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ABSTRACT
Web caching in mobile networks is critical due to the unprece-
dented cellular traffic growth that far exceeds the deployment of
cellular infrastructures. Caching on handsets is particularly impor-
tant as it eliminates all network-related overheads. We perform
the first network-wide study of the redundant transfers caused
by inefficient web caching on handsets, using a dataset collected
from 3 million smartphone users of a large commercial cellular
carrier, as well as another five-month-long trace contributed by 20
smartphone users. Our findings suggest that redundant transfers
contribute 18% and 20% of the total HTTP traffic volume in the
two datasets. Also they are responsible for 17% of the bytes, 7%
of the radio energy consumption, 6% of the signaling load, and
9% of the radio resource utilization of all cellular data traffic in
the second dataset. Most of such redundant transfers are caused
by the smartphone web caching implementation that does not
fully support or strictly follow the protocol specification, or by
developers not fully utilizing the caching support provided by the
libraries. This is further confirmed by our caching tests of 10
popular HTTP libraries and mobile browsers. Improving the cache
implementation will bring considerable reduction of network traffic
volume, cellular resource consumption, handset energy consump-
tion, and user-perceived latency, benefiting both cellular carriers
and customers.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols – Applications; C.4 [Performance of Systems]: Performance
attributes

General Terms
Measurement, Performance

Keywords
HTTP Caching, Redundant Traffic, Cellular Networks, Redun-
dancy Elimination, Smartphone Applications
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1. INTRODUCTION
Caching plays a vital role in HTTP that dominates the Internet

traffic usage [21]. Web caching can effectively decrease network
traffic volume, lessen server workload, and reduce the latency
perceived by end users.

Web caching in cellular networks is even more critical. HTTP
traffic generated by mobile browsers and smartphone applications
far exceeds any other type of traffic. HTTP accounts for 82% of the
overall downstream traffic based on a recent study of a large cellular
ISP [20]. From network carriers’ perspective, cellular networks
operate under severe resource constraints [31] due to the explosive
growth of cellular data traffic (a growth of 5000% of its data traffic
over 3 years reported by a major U.S. carrier [20]). Therefore even
a small reduction of the total traffic volume by 1% leads to savings
of tens of millions of dollars for carriers which are expected to
spend $40.3 billion on cellular infrastructures in 2011 [4] (for all
U.S. carriers).

The benefits of caching are also significant from customers’
perspective. (i) Fewer network data transfers cut cellular bills since
most carriers impose a monthly limit on data plan usage. (ii) The
user experience improvement brought by caching is more notable in
cellular networks whose latency is usually higher than those in Wi-
Fi and wired networks. (iii) Transferring less data also improves
handset battery life, as the power consumed by the cellular radio
interface contributes 1/3 to 1/2 of the total device power during the
normal workload [32].

The location of a cache can be at one or more places on
a path from a handset (i.e., a mobile device) to a web server.
Although most of prior works focus on caching proxies placed
in the network (e.g., hierarchical caching proxies [18], caching
proxy placement [21], and caching within 3G networks [20]),
we emphasize that in cellular networks, caching on handsets is
particularly important because it does not incur any network-related
overhead. In particular, it eliminates data transmitted over the
last-mile, i.e., the radio access network, which is known as the
performance and resource bottleneck of a cellular network [31].
In contrast, a network cache does not bring the aforementioned
benefits but can cut the wide-area latency and enable sharing across
users. In this study we focus on handset caches, which can coexist
with network caches.

The rules of web caching are defined in HTTP 1.1 protocol
(RFC 2616 [23]), although there exist numerous caching pro-
posals [17, 26, 27, 29] that were never widely deployed. As
specified in RFC 2616, HTTP employs expiration and revalidation
to ensure cache consistency: the server sets for each cacheable file
an expiration time before which the client should safely assume the
freshness of the cached file. After the cache entry expires, the client



must send a small revalidation message to the server to query the
freshness of the cache entry. We detail the procedure in §2.

Redundant network transfers due to cache implementation.
Let an ideal handset cache be a cache that has unlimited size and
strictly follows the aforementioned caching rules. Any practically
implemented handset cache is not ideal due to one or more reasons
below: (i) it has limited size, (ii) the implemented caching logic
does not satisfy RFC 2616, and (iii) the cache is not persistent (i.e.,
it does not survive a process restart or a device reboot). A non-ideal
cache potentially incurs redundant transfers that do not occur if an
ideal cache were used. Also, redundant transfers can be caused by
developers not utilizing the caching support even if it is provided
by the HTTP library.

In this paper, we present to our knowledge the first network-wide
study of the redundant transfers (defined above) by investigating
the following important characteristics:

• The prevalence of redundant transfers within today’s
smartphone traffic, in terms of both the traffic volume
contribution and the resource impact;

• The root cause for the redundant transfers;

• The handset caching logic, identified to be the main reason
of redundant transfers, of HTTP libraries and browsers on
popular smartphone systems.

We summarize our main findings as follows.

• We leveraged a large dataset containing 695M HTTP trans-
action records collected from 2.9M customers of a com-
mercial cellular network in the U.S. To complement this
data set which has a short duration of 24 hours, we col-
lected another five-month trace from 20 smartphone users
using smartphones instrumented by us. We measured the
prevalence of redundant transfers for both datasets using an
accurate caching simulation algorithm, assuming an ideal
cache. To our surprise, redundant transfers due to caching
implementation issues contribute 18% and 20% of the total
HTTP traffic volume, for both datasets, respectively. The
fraction slightly decreases to 17% at the scope of all traffic
for the user study trace. Almost all redundant transfers are
caused by the handsets instead of the server. Further, the
redundancy ratio varies among applications. Some popular
smartphone apps have unacceptably high fractions (93% to
100%) of redundant transfers.

• By strategically changing the simulation algorithm and ana-
lyzing the cache access patterns, we found the impact of lim-
ited cache size and non-persistent cache on the redundancy
to be limited. For example, the fraction of redundant bytes is
at least 13% (compared to 18% for an ideal cache) within all
HTTP traffic even when our simulation uses a small cache of
4 MB. This implies the problematic caching logic is the main
reason for redundant transfers.

• We investigated the resource overhead (handset radio energy,
radio resources, and signaling load) incurred by redundant
transfers, by leveraging our previously designed Radio Re-
source Control (RRC) simulation tool for 3G networks [32].
The results indicate that the impact on resource consumption
is smaller than their impact on the traffic volume (yet still
significant, i.e., 7% for radio energy, 9% for radio resources,
and 6% for signaling load, based on our analysis of the user
study trace), due to reasons explained in §5.

• We performed comprehensive tests of ten state-of-art HTTP
libraries and mobile browsers, many of which were found

to not fully support or strictly follow the HTTP 1.1 caching
specifications. In particular, among the eight HTTP libraries,
four (three for Android and one for iOS) do not support
caching at all. Smartphone apps using these libraries thus
cannot benefit from caching. By exposing the shortcomings
of existing implementations, our work helps encourage li-
brary and platform developers to improve the state of the art,
and helps application developers choose the right libraries to
use for better performance.

Overall, our findings suggest that for web caching, there exists
a huge gap between the protocol specification and the protocol
implementation on today’s mobile devices, leading to significant
amount of redundant network traffic, most of which could be
eliminated if the caching logic of HTTP libraries and browsers
fully supports and strictly follows the specification, and developers
fully utilize the caching feature provided by the libraries. Fixing
this cache implementation issue can bring considerable reduction
of network traffic volume, cellular resource consumption, handset
energy consumption, and user-perceived latency, benefiting both
cellular carriers and customers.

Paper organization. §2 provides background of HTTP caching.
§3 describes the measurement goal, data, and methodology. Then
we measure the traffic volume impact and the resource impact of
redundant transfers in §4 and §5, respectively. In §6 we perform
caching tests for popular HTTP libraries and mobile browsers. We
summarize related work in §7 before discussing our future work
and concluding the paper in §8.

2. BACKGROUND: CACHING IN HTTP
This section provides background of web caching defined in

HTTP 1.1 [23]. As described in §1, our study focuses on caching
on handsets instead of within the network. In the remainder of
the paper, a cache refers to an HTTP cache on a handset unless
otherwise specified. We refer to a web object (e.g., an HTML
document or an image) carried by an HTTP response as a file.

