therefore can admit around 70% × 85% = 60% of
all legitimate users assuming there is no negative correlations be-
tween the two populations. This is a significant improvement over
existing systems. For vouching activities that do not succeed im-
mediately (e.g., because of quotas), we queue the events and fall
back to the current practice (e.g., CAPTCHAs) until there exists
enough quota.

6.2.3 Robustness to Attacks
The real benefit of limiting quota in a community is its robust-

ness to attacks. We inject attacks by randomly picking a subset
of users as the compromised users at the beginning of our simula-
tion and they stay malicious ever after. (This scenario is favorable
for attackers, as given the fixed growth rate, the longer a user is in
the system, the more users it can vouch for over time.) We then
generate attack events where compromised users aggressively (i.e.,
whenever there is quota) vouch for malicious new users, who fur-
ther aggressively vouch for more malicious users. We repeat each
experiment three times with different random seeds and take the
average. The results are consistent across runs. Figures 8 (a) and
(b) show the population growth of the legitimate and the malicious
users over time, assuming 0.5% of the total users are compromised
at the beginning.

• For the global quota scheme, in the presence of attacks, the
number of legitimate users hardly grows. The reason is that
both the compromised users and the new malicious users ag-
gressively use up the system quota, denying the admission of
legitimate users. Correspondingly, the malicious user popu-
lation quickly grows and becomes dominant.

• Using the tree-based scheme, compared with the case with-
out attacks, 99.6% legitimate users are admitted despite the
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Figure 8: Number of legitimate and malicious users admitted
into the system over time in the simulated attacks.
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Figure 9: Percentage of malicious users in the system over time.
We compare the tree-based quota method with the local quota
method.

aggressive behavior from compromised and attacker-created
accounts, yet the number of admitted malicious users is com-
parable to that in the local quota scheme. We examine more
closely the tree depths and sizes, and find that over 70% users
are on trees of depths between 2 and 7, and around 50% users
are on trees ranging from 20 to 40 nodes. The small tree-
based community size therefore allows quota sharing among
legitimate users while limiting the population growth of ma-
licious users.

• For the local quota scheme, although it admits the smallest
number of malicious nodes, the number of legitimate users
admitted is also significantly lower than in our tree-based
quota mechanism.

Given that the global quota scheme performs significantly worse,
we further examine only the tree-based and the local quota schemes
in more detail. Figure 9 shows the comparison between the local
and the tree-based quota algorithms in terms of the percentage of
malicious nodes in the system over time.

With 0.5% of initial compromised users, assuming no malicious
nodes were detected, our tree-based quota scheme performs sim-
ilarly to the local quota scheme during the first 9 months. Such
long incubation period may drastically affect the cost model for at-
tackers, which usually targets short-term, immediate returns. If the
malicious nodes start being active during the first year, many of
them may be detected and traced back, affecting the future growth
of the malicious user population.

Finally, Figure 10 shows that as we increase the initial percent-
age of compromised users (exponentially from 0.25% to 2%), the
percentage of malicious users increases roughly proportionally and
so the trend is quite predictable and linear. Assuming no detection
in place at all, eventually after 18 months, the percentage of mali-
cious users could reach around 12% when 2% of users are initially
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Figure 10: Percentage of malicious users in the system over
time by varying the percentage of initial compromised users.
We compare the tree-based quota method with the local quota
method.

compromised. Note that this is the worst case result assuming no
detection in place. In practice, we will not reach this number since
many of the malicious accounts will be detected and removed from
the system after a few months.

7. DISCUSSION
The essence of our solution is to recognize a large fraction of

legitimate new users, while limiting the growth of the malicious
user population using quotas. One important challenge is defin-
ing scopes of quota sharing and isolation. The global and the local
quota schemes are the two extreme ends of the spectrum. We be-
lieve the use of quota-sharing trees offers a general intermediate
solution, and we demonstrate its effectiveness using a concrete ap-
plication with large, real data. By adjusting the tree depths and
sizes, service providers can flexibly configure the desired degrees
of quota sharing to balance security vs. usability based on their
specific user growth model and application needs.

The concept of vouching and the use of vouching trees are gen-
erally applicable across many applications. Service providers may
customize the way of constructing social graphs for bootstrapping
based on application semantics. Similarly, they may selectively
choose activities that qualify as vouching. Finally, the specific val-
ues of our parameters (i.e., the maximum tree size and the vouching
delay) may also be tuned according to their datasets.

With Souche in place, attackers may wish to game the system by
compromising more accounts, especially those that haven’t vouched
for many other users and so have more vouching quota. In addition,
attackers may also try to compromise users with larger vouching
subtrees to share their quota. These strategies are more effective
than compromising random accounts or reusing previously com-
promised accounts. However, they are also more difficult to carry
out in practice, as attackers often have no information regarding
the vouching tree structures of accounts that are not controlled by
them. Furthermore, hijacking specific accounts is always more dif-
ficult than hijacking any accounts, particularly those with careless
users and hence more susceptible to attacks. Finally, the number
of vouched malicious users will still be bounded by the tree size,
which can be tightly monitored and limited. For services with high
security requirements, Souche can be used in combination with
CAPTCHAs and other defenses.

