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ABSTRACT
Mobile devices have less computational power and poorer Internet
connections than other computers. Computation offload, in which
some portions of an application are migrated to a server, has been
proposed as one way to remedy this deficiency. Yet, partition-based
offload is challenging because it requires applications to accurately
predict whether mobile or remote computation will be faster, and it
requires that the computation be large enough to overcome the cost
of shipping state to and from the server. Further, offload does not
currently benefit network-intensive applications.

In this paper, we introduce Tango, a new method for using a
remote server to accelerate mobile applications. Tango replicates
the application and executes it on both the client and the server.
Since either the client or the server execution may be faster during
different phases of the application, Tango allows either replica
to lead the execution. Tango attempts to reduces user-perceived
application latency by predicting which replica will be faster and
allowing it to lead execution and display output, leveraging the
better network and computation resources of the server when the
application can benefit from it. It uses techniques inspired by deter-
ministic replay to keep the two replicas in sync, and it uses flip-flop
replication to allow leadership to float between replicas. Tango
currently works for several unmodified Android applications. In
our results, two computation-heavy applications obtain up to 2–
3x speedup, and five network applications obtain from 0 to 2.6x
speedup.

1. INTRODUCTION
Mobile devices have less computational power and poorer Inter-

net connections than desktop and server computers. Size, power,
and wireless networking constraints make it likely that this rela-
tionship will continue for the foreseeable future.

One way to increase the apparent computational power of a
mobile device is to partition computation and offload some to a
remote server [1, 6, 7, 13, 16]. However, offloading is not a
panacea. Finding the optimal partition can be difficult, and the right
partitioning strategy may change with environmental conditions
such as network latency. Using a suboptimal partitioning strategy
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may increase network traffic and lower performance, and switching
between local and offloaded computation may incur significant
overhead due to the need to transfer state (e.g., all inputs and
outputs of the offloaded computation) between computers.

One way to mitigate poor wireless network quality (e.g., high
latency) is to reduce the number of network round-trips required
to complete a user action. However, multiple network round-trips
usually arise from data dependencies between consecutive requests
to remote services. Costly reengineering of the application and/or
service may be necessary to either eliminate such dependencies or
hoist them into the cloud service.

The fundamental problem is that the right place to run a pro-
gram depends on many factors. For example, code that interacts
frequently with the user will often run best on the mobile device,
while code that performs heavy computation or communicates
frequently with other computers will often run best on a cloud
server. Dynamically varying resource constraints, such as network
quality and pre-existing load on the remote server, play a large role
in determining where best to run code; for example, if the network
is congested, it may be better to run more computation on a slower
mobile device to avoid waiting for data to arrive at a remote server.

In this paper, we propose an alternative approach for improving
user-perceived performance on mobile devices. Our approach is
based on replication rather than partitioning. Instead of predicting
which parts of the code should run on the mobile device and which
parts should run in the cloud, our system, called Tango, runs the
code on both devices and attempts to achieve the user-perceived
performance of the faster replica.

Tango uses five main techniques to achieve this goal. First,
Tango allows either replica to send output to the user. This is
the fundamental property that reduces user-perceived latency: to
the user, a Tango application will ideally appear to be running the
faster replica—whichever replica that happens to be at the moment.
For example, output from the remote server can be displayed on
the mobile screen, even before the mobile computation reaches the
point in its execution where the output is produced.

Second, Tango uses deterministic replay to ensure the replicas
perform the same computation and (importantly) produce the same
output [3]. This guarantee is what lets Tango safely use the
output of the first replica: the trailing replica will always produce
the same result, so it does not matter which replica’s output is
externalized. Deterministic replay typically designates one replica
as the leader. The leader logs all non-deterministic events (e.g.,
network input, user input, and thread scheduling). The other replica
is the follower—it supplies non-deterministic results from the log
rather than re-executing such operations. Since the vast majority of
operations performed by an application are deterministic, logging



and replaying a (relatively) small amount of information ensures
replica equivalency.

Third, in contrast to traditional deterministic replay, Tango shares
the role of logging non-deterministic inputs from external sources
between computers. Tango also shares the role of externalizing
outputs from the replicated computation. For example, in the
domain of mobile computing, some input sources are inherently
tied to the mobile device (e.g., user input), while others are best
tied to a remote server (e.g., network input, since the remote server
usually has a better connection). Tango splits roles according to the
type of I/O. The mobile device logs user input and sensor data, and
it externalizes screen output. The remote server logs network input
and externalizes network output.

Fourth, Tango replicates some I/O sources to reduce the amount
of non-determinism that needs to be logged and to improve perfor-
mance. Tango replicates data storage functionality such as the file
system and databases. It also replicates substantial portions of the
user interface stack.

Fifth, Tango allows either replica to log internal sources of
non-determinism, which include thread scheduling, time queries,
and asynchronous event scheduling. Unfortunately, prior uses of
deterministic replay forced one computer (the follower) to always
lag behind the other (the leader) to log such events. This a-
priori designation limits performance in instances where the leader
replica runs slower than the follower. Thus, Tango allows the role
of leader to float between the two replicas: a technique we call flip-
flop replication. When Tango predicts that the follower would be
the faster replica, it flips the leader and follower roles. The role of
leader may change many times during the execution of an applica-
tion, e.g., due to alternation between periods of user interaction and
periods of computation and/or network communication.