Caching consistency (i.e., keeping cached copies fresh) is the
key issue. To realize that, the server sets the expiration time for
each file by specifying either Expires or Cache-Control:max-age
header directive. Then before a cache entry expires, a handset
should safely assume the freshness of the file by serving the request
using the cached copy without generating any network traffic. After
a cache entry expires, a handset should perform cache revalidation,
i.e., asking the origin server whether the file has changed, by issu-
ing conditional requests using If-Modified-Since:<time> or
If-None-Match:<eTag> directive (or both). The former directive
instructs the server to send a new copy if the file has changed since a
specified date, which is usually the last modified time indicated by
the Last-Modified directive in the previous response. The latter
allows the server to determine the freshness using a file “version
identifier” called eTag (entity tag), which is a quoted string attached
to the file in the previous response. An eTag might be implemented
using a version name or a checksum of the file content. In either
case, if the file has changed, the server sends a new copy to
the handset. Otherwise, a small 304 Not Modified response is
returned to the handset, without a document body, for efficiency.

A handset determines a cache entry has expired if and only if
tarrive_age + tcache_age ≥ tfresh_life. tarrive_age is the age of the file when it
arrives at the cache. It is computed from the Date or Age directive
of a response, plus an estimated round-trip time compensating for
the network delay. tcache_age, which can be trivially calculated, indi-
cates how long the file has been in the cache. tfresh_life is the cached
copy’s freshness lifetime (similar to the shelf life of food in grocery



Table 1: Our measurement datasets.
Dataset ISP UMICH

Data collection period May 20 2011 0:00 GMT ∼ May 12 2011 ∼
May 20 2011 23:59 GMT Oct 12 2011

Collection point Commercial cellular core network Directly on users’ handsets
Number of users 2.92 million (estimated) 20

Dataset size 271 GB 119 GB
Traffic volume 24.3 TB 118 GB

Platforms Multiple (mainly iOS and Android) Android 2.2

Data format 695 million records of Full packet trace (including
HTTP transactions payload) of all traffic

stores) derived from the Expires or Cache-Control:max-age
directive where the latter one overrides the former one if both
exist. tfresh_life is usually specified by the server while a handset
can also specify Cache-Control request directives (max-age,
max-stale, and min-fresh) to tighten or loosen expiration con-
straints although they are rarely used in practice.

Non-storable and must-revalidate files. A non-storable file
(marked by Cache-Control:no-store) forbids a cache from
storing (i.e., caching) the file. A must-revalidate file (marked
by Cache-Control:must-revalidate, Pragma:no-cache, or
Cache-Control:no-cache) can be stored in a cache. How-
ever, the cache must bypass the freshness calculation mechanism
and always revalidate with the origin server before serving it
(“no-cache” is misleading because the file actually can be cached).
A handset can also explicitly set the above caching directives in a
request, indicating it will not store or will always revalidate the file.

Clearly, well-behaved caching logic requires correct implemen-
tation at both the handset and the server side. Our analysis de-
scribed in §3 helps identify inefficient caching behaviors and which
side is responsible for any of them.

3. MEASUREMENT GOAL, DATA,
AND METHODOLOGY

This section highlights our measurement goal (§3.1), describes
the measurement data (§3.2), and then details our analysis approach
for redundant data transfers (§3.3).

3.1 The Measurement Goal
We define inefficient caching as caching behaviors that (i) lead to

redundant data transfers, whose negative impact on performance,
resource consumption, and billing is particularly high for mobile
users, and (ii) relate to the implementation (as opposed to the
semantics, as described below) of the HTTP caching mechanism.
Inefficient caching can be caused by multiple reasons including
the following factors covering the most important aspects of cache
implementation (we discuss less significant factors in §3.3.2).

• Problematic caching logic due to any of the following
reasons. (i) The handset does not fully support or strictly
follow the protocol specification1. (ii) The server does not
properly follow the caching specification. (iii) In order to
leverage the caching support provided by an HTTP library, a
developer still needs to configure it. Many developers may
skip that for simplicity, or simply be unaware of it, therefore
missing the opportunity of caching even if it is supported.
• A limited cache size causing the same content to be fetched

twice if the first cached copy is evicted from the cache.
1Not following the specification can also cause consumption of
expired contents. But this was never observed in our tests in §6.

• A non-persistent cache whose cached data does not survive
a process restart or a device reboot (unlike a persistent cache
that survives both).

As highlighted in §1, we aim at understanding the impact of
redundant transfers caused by the above inefficient caching factors,
for commercial cellular networks (§4 and §5), as well as how
the caching logic of popular HTTP libraries and mobile browsers
deviates from the specification (§6).

Caching implementation vs. semantics. All the factors listed
above relate to caching implementation. Redundant transfers may
also be attributed to the misconfiguration of caching parameters,
which ideally should be properly set by a server according to the
semantics of files. For example, for a news website, conservatively
marking all news articles and images as non-storable or setting for
them very short freshness lifetime values may lead to redundant
transfers while bringing negligible benefits given that the article
contents rarely change. A thorough study of the file semantics
and caching parameter settings is out of the scope of this paper,
although we show examples where caching parameter settings are
obviously too conservative (§8).

From this point on, unless otherwise specified, redundant trans-
fers refer to redundant transfers caused by caching implementation.

3.2 The Smartphone Measurement Data
We collected two diverse datasets summarized in Table 1 to

measure redundant transfers caused by inefficient caching.

3.2.1 The ISP Dataset
The ISP dataset was collected from a large U.S. based cellular

carrier at a national data center on May 20, 2011, on the interface
between the GGSN (Gateway GPRS Support Node) and SGSNs
(Serving GPRS Support Node) without any sampling. Each record
in the dataset corresponds to one HTTP transaction, containing
three pieces of information: (i) a 64-bit timestamp, (ii) summaries
of header fields in the request and the response, and (iii) the actual
amount of data transferred based on the TCP data associated to
each HTTP transaction. To preserve subscribers’ privacy, the URLs
were anonymized using a 128-bit hash function and also all cookie
information was removed from the HTTP headers2.

Subscriber identification. Since our cache simulation is per-
formed at a per-user basis (§3.3), we need to identify the subscriber
ID for each record. Instead of using MSISDN (the phone number)
or IMEI (the device ID) information that was not collected due
to privacy concern, we used anonymized session-level informa-
tion to correlate multiple HTTP transaction records with a single
subscriber. One disadvantage of our approach is that one real

2In HTTP, caching and cookies are decoupled, and a server is
responsible for explicitly disabling caching when appropriate [16].



subscriber may be identified with multiple subscriber IDs (but one
subscriber ID never maps to multiple real subscribers). This leads
to an underestimation of the amount of redundant data due to
increased cold start cache misses [34] (explained in §3.3.2).

3.2.2 The UMICH Dataset
The ISP dataset is representative due to its large user base,

however it is limited in terms of the trace duration and recorded
content, as only summarized HTTP transaction records were cap-
tured. This is complemented by our second dataset called UMICH,
collected from 20 smartphone users for five months, allowing us
to keep detailed track of each individual user’s web cache for a
much longer period. These participants consisted of students from
8 departments at University of Michigan3. The 20 participants
were given Motorola Atrix (11 of them) or Samsung Galaxy S
smartphones (9 of them) with unlimited voice, text and data plans
of the same cellular carrier from which we obtained the ISP
dataset. All smartphones use Android 2.2. The participants were
encouraged to take advantage of all the features and services of
the phones. We kept collected data and users’ identities strictly
confidential.

We developed custom data collection software and deployed it
on the 20 smartphones. It continuously runs in the background and
collects two types of data: (i) full packet traces in tcpdump format
including both headers and payload, and (ii) the process name
responsible for sending or receiving each packet, using the method
described in [32] by efficiently correlating the socket, the inode,
and the process ID in Android OS in realtime. Both cellular and
Wi-Fi traces were collected without any sampling performed. The
data collector incurs no more than 15% of CPU overhead although
the overhead is much lower when the throughput is low (e.g., less
than 200 kbps).

We also built a data uploader that uploads the captured data
(stored on the SD card) to our server when the phone is idle. The
data collection is paused when the data is being uploaded so the
uploading traffic is not recorded. Also the upload is suspended (and
the data collection is resumed) by any detected network activity of
user applications. The entire data collection and uploading process
is transparent to the users, although we do advise the users to keep
their phones powered on as often as possible.

3.3 Analyzing Redundant Transfers
We explain our data analysis approach. We feed each user’s

HTTP transactions in the order of their arrival time to a web cache
simulator developed by us. The simulator behaves like a cache
that strictly follows the HTTP 1.1 caching mechanism specified
in RFC 2616 (§2). Redundant transfers can be identified through
the simulation process. Our approach differs from previous trace-
driven cache simulations [17, 34, 21, 20] in two ways. (i) Our
simulation is performed at a per-user basis to capture redundant
transfers for each handset, while previous ones consider aggregated
HTTP transfers of all users to compute, for example, the cache hit
ratio, for a network cache. (ii) Ours is more fine-grained in that
it distinguishes various causes of the redundancy (and also non-
redundancy).

In the remainder of the paper, a handset cache and the simulated
cache refer to the cache on a real handset and the cache maintained
by our simulator, respectively.