In this paper, we did not focus on detecting attacker-created or
compromised vouchers, as Souche is designed to tolerate a small
percentage of them and to prevent their population from growing
quickly. On the other hand, attack detection is important to ensure
that the malicious user population is still bounded in the long term
(e.g., one year), and this is a separate topic to address. We believe



that the identification and protection of legitimate users should go
hand-in-hand with the detection of malicious users in any online
service to ensure both security and service usability.

8. CONCLUSION
In this paper, we present Souche, a new system for identifying le-

gitimate users early, soon after they join an online service. Souche
is lightweight and can be completely transparent to users. It ex-
ploits social connections to gradually expand the legitimate user
population through a vouching process based on trust relationships.
In our evaluation on a Hotmail dataset, it can recognize the major-
ity of legitimate users early. On the other hand, Souche is effective
in bounding the growth of the malicious population. Our results
indicate that leveraging social connectivity information offers new
opportunities to improve service usability and security.

The presumption of innocence that characterized the early days
of online services was beneficial for user experience but, as we
noted in the Introduction, it has been largely abandoned in the face
of relentless attacks. Our research is an effort to return to a situa-
tion where most legitimate users can enjoy online services with few
speed-bumps, from the moment that they join those services. In our
work, the presumption of innocence is not based on faith but rather
on the principle of innocence by association. We demonstrate that
this principle has practical validity. At the same time, we can focus
security measures on the remaining, suspicious users.
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APPENDIX
A. TWO PROPERTIES OF THE VOUCHING

ALGORITHM
Here we sketch proofs for the two properties presented in Sec-

tion 5.4.2:
User population growth property: If the growth rate is a constant
r, then the global user growth rate across all vouching trees will be
no more than r.

This property is easy to prove. For each newly vouched node,
there is always at least one unit of quota from the vouching tree
available to support it. And with quota debit, the sum of the node
quota on a vouching tree equals the sum of the node quota com-
puted individually using the local quota algorithm with rate r. Thus
the entire system growth rate will be no more than r.

Malicious-user population growth property: In a simplified sce-
nario where trees are of the same height and every node behaves
identically, i.e., has the same out-degree and vouches for new nodes
with rate r exactly, then with α fraction of nodes being compro-
mised and uniformly distributed in the system, the fraction of ad-
mitted nodes that are malicious will be no more than (k − 1)α at
any time, where k is the depth of the trees at the time when the
malicious nodes first start vouching.

To analyze the fraction of admitted nodes that are malicious, we
first consider where the compromised nodes might locate on the
vouching trees. With uniform distribution, the fraction of compro-
mised nodes at each level of the trees will all be α. When a node is
compromised at tree level l, we consider the worst case, where all
the quota on the corresponding vouching subtree rooted at its par-
ent at level l− 1 will be used up by malicious nodes. In the case of
a root node being compromised, the vouching subtree is the entire
tree.

Let Ql represent the quota of all vouching subtrees starting at
level l (with l = 1 being the root, and Q1 = Q). Let Q′ represent
the percentage of total global quota that can be exploited by mali-
cious nodes, and Q′l represent the percentage of global quota that
can be exploited by malicious nodes locating at level l. Among all
the nodes at level i, (1−α)(i−1) of them locate outside the subtrees
of compromised nodes at levels smaller than i. So the fraction of

additionally compromised nodes at level i is α(1−α)(i−1). There-
fore,

Q′ = Q′1 +Q′2 +Q′3 + · · ·+Q′k−1

= αQ1 + α(1− α)Q2 + . . .+ α(1− α)k−2Qk−1

≤ Qα

k−2∑
i=0

(1− α)i

≤ (k − 1)αQ

B. EFFECTIVENESS OF THE OPTIMIZA-
TION HEURISTICS

We study the effectiveness of our optimization heuristics as de-
scribed in Section 5.4.3. We examine the user population increase
with and without optimizations and plot their ratio in Figure 11.
We find that the optimization strategies have much more impact on
the malicious node population than on the legitimate nodes. With-
out our heuristics, the number of malicious nodes is 1.85 times that
with heuristics, and the relative malicious population percentage
increased by 55%. Hence the optimization heuristics are effective
in throttling the population growth of malicious users. They penal-
ize aggressive behavior without significantly affecting legitimate
users.
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Figure 11: The ratio of user (population) size increase with-
out optimization heuristics compared to that with optimization.
We examine both the user size increase and the percentage in-
crease.
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