The basic simulation algorithm is illustrated in Figure 1. It as-
signs to each HTTP transaction a label indicating its caching status.
A file can be NOT_STORABLE due to its Cache-Control:no-store
3This user study has been approved by the University of Michigan
IRB-HSBS #HUM00044666.

foreach HTTP transaction r
if (file is not storable) then

//the file contains "Cache-Control: no-store"
assign_label(r, NOT_STORABLE);
continue;

else if (cache entry not exists) then
//cache entry not found
assign_label(r, CACHE_ENTRY_NOT_EXIST);

else if (cache entry not expired) then
//a request is issued before the file expires
assign_label(r, NOT_EXPIRED_DUP);
//the response is ignored by the simulator because the
//request should not have been generated
continue;

else if (file changed) then
//the file has changed after the cache entry expires
assign_label(r, FILE_CHANGED);

else if (HTTP 304 used) then
//the file has not changed after the cache entry expires,
//and a cache revalidation is properly performed 
assign_label(r, HTTP_304);

else if (revalidation not performed) then
//the file has not changed after the cache entry expires, 
//but the handset does not perform cache revalidation
assign_label(r, EXPIRED_DUP);

else
//the file has not changed after the cache entry expires, 
//but the server does not recognize the cache revalidation
assign_label(r, EXPIRED_DUP_SVR);

update_cache_entry(r);//update the simulated cache
endfor

01
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04
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19

Figure 1: The basic caching simulation algorithm.

directive or causes CACHE_ENTRY_NOT_EXIST because it has not
yet been cached. NOT_EXPIRED_DUP is an undesired case where a
handset issues a request for a file cached in the simulator before it
expires, resulting in redundant transfers (“DUP” means duplication).

Then Line 10 to 17 deal with the scenario where a cached
file has expired. If the file has changed, then the entire file
needs to be transferred again (FILE_CHANGED). If the file remains
unchanged, the ideal way to handle it is that the handset performs
cache revalidation and the server sends back an HTTP_304 re-
sponse. Otherwise, the problem either comes from the handset
side, which does not issue a conditional request (EXPIRED_DUP),
or from the server side, which does not recognize a conditional
request (EXPIRED_DUP_SVR). Among the aforementioned labels,
NOT_EXPIRED_DUP, EXPIRED_DUP and EXPIRED_DUP_SVR cor-
respond to redundant transfers.

Is our simulated cache complete? Let us first assume our
simulated cache is persistent with unlimited size (i.e., an ideal
cache defined in §1). Consider the Venn diagram shown in Figure 2.
Let U be all HTTP transactions carried out by applications. What
we observe in the data, D, is a subset of U since requests of
U\D (the relative complement of D in U ) are already served
by the handset cache so U\D does not appear on the network.
However, remember that in order for a file f to be cached, it
must be transferred over the network (i.e., f ∈ D) at least once.
Therefore our simulated cache will not miss any file that is in a
handset cache, if the simulated cache is ideal (we discuss the only
exception in §3.3.2). More importantly, as explained in §3.1, our
goal is to study the redundant data transfers that always belong to
D instead of U\D.



U: HTTP transactions
carried out by applications

D: HTTP transfers
seen in the data

Redundant 
transfers due to 
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caching logic 
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non-persistent 
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HS M

Figure 2: A Venn diagram showing HTTP transactions
observed by applications and by our simulator, as well as the
redundant transfers.

On the other hand, a file in our simulated cache may be missing
in a handset cache because of its problematic caching logic (the
set H in Figure 2), the limited size (the set S), or a lack of
persistent storage (the setM ) of the handset cache. Ideally we want
to distinguish the three cases. However, the redundant transfers
identified by our simulator are in fact H ∪S ∪M where H , S, and
M are indistinguishable, given that the simulated cache is ideal.

3.3.1 Algorithm Details
Figure 1 sketches the basic simulation algorithm. We provide

details of the algorithm below.
The key of a cache entry (our simulated cache was implemented

using a hash map) consists of three parts: (i) the host name
indicated by the Host request directive, (ii) the file name followed
by the GET command, and (iii) the eTag. Part (i) and (ii) must
exist otherwise the HTTP transaction is assigned a special label
“OTHER” (Table 2) while the eTag part is optional. Also the
file name includes the entire GET string containing query strings
so /a.php?para=1 and /a.php?para=2 have different cache
entries. Empty or error responses (e.g., 404 Not Found) are also
counted as OTHER, which only accounts for 0.5% of all HTTP
traffic in both datasets.

The change of a file is identified through a different Last-Modified,
Content-Length or Content-MD5 value for the same cache
entry.

A heuristic freshness lifetime can be used when neither Expires
nor Cache-Control:max-age exists in a response, according to
RFC 2616. We use a heuristic lifetime of 24 hours and later we
show our analysis results are not sensitive to this value (§4.1).

A partially cached file is caused either by a byte-range request
(using the Range directive) for a subrange of the origin file, or by
a prematurely broken connection. Our simulator supports partial
caching by allowing a cache entry to contain one or more subranges
of a file. We implemented the following logic according to RFC
2616. Assume one or more subranges of a file have been cached,
and an incoming response transfers another subrange R. The new
subrange R is then combined with the existing range(s) if both the
existing and the new range have the same eTag value (the eTag
value must exist). Otherwise, all previously cached range(s) are
removed before R is put into the cache entry.

If a file is partially cached, then a single transfer of the whole
or a part of the file may contain both redundant and non-redundant
bytes. To handle such a case, for each of the *EXPIRED_DUP*
labels, we use two new labels, *EXPIRED_DUP*_CACHED, and
*EXPIRED_DUP*_UNCACHED (not shown in Figure 1), to distin-
guish the redundant and the non-redundant ranges, respectively.

Requested range before expiration

Transferred range

0M 1M 2M 3M 4M 6M5M

NOT_EXPIRED_
DUP_CACHED

NOT_EXPIRED_
DUP_CACHED

NOT_EXPIRED_
DUP_NOTCACHED

Cached range Cached range

Figure 3: A partially cached file and a partial cache hit.

Consider a file of 6 MB shown in Figure 3. Assume two ranges
[0, 2M) and [3M, 6M) are already cached by the simulator. The
handset makes a byte-range request of [1M, 5M) before the cache
entry expires. However the user cancels the transfer in the mid-
dle so only [1M, 4M) is actually transferred, as observed in our
dataset. In this example, ideally the HTTP library should only
request for [2M, 3M), which is not in the cache, using the Range
and the If-Range directives4. We therefore label [2M, 3M) as
NOT_EXPIRED_DUP_NOTCACHED, the non-redundant range, and
label [1M, 2M) and [3M, 4M) as NOT_EXPIRED_DUP_CACHED,
the redundant ranges. The two labels substitute for the original
NOT_EXPIRED_DUP label which is not used for partially cached
files. We introduce similar labels for EXPIRED_DUP_SVR and
EXPIRED_DUP. Table 2 summarizes all labels.

3.3.2 Limitations
We discuss five limitations of our simulation approach.

• Inefficient caching and hence redundant transfers exist in
both unencrypted HTTP and encrypted HTTPS traffic. How-
ever, the ISP trace contains only HTTP records. For the
UMICH trace, the simulator cannot parse the HTTPS traf-
fic that was collected by tcpdump running below the SSL
library. HTTPS accounts for only 11.2% of the total traffic
volume, compared to 85.4% for HTTP transfers.

• As mentioned before, the simulator cannot precisely distin-
guish S, H , and M shown in Figure 2. We qualitatively
address such indistinguishability in §4.2 based on robust
heuristics.

• A file may already be cached in a handset cache before the
data collection started but the simulator does not know that.
As an inherent problem (called cold start cache miss [34])
of any trace-driven cache simulation algorithm, it leads to
an underestimation of the cache hit ratio (or the redundancy
ratio in our case). But both our traces (in particular the
UMICH dataset) are sufficiently long so the impact of cold
start cache miss is expected to be small.

• Redundant transfers can also be caused by users explicitly
reloading a file (e.g., refreshing a web page). In that case, the
application may override the default caching behavior by, for
example, requesting for a file before its cached copy expires,
but the simulator has no way to identify such manually
triggered redundant transfers.

4The Range directive is often used together with an
If-Range:<eTag> conditional request. It means “if the file
is unchanged, send me the range that I am missing; otherwise, send
me the entire new file”.



Table 2: Detailed breakdown of caching entry status.
Cache Fully or Redundant % HTTP bytes

Label hit or partially due to ISP UMICH UMICH
miss? cached? caching? (GC)∗ (GC) (PC)∗

1. NOT_STORABLE - - - 15.4% 19.7% 19.7%
2. CACHE_ENTRY_NOT_EXIST Miss - - 47.5% 42.0% 42.3%
3. FILE_CHANGED Miss - - 1.9% 0.5% 0.5%
4. HTTP_304 Hit Either - 0.1% 0.0% 0.0%
5. NOT_EXPIRED_DUP Hit Full Yes 13.6% 15.0% 14.7%
6. NOT_EXPIRED_DUP_CACHED Hit }Partial

Yes 2.3% 1.3% 1.3%
7. NOT_EXPIRED_DUP_NOTCACHED Miss - 16.0% 17.0% 17.0%
8. EXPIRED_DUP Hit Full Yes 1.7% 4.0% 4.0%
9. EXPIRED_DUP_CACHED Hit }Partial

Yes 0.1% 0.0% 0.0%
10. EXPIRED_DUP_NOTCACHED Miss - 0.9% 0.0% 0.0%
11. EXPIRED_DUP_SVR Hit Full - 0.0% 0.0% 0.0%
12. EXPIRED_DUP_SVR_CACHED Hit }Partial

- 0.0% 0.0% 0.0%
13. EXPIRED_DUP_SVR_NOTCACHED Miss - 0.0% 0.0% 0.0%
14. OTHER - - - 0.5% 0.5% 0.5%
∗ GC: all processes on a handset share one single global cache; PC: each process has its own cache.

Table 3: Statistics of file cacheability.

Count by Dataset Normally Must- Non- OtherCacheable revalidate storable

Bytes ISP 69.8% 14.3% 15.4% 0.5%
UMICH 78.2% 1.6% 19.7% 0.5%

Files ISP 72.4% 12.4% 14.9% 0.4%
UMICH 65.6% 6.8% 25.4% 2.1%

• Similarly, our simulator cannot identify redundant transfers
caused by users manually clearing the cache after browsing
sessions. The amount of such redundant data is expected
to be small due to the observed strong temporal locality of
accessing the same cache entry (described in §4.2).

4. THE TRAFFIC VOLUME IMPACT
In this section, we investigate the traffic volume impact of redun-

dant transfers caused by inefficient caching behaviors.

4.1 Basic Characterization
We first assume our simulated cache is ideal (i.e., it is persistent

with unlimited cache size). Thus all redundant transfers caused by
the three factors described in §3.1 can be identified.

File cacheability. Table 3 breaks down all HTTP bytes (files)
transferred over the network into four categories: normally cacheable
(i.e., following the standard expiration and freshness calculation
mechanism), must-revalidate (§2), non-storable, and other HTTP
transfers (§3.3.1). For both datasets, most bytes (70% to 78%)
and most files (66% to 72%) are normally cacheable, indicating
the potential benefits of caching if handled properly by a handset.

A detailed breakdown of caching entry status is shown in
Table 2, which lists the 14 labels described in §3.3. We show two
simulation scenarios for the UMICH dataset: (i) all processes on
a handset share one single global cache, and (ii) each process has
its own cache. They correspond to “GC” and “PC” in Table 2,
respectively. The per-process cache simulation is feasible because
the UMICH trace contains packet-process correspondence for each
packet. We summarize our findings as follows.

• NOT_EXPIRED_DUP contributes most bytes (77% for ISP
and 74% for UMICH) among the four labels (5, 6, 8, 9)
incurring redundant transfers. In other words, redundant
transfers are usually caused by a handset issuing unnecessary
requests before received files expire. For the ISP (UMICH)
trace, 14% (31%) of all HTTP transactions (not shown),
corresponding to 14% (15%) of all HTTP bytes (Row 5
in Table 2), are unnecessary because if handsets properly
cache previous responses, no request needs to be sent out
over the network and the responses can be served from local
caches. On the other hand, the contribution of EXPIRED_DUP
is much less. For the ISP (UMICH) trace, for 4.5% (10.2%)
of all HTTP transactions (not shown), conditional requests
to check the freshness of the cached data need to be sent,
so that their responses, corresponding to 1.7% (4.0%) of all
HTTP bytes (Row 8 in Table 2) will end up being served from
local caches (if handsets properly cache previous responses)
because they do not change.

• When HTTP_304 is not used, it is almost always attributed
to the handset instead of the server which properly handles
cache revalidation, as indicated by the negligible contribu-
tion of EXPIRED_DUP_SVR*.

• Partially cached files incur limited redundant transfers in that
the traffic volume contribution of *_DUP_CACHED is small.
In contrast, *_DUP_NOTCACHED (illustrated in Figure 3) ac-
count for considerable amount of non-redundant bytes. We
found most (95%)5 of *_DUP_NOTCACHED bytes originate
from servers using byte-range responses for streaming large
multimedia files. Note that a recent measurement study [22]
showed that 98% of multimedia streaming traffic for a com-
mercial cellular network is delivered over HTTP.

• The results of UMICH (GC) and UMICH (PC) are almost
identical, indicating small overlap among files requested by
different applications.

• Cellular and Wi-Fi traffic exhibit similar breakdown (not
shown in Table 2), indicating the caching strategies on both
the server and the handset side are independent of the net-
work interface.

5Identified by their User-Agent strings. See §4.3 for details.



Table 4: The overall traffic volume impact of redundant transfers when different heuristic freshness lifetime values are used.

Dataset

% of redundant bytes of all HTTP traffic
[% of redundant bytes of all traffic (HTTP and non-HTTP)]

under different values of heuristic freshness lifetime
1 hour 6 hours 1 day∗ 1 week 1 month

ISP (GC) 17.74% 17.74% 17.74% 17.74% 17.74%
[16%]∗∗ [16%] [16%] [16%] [16%]

UMICH (GC) 20.24% 20.25% 20.28% 20.32% 20.34%
[17.29%] [17.30%] [17.33%] [17.36%] [17.38%]

UMICH (PC) 19.94% 19.95% 19.98% 20.02% 20.04%
[17.03%] [17.04%] [17.07%] [17.10%] [17.12%]

∗ 1 day is the heuristic freshness lifetime used for other results in the paper.
∗∗ Assume the fraction of HTTP traffic is 90%, based on a recent large-scale
measurement study for a commercial cellular data network [36].

The overall traffic volume impact is summarized in Table 4.
We highlight key observations below.

• The first number in each grid of Table 4 is the fraction
of redundant bytes within all HTTP traffic. Recall the
redundant bytes come from label 5, 6, 8, 9 in Table 2, and
they correspond to H ∪ S ∪M in Figure 2. By eliminating
redundant transfers, the reduction of HTTP traffic is as high
as 17.7% and 20.3% for ISP and UMICH, respectively.

• Even at the scope of all traffic (HTTP and non-HTTP),
the redundancy ratio is also significant (17.3% for UMICH)
as indicated by the second number. Note that this is an
underestimation because we did not consider the redundancy
of HTTPS traffic accounting for 11.2% of the total traffic
volume of UMICH.

We do not have the number for the ISP dataset that only
contains HTTP records. As reported by a recent measure-
ment study [36], HTTP accounts for at least 90%6 of the total
traffic volume of an aggregated one-week dataset involving
600K cellular subscribers collected in August 2010. If we
assume that fraction is representative and apply it to our ISP
dataset, then its overall redundancy ratio at the scope of all
traffic is at least 16%.

• Recall that our simulator introduced a heuristic freshness
lifetime when a response contains no expiration information.
Table 4 shows this parameter has negligible impact on the
amount of redundant data.

• Although the duration of the ISP trace is much shorter, its
redundancy ratio is only marginally smaller than that of
UMICH, implying the usage duration has limited impact on
the redundancy ratio. This is partly explained by the strong
temporal locality of accessing the same cache entry (Figure 5
in §4.2).

• For the UMICH dataset, the difference between redundancy
ratios of per-process caches (PC) and a single global cache
(GC) is as small as 0.3%.

4.2 The Impact of the Cache Size
Now we discard the assumption of unlimited cache size and con-

sider a finite cache for the simulator. This helps quantify the impact
6See Figure 1(a) of the paper [36]. The following categories
use HTTP: web_browsing, smartphone_apps, market, and
streaming.
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Figure 4: Relationship between the simulated cache size and
the fraction of detected HTTP redundant bytes.

of limited cache size on redundant transfers. We implemented LRU
(Least Recently Used) algorithm for our simulator since all HTTP
libraries and browsers we tested in §6 use LRU as the replacement
algorithm, if they support caching. LRU discards the least recently
accessed files first when the cache is full. With a finite cache
size, the simulated cache may not capture all redundant transfers
in the trace. We refer to those captured ones as detected redundant
transfers.

Consider Figure 2 again. Let us decrease the simulated cache
size. Then we see fewer detected redundant transfers (each of |S|,
|H|, and |M | decreases) since more previously detected redundant
transfers are classified as CACHE_ENTRY_NOT_EXIST due to cache
misses as the simulated cache becomes smaller. In particular, when
the simulated cache size is smaller than the handset cache size,
redundant transfers due to limited size of the handset cache will
be eliminated (i.e., |S| becomes 0) because if a cache entry is
evicted from the handset cache, it must have been evicted from
the simulated cache (assuming both use LRU). Therefore, if the
detected redundant bytes decrease to x% when the simulated cache
size goes below the handset cache size, then the traffic volume
impact of H ∪M is at least x%. Note this is a very loose lower
bound in that |H ∪ M | also decreases as the simulated cache
becomes smaller.

Our measurement results are shown in Figure 4 where we vary
the simulated cache size from 1 MB to 2 GB for both datasets (note
that the X-axis is in log scale). Figure 4 shows that even when the
cache has a very small size of, for example, 4 MB7, the detected
redundant bytes is still as high as 12.8% and 13.2% (compared to
17.7% and 20.3% when the simulated cache has unlimited size),
7In comparison, our caching tests in Table 9 (§6.2) show that the
cache sizes for the Android 2.2 browser and the Safari browser of
iOS 4.3.4 / iPhone 4 are 8 MB and 100 MB, respectively.



Table 5: Measuring redundant transfers for top applications in both datasets.
The UMICH dataset (HTTP Bytes: 101 GB) The ISP dataset (HTTP Bytes: 24.3 TB)

Android process∗ % HTTP % redundant User-Agent regex % HTTP % redundant
bytes HTTP bytes (device/OS name)∗ bytes HTTP bytes

Streaming Service 1 29.8% 8.8% Streaming Service 1 (A)∗∗ 37.8% 20.1%
Streaming Service 2 12.4% 0.5% Internet Radio (A) 11.6% 1.9%
Web Browser 1 11.5% 20.4% Web Browser (A) 11.3% 14.6%
Entertainment 6.6% 12.0% Media player (A) 8.9% 3.1%
News and Weather 6.3% 55.3% Map (A) 3.1% 0.0%
Lifestyle 3.9% 99.4% HTTP Library (B) 2.4% 86.6%
Music and Audio 1 3.4% 0.0% Web Browser (C) 2.1% 1.6%
Music and Audio 2 2.9% 0.1% Weather (A) 2.0% 93.0%
Web Browser 2 1.8% 8.6% Social Networking (A) 1.6% 7.3%
Social Network Manager 1.7% 99.3% Streaming Service 2 (D) 1.5% 19.1%
Media and Video 1.7% 0.8% Web Browser (B) 1.4% 13.5%
Web Browser 3 1.4% 18.3% Ad library (B) 1.0% 100.0%
(Total or average) 83.4% 18.3% (Total or average) 84.7% 18.2%
∗ The process names, User-Agent regular expressions, and device/OS names have been anonymized.
∗∗ For the ISP dataset, A, B, C, D refer to four different device/OS names after anonymization.
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Figure 5: Distribution of intervals between consecutive accesses
of the same simulated cache entry (for the ISP trace).

which are the aforementioned (loose) lower bounds of |H ∪M |,
for ISP and UMICH, respectively. We therefore conclude that the
problematic caching logic (instead of the limited cache size) takes
the major responsibility for redundant transfers.

Figure 4 also suggests how to set the cache size, which can
be small enough to entirely fit into today’s smartphone memory
with very limited additional cache misses incurred. For example,
reducing the simulated cache size from infinity to 50 MB causes
additional cache misses for only 2.0% and 0.4% of HTTP bytes
(they are the loose upper bounds of the reduction of |S|) for
UMICH and ISP, respectively, as indicated by the decrease of the
detected redundant bytes shown in Figure 4.

Persistent vs. non-persistent cache. As described in §3.1, a
non-persistent cache does not survive a process restart or a device
reboot while a persistent cache does survive both. Based on our
caching tests of 6 HTTP libraries and mobile browsers that support
caching (§6.2), only one library for iOS (NSURLRequest) uses a
non-persistent cache (Table 9). All Android libraries as well as
both iPhone and Android browsers use persistent caches.

Our simulation assumes a persistent cache, which is consistent
with the UMICH trace involving only Android handsets. For the
ISP trace involving iOS devices, redundant transfers can also be
caused by the non-persistent cache, which cannot be simulated
since we do not know when a user restarts a process or reboots
a handset. However, we expect the fraction of redundant transfers

caused by the non-persistent cache is small due to two reasons. (i)
Restarting a process happens infrequently in iOS [11]. On iPhone
and iPad, pressing the “home” button simply puts an application
to background. (ii) More quantitatively, Figure 5 plots the CDF of
the intervals between consecutive accesses of the same simulated
cache entry for the ISP trace. It is generated during the cache
simulation. As shown in Figure 5, 59% of the intervals are less
than 1 minute and 87% are less than 1 hour. We expect such strong
temporal locality of cache entry access makes a non-persistent
cache comparable to a persistent cache in terms of efficiency.

4.3 Diversity Among Applications
This subsection investigates the caching efficiency of individual

smartphone applications.
Identifying smartphone applications is trivial for the UMICH

trace, which contains the process name for each packet and hence
for each HTTP transaction. 741 unique processes were observed
from the UMICH dataset.

For the ISP dataset whose application identification is less straight-
forward, we used the User-Agent field in HTTP requests to
distinguish different applications. First, from the 48,214 unique
User-Agent strings appeared in the dataset, we picked the top 500
strings with the highest HTTP traffic coverage, yielding an overall
traffic coverage ratio of 95.5%. We found many User-Agent
strings belong to the same application. They are only slightly dif-
ferent in OS versions, hardware specifications, and languages, etc.
For example, Apple iTunes has the following User-Agent format:
iTunes-Device/iOS version (device version; memory size), such as
iTunes-iPhone/4.3.3(4;16GB) or iTunes-iPhone/4.2.1
(2;8GB). To avoid duplicated applications, we generated 95 regu-
lar expressions, each corresponding to an app for a specific device
and/or OS, that cover all 500 User-Agent strings. All regular
expressions follow a simple pattern of app_name*device/OS_name*,
such as iTunes*iPhone* and Pandora*iOS*, by ignoring other
less significant fields such as the OS version number.

Redundant transfers for top applications are measured in
Table 5 (assuming an ideal cache for simulation). For the UMICH
(ISP) trace, we show the top 12 process names (User-Agent
regular expressions), their contributions of HTTP traffic, and their
fractions of redundant bytes (their names have been anonymized).
Due to the heavy-tail distribution of the smartphone application



Table 6: A summary of our findings regarding to the traffic volume impact of redundant transfers.
Question Our finding based on the two datasets §

File cacheability Most bytes (70% to 78%) and most files (66% to 72%) are cacheable. 4.1

Traffic volume impact of redundant transfers They account for 18% to 20% of HTTP traffic, and about 17% of 4.1the overall traffic for the UMICH trace.
Main reason for redundant transfers Problematic caching logic of the handsets (instead of the sever). 4.2

Impact of cache size on redundant transfers Limited. The detected redundant bytes are at least 13% even for a 4.2simulated cache of as small as 4 MB.

Suggested handset cache size Reducing the cache size from infinity to 50 (100) MB causes cache 4.2misses for at most 2.0% (1.4%) of HTTP bytes.
Difference between persistent cache and Very small. Both have similar caching efficiency due to strong 4.2non-persistent cache temporal locality of accessing the same cache entry.

Caching efficiency of individual mobile apps Some popular apps have unacceptably high fractions (93% to 100%) 4.3of redundant transfers.

usage [36], these top apps are responsible for more than 83% of all
HTTP traffic. We found that while some apps incur small fractions
of redundant data, some have unacceptably high redundancy ratios.

To validate the cache simulation results, we further studied the
four apps with high redundancy ratios greater than 90% as shown
in Table 5. We used them locally by exploring their common appli-
cation usage scenarios, whose packet traces were simultaneously
collected by tcpdump running on our handsets. By analyzing the
traces, we found that all four apps use HTTP as the application-
layer protocol but none of them performs caching. For example,
for the “Weather (A)” app, HTTP responses of the weather infor-
mation contain the Expires and the Cache-Control:max-age
directives both specifying a freshness lifetime of 5 minutes. But
when we checked the weather for the same location again (we
verified from the trace that the URLs were identical), the handset
always issued a non-conditional request regardless of the freshness
of the downloaded file.

Inefficiency caused by HTTP POST. Table 5 indicates that
the “Map (A)” app incurs negligible redundant transfers, because
almost all its bytes are not cacheable (not shown). Specifically,
we found that instead of employing HTTP GET, the application
heavily uses HTTP POST requests that point to a single static file
name by including the parameters in the body of a POST request,
making it impossible for HTTP to cache the responses. A more
caching-friendly approach is to attach query strings to the URLs to
make them cacheable.

We summarize important findings regarding to the traffic volume
impact of redundant transfers in Table 6.

5. THE RESOURCE IMPACT
§4 reveals the traffic volume impact of redundant transfers due to

inefficient caching. In cellular networks, resources such as handset
battery life, radio resources, and signaling load could also become
critical bottlenecks. We now focus on understanding the resource
impact of redundant transfers.

5.1 Cellular Resource Management Policy
To efficiently utilize the limited radio resources, cellular net-

works employ a radio resource management policy distinguishing
them from wired and Wi-Fi networks. In particular, there exists a
radio resource control (RRC) state machine [31] that determines the
radio resource usage based on application traffic patterns, affecting
the handset energy consumption and the user experience.

The RRC state machine of the 3G UMTS cellular carrier used
by the 20 participants generating the UMICH trace is depicted
in Figure 6, which was inferred by our prior work [31]. The
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Figure 6: The RRC state machine of the 3G UMTS cellular
carrier used by the participants generating the UMICH trace.

UMTS RRC state machine consists of three power states: IDLE
(no connection), CELL_FACH (low-power, low bandwidth state),
and CELL_DCH (high-power, high-bandwidth state). Similar RRC
state machines exist in other types of cellular radio access networks
such as GPRS/EDGE [12], 3G EvDO [19], and 4G LTE [25].

A state promotion (going from low to high power state) is
triggered by a relatively high data transmission rate. It incurs a long
delay up to several seconds during which tens of control messages
are exchanged between a handset and the radio access network for
resource allocation. A large number of state promotions increase
the signaling overhead and worsen the user experience [31].

A state demotion (going from high to low power state) takes
negligible time. However it is controlled by an inactivity timer that
may cause significant waste of resources, because when waiting
for timeout, a handset still occupies the transmission channel and
the WCDMA codes, and its radio power consumption is kept at
the corresponding level of the state8. If the inactivity timer, which
is reset by any uplink or downlink packet, finally expires, we
say the RRC state is demoted after a tail, which is the idle time
period matching the inactivity timer value before a state demotion.
The negative resource impact of tails in cellular networks was
investigated in prior work [13, 31].

8In typical UMTS networks, each handset is allocated dedicated
high-speed channel on CELL_DCH. For HSDPA [24], a UMTS
extension with higher downlink speed, a high-speed channel may
be shared by a limited number of handsets. Occupying it during the
tail time can potentially prevent other handsets from using it.



5.2 Computing the Resource Impact
Three metrics are used to quantify the resource impact. We

leveraged the RRC state machine simulator (configured with the
state transition model shown in Figure 6) and the handset power
model used by the ARO tool [32] for computing the metrics below.

• E: the handset radio energy consumption. It is the energy
consumed by the cellular radio interface whose radio power
contributes 1/3 to 1/2 of the overall handset power during
the normal workload [32]. E is calculated by associating
each RRC state or state promotion an average power value
measured from a particular phone [31, 32]. The exact radio
power values may also depend on other factors such as the
signal strength, but our qualitative conclusions in terms of
the energy impact should hold.

• S: the signaling overhead quantified by the total state promo-
tion delay.

• D: the radio resources. It is estimated by the total CELL_DCH
(the high-speed dedicated channel) occupation time (includ-
ing the tail time).

We only studied the UMICH trace, because accurate RRC state
reconstruction, a prerequisite for computing the above metrics,
requires for each incoming and outgoing packet its precise timing
and size, which is not available in the ISP trace. Also, we
only considered the 3G traffic within the UMICH trace since the
resource management policy of Wi-Fi is much more efficient due
to its short-range nature9.

To quantify the resource impact of redundant transfers, we take
the difference of the computed metrics for the original trace and the
modified trace with all redundant transfers removed. Specifically,
the radio energy impact is computed as ∆E = (E0 − ER)/E0

where E0 and ER correspond to the radio energy consumed by the
original and the redundant-transfer-free trace, respectively. ∆E is
positive as removing redundant transfers reduces energy consump-
tion. The radio resource impact ∆D and the signaling impact ∆S
are computed in similar ways. Note this general method [32] can
be used to compute the resource impact of any transfers.

Two factors may lead to underestimation of the resource
impact. (i) We conservatively consider all HTTPS traffic non-
redundant. (ii) In the above approach, by removing redundant
transfers (or any transfers of our interest), we assume that any
of the remaining traffic is unaffected in terms of its schedule and
occurrence. This may not be true in reality: if some redundant
transfer is eliminated, the subsequent transfer may happen sooner,
or some other traffic may not occur at all (e.g., a DNS lookup).
Ignoring such dependency leads to an underestimation of the re-
source impact because in reality the resultant redundant-transfer-
free trace has shorter duration and/or less traffic than our simulated
one. Although it is difficult to handle all such cases, we do
address a common case where a DNS lookup would not occur if its
corresponding HTTP transfer were eliminated. Specifically, when
removing a redundant transfer X , we also try to eliminate a DNS
lookup D right before X , using a time window δ tolerating the
handset processing delay. We empirically choose δ=300 ms but
varying it from 100 to 500 ms has negligible impact on the results.

5.3 Measurement Results
Table 7 measures the resource impact of redundant transfers in

two scenarios: (i) consider only 3G HTTP traffic and exclude 3G
non-HTTP traffic, and (ii) consider all 3G traffic in the UMICH

9Wi-Fi has very short tail time and negligible promotion delay[13].

Table 7: Resource impact of redundant transfers (the UMICH
trace), under the scopes of HTTP traffic and all traffic.

∆S
∆E ∆E

∆D(HTC) (Nexus)
HTTP only 26.9% 26.1% 25.9% 27.1%
All traffic 6.1% 7.0% 6.7% 9.0%

trace. The “∆E (HTC)” and “∆E (Nexus)” columns refer to the
radio energy impact using power parameters of an HTC TyTn II
smartphone and a Google Nexus One smartphone [32], respec-
tively. The presented results also assume an ideal cache. We found
that similar to our findings in §4.2, as long as the simulated cache
size is reasonably large (e.g., greater than 10 MB), its impact on the
measured resource impact of redundant transfers is small (results
not shown).

As shown in Table 7, by considering non-HTTP traffic, the re-
source impact of redundant transfers decreases sharply from more
than 25% to less than 10%, although non-HTTP traffic accounts for
only 13% of the total 3G traffic volume. This is attributed to two
reasons explained below.

First, the resource impact of non-HTTP traffic can be significant
although their traffic volume contribution is small. Due to the
tail effect explained in §5.1, intermittently transmitting very small
amount of data may utilize much more resources than transmitting
large amount of data in one burst [32]. One representative example
of such an inefficient traffic pattern identified in the UMICH trace
is Android push notification (identified by TCP port 5228) and
XMPP (Extensible Messaging and Presence Protocol, a popular
instant messaging protocol using TCP port 5222 [1]) traffic. They
account for 1% of the total 3G traffic volume while their resource
impact in terms of E (HTC) is 18%10. On the other hand, for all
HTTP traffic dominating the overall 3G traffic volume (87%), the
resource impact in terms of E (HTC) is only 20%. Note that the
traffic patterns of push notifications (and in general, delay-tolerant
transfers) can be optimized to be more resource efficient [13, 30],
resulting in higher resource impact of redundant transfers.

The second reason is resource sharing. Unlike the traffic volume
measured in §4, resources in cellular networks can be shared by
multiple HTTP sessions, or be shared by HTTP and non-HTTP
transfers. Recall that in §5.1, the “radio-on” period of a transfer
consists of a state promotion, its data transmission period and the
following tail. If the radio-on periods of two transfers are fully
or partially overlapped, then D and hence E are shared during
the overlapped period. The signaling load S is also shared in
that only one state promotion is triggered by the two transfers.
Resource sharing significantly reduces the resource impact of re-
dundant transfers, many of which do not incur additional resource
overhead because their channel occupation periods overlap with
those of other transfers. For S, E (HTC), E (Nexus), and D,
the fractions of resource reduction due to resource sharing among
redundant transfers and other transfers are 70%, 61%, 63%, and
50%. respectively11.

10It is computed using the method described in §5.2 by taking the
difference of the radio energy for the entire trace and the modified
trace where push notification and XMPP transfers are removed.

11It is computed as 1 − (U(T ) − U(T2))/U(T1) where U(·)
computes the resource consumption for a certain trace. Trace T
is the original trace of all traffic. T1 consists of only redundant
transfers. T2 corresponds to T with T1 removed.



Table 8: Our tested HTTP libraries and smartphone browsers.
Name HTTP library or browser Platform Handset
UC java.net.URLConnection Android 2.3 Samsung Galaxy S

HUC java.net.HttpURLConnection Android 2.3 Samsung Galaxy S
HC org.apache.http.client.HttpClient Android 2.3 Samsung Galaxy S
WV android.webkit.WebView Android 2.3 Samsung Galaxy S
HRC android.net.http.HttpResponseCache Android 4.0.2 Samsung Galaxy Nexus
T20 Three20 (Version 1.0.6.2) iOS 4.3.4 iPhone 4

NSUR NSURLRequest iOS 5.0.1 iPhone 4S
ASIHR ASIHTTPRequest (Version 1.8.1) iOS 4.3.4 iPhone 4

AB The Android web browser Android 2.3 Samsung Galaxy S
SB The Safari web browser on iPhone iOS 4.3.4 and 5.0.1 iPhone 4 and 4S

6. FINDING THE ROOT CAUSE
We learn from §4.2 that the main reason for redundant transfers

is the problematic caching logic. We verify this by performing
comprehensive caching tests for state-of-art HTTP libraries and
browsers of Android and iOS.

Previously, professional developers also spent efforts investigat-
ing HTTP cache implementation issues leading to poor perfor-
mance, focusing on mobile browsers [5, 7, 8, 6, 9]. Our tests go
beyond them in two aspects. (i) Our tests are much more complete,
covering all important aspects of caching implementation. To our
knowledge, only three (Test 7, 10, 11) out of the thirteen tests
described in §6.1 were performed before. (ii) Prior efforts only
investigated browsers but we further examined HTTP libraries that
are heavily used by today’s smartphone applications.

6.1 Test Methodology
We examined eight HTTP libraries listed in Table 8. To the best

of our knowledge, they cover all publicly available HTTP libraries
for Android and iOS. To test them, we wrote small applications
using these libraries as HTTP clients. We also investigated the
default browsers on Android and iPhone, using strategically gen-
erated HTML pages embedding multiple web objects to perform
tests involving multiple files (for Test 11 and 12).

We performed all tests on real handset devices: Samsung Galaxy
S with Android 2.3, Samsung Galaxy Nexus with Android 4.0.2,
iPhone 4 with iOS 4.3.4, and iPhone 4S with iOS 5.0.1. Each
handset has non-volatile storage of at least 10 GB. In each test, a
client only requested files, whose caching directives were properly
configured, from our controlled HTTP server running Apache 2.2.
We ran tcpdump on the server to monitor incoming HTTP requests
to tell whether a request we made was served by the handset cache
or by the server.

We took the following measures to further eliminate external
factors that may affect the accuracy. (i) Before launching each test,
the handset cache (if existed) was always cleared either manually
(for browsers) or by calling the corresponding APIs (for libraries).
(ii) We verified that the caching behaviors of the server in all tests
were correct by analyzing the traces collected at the server12. The
clocks of both the server and the handset were synchronized as
well. (iii) We also ran tcpdump on the handset and compared
HTTP requests and responses observed at the handset and at the
server. We found both to be identical in all tests, implying that the
cellular middleboxes did not change any caching directives. This is
further confirmed by the fact that using cellular and Wi-Fi yielded
the same testing results.

12The server was also tested by http://redbot.org, an
online tool for checking HTTP caching implementation of web
servers.

We designed 13 black-box tests to understand how caching
was implemented in the state-of-art HTTP libraries and mobile
browsers. Test 1 to Test 7 verify whether key features (e.g.,
revalidation) were supported. Failure to support any of them
may lead to redundant transfers. Test 8 to Test 13 determine
important attributes of a cache (e.g., its size) whose implications
on redundant transfers cannot be overlooked either. Note the
testing methodology is generally applicable to HTTP libraries and
browsers on any platform. We detail the tests below.

Test 1 (Basic caching). The handset requests for a small cacheable
file f . The server transfers f with a proper Expires directive.
Then the client requests for f again before it expires. If the
basic caching is supported, the second request should not incur any
network traffic.

Test 2 (Revalidation). It is similar to Test 1 except that the client
requests for f after it expires. For the second request, the client
should issue a conditional request with an If-Modified-Since
directive. Then the server will respond with an HTTP 304 indicat-
ing the file has not changed.

Test 3 (Non-caching directives). It tests whether the following
directives are correctly followed: Cache-Control:no-store,
Pragma:no-cache, and Cache-Control:no-cache. Their caching
logic is described in §2.

Test 4 (Expiration directives). It is similar to Test 1 except that the
server uses other expiration directives: (i) Cache-control:max-age,
(ii) Expires and max-age, and (iii) max-age and age. In (ii),
max-age should override Expires. In (iii), the file should always
expire if age is greater than max-age.

Test 5 (URL with query string). It is similar to Test 1 except that
the URL contains a query string (e.g., query.php?p=123).

Test 6 (Partial caching). The handset performs a byte-range request
[p1, q1] for a small cacheable file f . The server transfers the
corresponding range of f with a proper Expires directive and an
eTag. Before the response expires, the client performs another byte-
range request [p2, q2] for f . If p2 ≥ p1 and q2 ≤ q1, then we
should not observe the second request over the network.

Test 7 (Redirection). We test whether a handset caches two types
of responses: 301 Moved Permanently and 302 Found. They
are common ways of performing a permanent and a temporary
redirection, respectively. A 301 response is always cacheable
unless indicated otherwise (e.g., by Cache-Control:no-store).
A 302 response is only cacheable if indicated by a Cache-Control
or Expires header field. The testing procedure is similar to
Test 1 except that the response of the server is HTTP 301 or 302,
redirecting the request to another small file.

http://redbot.org


Test 8 (Shared or non-shared cache). We run two applications A
and B using the same library to be tested on the same phone. A
requests for a small cacheable file f . Then B requests for f again
before f expires. If the cache is shared by both applications, the
second request should not incur any network traffic. Otherwise we
will see two requests over the network. We did not find any publicly
available API that allows one to read or modify cache entries of the
default Android or iPhone browser, whose caches are thus assumed
to be non-shared.

Test 9 (Persistent or non-persistent cache). We perform a test
similar to Test 1 except that we reboot the phone after receiving
the first response. A persistent cache must survive a device reboot
(and therefore a process restart).

Test 10 (Cache entry size limit). A large file may not be cached
by a given cache implementation with a cache entry size limit. We
perform binary search for this limit by fetching cacheable files of
varying sizes from the server. For a file of size si, we perform
Test 1 after clearing the cache to see whether si is above the cache
entry size limit. Previous measurement [8] reported that HTML
pages and external web objects (e.g., JavaScript and CSS) may have
different cache entry size limits, which are measured separately.

Test 11 (Total cache size). We perform binary search for the total
cache size. To test whether it exceeds a particular value z, we clear
the cache and download n cacheable files f1, ..., fn each with a size
of z/n (smaller than the cache entry size limit inferred by Test 10).
We then request for the n files again. z exceeds the total cache size
if and only if any file is transferred over the network in the second
pass.

Test 12 (Replacement policy). We test for five cache replacement
algorithms known to be commonly implemented [35]: (i) LRU
(Least Recently Used), (ii) LFU (Least Frequently Used), (iii)
evicting the oldest cache entry, (iv) evicting the cache entry with
the nearest expiration time, and (v) evicting the cache entry of the
largest size.

To test whether the replacement policy is LRU, we first fill up
the cache using n cacheable files f1, ..., fn such that

∑n
i=1 fi <

z where z is the total cache size inferred by Test 11. Next, we
randomly generate an n-permutation p1, p2,..., pn, and then request
for fp1 , ..., fpn again. Subsequently the handset downloads a new
file fn+1 such that

∑n+1
i=1 fi > z, thus triggering a cache entry

eviction. If fp1 is evicted (based on Test 1), then we know LRU is
the replacement policy since fp1 is the least recently accessed file.
Other replacement algorithms are tested in similar ways.

Test 13 (Heuristic freshness lifetime). The HTTP server is config-
ured in a way that it puts neither Cache-Control:max-age nor
Expires in a response. Then we test whether a small file can be
cached by performing Test 1 in which the two requests are sent back
to back. If it can, we do binary search for the heuristic freshness
lifetime (§3.3.1) by varying the interval between the two requests.

6.2 Test Results
Table 9 summarizes the results (refer to Table 8 for acronyms of

the libraries and browsers). Each feature in Test 1 to Test 7 can be
fully supported (indicated by a “ ” symbol), not supported at all
(“#”) or partially supported (“H#” with the reason explained). For
each of the attribute tests (Test 8 to Test 13), a “5” symbol means
the test was not performed since the corresponding API does not
support HTTP caching. We highlight key findings as follows.

• To our surprise, among the eight HTTP libraries, four (three
for Android and one for iOS) do not support caching at all.

Smartphone apps using these libraries thus cannot gain any
benefit from caching.

• For libraries and browsers that do support caching, they
may not strictly follow RFC 2616, as detailed by footnotes
d, h, j, k in Table 9. To our knowledge, only observations
h and j were reported by previous measurements [9, 6] (for
browsers only). All such cases of non-compliance potentially
incur redundant transfers.

• The Android browser uses a small cache of 8 MB. As
described in §4.2, increasing the cache size brings non-trivial
reduction of cache misses.

• No library or browser supports partial caching, although its
impact on redundant transfers is limited (§4.1).

• We found that for all libraries that support caching, in order
to leverage the caching support, a developer still needs to
configure the library. However, developers can easily skip
that for simplicity, or they can simply be unaware of it,
therefore missing the opportunity of caching and incurring
redundant transfers.

By exposing the shortcomings of existing implementations, our
work helps encourage library and platform developers to improve
the state of the art, and helps application developers choose the
right libraries for better performance.

7. RELATED WORK
We describe related work in four categories.
Extensive research on web caching has been done since the

World Wide Web was in its nascent state. We summarize the impor-
tant topics. (i) Web server workload modeling and characterization,
focusing on the implication on caching [14, 16]. (ii) Efficient cache
replacement algorithms [17, 35]. (iii) Efficient cache validation
and invalidation techniques for strong consistency [26, 27]. Note
a validation is initiated by a client which verifies the validity of its
cached files (as used in HTTP), while an invalidation is performed
by the origin server which notifies clients which of its cached
files have been modified. (iv) Cooperative proxy caching [18, 34]
where individual proxies share their cached files with each other’s
clients. (v) Caching-friendly content representation such as delta
encoding [29].

Caching in mobile networks. Recent study [20] explored the
potential benefits of HTTP caching in 3G cellular networks by
analyzing traffic traces collected from a large 3G cellular carrier.
They found that the cache hit ratio is 33% when caching at the
Internet gateway. Another study [22] investigated the potential for
caching video content in cellular networks, indicating that 24%
of the bytes for progressive video download can be served from
a network cache located at the Internet gateway. By comparison,
our study investigates caching efficiencies from the perspective of
individual handsets.

Another recent study [33] examined three client-only solutions:
caching, prefetching, and speculative loading, using web usage data
collected from 24 iPhone users over one year. The authors focus
on improving the smartphone browsing speed instead of saving
the bandwidth. They found that 40% of resource requests can be
served by a local browser cache of 6 MB, implying the necessity of
HTTP caching. However, its effectiveness of reducing the latency
is found to be not as good as that of reducing the traffic volume,
mainly because revalidation cannot hide network RTT, which is an
important factor affecting mobile browser performance.

HTTP cache implementation on browsers. Professional de-
velopers spent efforts investigating HTTP cache implementation



Table 9: Testing results for smartphone HTTP libraries and browsers.  : fully supported #: not supported H#: partially supported
5: not applicable. Refer to Table 8 for acronyms of the libraries and browsers.

Test Name UC HUC HC WV HRC T20 NSUR ASIHR AB SB
1. Basic caching # #b #a   # H#j  H#j H#j

2. Revalidation # # #   #     
3. Non-caching # # #   #  H#d   directives
4. Expiration # # #   #     directives
5. URL with # # #   #     query string
6. Partial caching # # # # # # # # # #
7. Redirection # # # # # # H#h # H#h H#h

8. Shared or
5 5 5 Non-shared Non-shared 5 Shared Shared Non-shared Non-sharednon-shared cache by defaulte

9. Persistent or non-
5 5 5 Persistent Persistent 5 Hybridl Persistent Persistent Persistentpersistent cache

10. Cache entry
5 5 5 2 MB No limit 5

NP: 50 KB No limit / 2 MB / 250 KBg /
size limit P: 2 MBl 512 KBi 4 MBi 4 MBi

11. Total cache size 5 5 5
Storage Configurablec 5

NP: 1 MB Storage 8 MB 100 MB
Capacity P: 40 MBf Capacity

12. Replacement
5 5 5 LRU LRU 5 LRU LRU LRU LRUpolicy

13. Heuristic
5 5 5 17.5 hrs 30 mins 5 48 hrs 0k 48 hrs 48 hrsfresh lifetime

a Including subclasses AbstractHttpClient, AndroidHttpClient, and DefaultHttpClient. None supports basic caching.
b The class provides caching interfaces through the abstract classes ResponseCache, CacheRequest, and CacheResponse.

But developers need to implement them by themselves.
c The cache size must be specified by developers.
d The class does not cache responses with Pragma:no-cache or Cache-Control:no-cache.
e Developers can make it non-shared by specifying a private cache storage path.
f The default sizes are 1 MB for the non-persistent cache and 40 MB for the persistent cache. But they are also configurable by developers.
g Safari on iOS 5 has a larger cache entry size limit of 2 MB for an HTML page.
h They do not cache a cacheable HTTP 302 response.
i The first and the second numbers are the cache entry size limits for an HTML page and an external web object (e.g., JavaScript), respectively.
j When loading the same URL back-to-back, the second load is treated as a reload without using a cached copy or issuing a conditional request.
k Revalidation is always performed when neither Cache-Control:max-age nor Expires exists in a response.
l Both a persistent and a non-persistent cache are used. Given a file whose size is s, it is stored in the non-persistent cache if s <50KB, or stored

in the persistent cache if 50KB≤ s <2 MB, or not stored if s ≥ 2MB.

issues leading to poor performance, focusing on mobile browsers.
The following measurement studies were reported on various tech-
nical blogs. Early measurement [5] in 2008 shows that the iPhone
3G browser has a non-persistent cache with an entry size limit of 25
KB (for HTML files) and a total size of 500 KB, implying potential
performance issue for large web pages. The experiments were
revisited in 2010 [7], and larger cache sizes of iOS 4 on iPhone 4
and Android 2.1 were observed. Similar tests of caching sizes were
performed in [11]. Blog entry [8] further pinpoints that for iPhone
and Android browsers, the cache entry size limit differs depending
on the file type (we considered this in our tests). Blog entry [6] re-
vealed an implementation bug of Safari on iOS 4 shown in footnote
j in Table 9. We confirmed this and found this problem also exists
in the Android 2.3 browser and the NSURLRequest library. Blog
entry [9] discovered that most desktop and mobile browsers do
not cache HTTP redirections properly. Our caching tests cover all
aforementioned aspects, and are much more complete as described
at the beginning of §6.

Data compression. Besides caching, another orthogonal ap-
proach for redundancy elimination is data compression, which can
be performed at each single object (e.g., gzip [10]), across multiple
objects (e.g., shared dictionary compression over HTTP [15]), or
for packet streams (e.g., MODP [28]). Compression can be jointly
applied with caching to further save the network bandwidth.

8. DISCUSSION AND CONCLUSION
Web caching in mobile networks is critical due to the unprece-

dented cellular traffic growth that far exceeds the deployment
of cellular infrastructures. Caching on handsets is particularly
important as it eliminates all network-related overheads. We have
performed the first network-wide study of the redundant transfers
caused by inefficient web caching on handsets. We found that
redundant transfers account for 17% and 20% of the HTTP traffic,
for the two large datasets, respectively. Further analysis on the
UMICH trace suggests that redundant transfers are responsible
for 17% of the bytes, 6% of the signaling load, 7% of the radio
energy consumption, and 9% of the radio resource utilization of
all cellular data traffic. Most of the redundancy can be eliminated
by making the caching logic fully support and strictly follow the
protocol specification, and making developers fully utilize the
caching support provided by the HTTP libraries.

We plan to pursue three potential directions for further optimiz-
ing web caching for mobile networks.

The offline application cache is a new feature in HTML5,
the latest HTML standard [3]. It differs from HTTP caching in
two ways. (i) Caching information of all objects embedded in an
HTML page is specified in a small cache manifest file associated
with the HTML page. (ii) There is no explicit expiration, which
is instead indicated by a new version of the manifest file that
is always downloaded whenever the HTML page is fetched over



the network. Although the usage of HTML5 caching is very
unpopular in our datasets (only one app in the UMICH trace used
it), analysts envision it will eventually be widely used as almost
all smartphones are expected to support HTML5 by 2013 [2]. We
expect strategically employing this coarse-grained caching mecha-
nism with the traditional per-file-based HTTP caching can achieve
more reduction of revalidation traffic causing non-trivial resource
consumption despite their small sizes [33].

Optimizing caching parameter settings based on the file se-
mantics is not addressed in this paper, as described in §3.1. How-
ever we do observe from our datasets examples where caching
parameter settings are obviously too conservative. For example, in
the UMICH trace, for the built-in weather app of Motorola Atrix,
95% of its bytes are marked by server as non-storable. We are
conducting a more in-depth investigation on optimizing caching
parameter configurations.

Previous caching proposals such as delta encoding [29] and
piggyback cache validation [26] may provide additional benefits
in cellular networks. For example, batching multiple validation
requests into a single message [26] potentially reduces the resource
overhead as otherwise each individual validation request may incur
a separate tail. We plan to revisit both studies in our future work.
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