The Tango approach has many benefits. First, Tango achieves
interactive performance that is very close to a system that always
chooses the fastest location for execution. It does so without
needing to predict resource availability, profile applications, or pre-
dict user behavior. Second, Tango supports low-overhead control
transfer. In contrast to offloading, it does not need to ship all data
used in offloaded computations because such data is automatically
produced by the remote replica. This is particularly important
because the amount of state reachable by offloaded computation
can often be quite large. Third, Tango can provide fault tolerance
by running multiple replicas. Importantly, by persisting its deter-
ministic log within the cloud, Tango allows remote components to
safely communicate over the network, so it hides the latency of
multiple round trips over high-latency mobile networks. Finally,
Tango can achieve these properties without modifying applications
or profiling their executions. In practice, however, our prototype
does not fully support the complexity of the Android platform, as
discussed in Section 5, and this limits the set of applications that
can be run with Tango at present. In addition, some applications
may not be able to benefit from Tango due to more fundamental
design limitations discussed in Section 8.

We show results from seven applications running Tango. Two
computation-heavy applications obtain up to 2–3x speedup, and
five network applications obtain from 0 to 2.6x speedup.

2. ARCHITECTURAL OVERVIEW
Tango targets interactive applications that run in the Dalvik VM

on the Android platform (this includes the vast majority of Android
applications). Tango harnesses a trusted remote server to accelerate
an application running on a mobile Android device. The server
could be managed, for example, by a trusted cloud service provider
and be located in a data center.

Tango splits an application into a replicated portion and a non-
replicated portion. The entirety of the replicated portion runs on
both the mobile computer and remote server. In contrast, different
components of the non-replicated portion run on either the mobile
computer or the remote server. The high-level view of Tango’s
architecture is depicted in Figures 1 and 2. Each of four high level
components can be thought of us as existing in their own address
space; communicating over unidirectional channels shown by the
arrows. In each diagram the left two components exist on the
server while the right two exist on the client. The two diagrams
demonstrate how communication patterns change when the leader
is switched. Differences are highlighted as dotted lines.

2.1 Replicated Portion
The bulk of the replicated portion consists of the application

code running in the Dalvik VM. The entire Dalvik execution of
the application within the VM is replicated; Tango deterministic
co-execution guarantees that both replicas execute the exact same
Dalvik instructions on the same data. Since these instructions are
deterministic, they produce the same result.

Our choice of enforcing determinism at the level of the Dalvik
VM was driven by the desire to be processor-agnostic. The diver-
sity in mobile phone and server hardware means that different plat-
forms run a diverse set of processors with different ISAs (e.g., an
x86 server and an ARM phone). It would be exceedingly difficult
to guarantee determinism for binaries across ISAs (e.g., through
deterministic binary-to-binary translation). We could emulate a
different architecture on the server [21] but only at a significant
performance cost. However, by implementing determinism in a
VM such as Dalvik, we can simply guarantee determinism at the
level of the Dalvik virtual ISA; this is sufficient for deterministic
execution as long as the VM on each platform correctly implements
the language ISA specification.

A second advantage of replicating at the level of the Dalvik
VM is flexibility: a user can choose to run some applications with
Tango and some without Tango. Since each application has its own
instance of the Dalvik VM, we can replicate only the VMs for the
chosen applications. The required isolation of application data in
Android also enables this design choice.

In addition to the Dalvik VM, Tango also replicates many of the
native methods that are invoked by the Dalvik VM. First, many
native methods in standard libraries are deterministic and have no
external side effects. We have identified and flagged many such
methods, such as Java’s math, compression, and locale implemen-
tations. Each Tango replica simply executes such flagged methods
as though it were part of the Dalvik VM itself. Second, Dalvik
applications have frequent interactions with the UI stack; these
interactions are low-level and much more frequent than displaying
user output or receiving user input. Tango therefore replicates the
UI stack on the server; it simply omits any externalization of data to
an I/O device. Third, storage (file system and database) interactions
are very deterministic, so Tango replicates the storage subsystem.

We note, however, that our original decision assumed that ap-
plications are mostly composed of managed code, and native code
execution would be a rare exception. As we discuss in Section 5,
this assumption appears to be growing less true over time. There-
fore, future systems may wish to revisit this decision and consider
alternative replication strategies.
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Figure 1: Tango’s architecture: client is the leader. (Note
that Client Replica externalizes the UI.)
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Figure 2: Tango’s architecture: server is the leader. (Note
that Server Replica externalizes the UI.)

2.2 Non-Replicated Portion
Some components of the system are nondeterministic (e.g., those

that receive input from the user). These components cannot be
executed independently on both replicas, lest the results differ
and the replicas’ executions diverge. Instead, Tango executes
these methods only once, on behalf of the leading replica that
reaches the native method first. Tango logs the result (return
code and any modified Dalvik state). When the following replica
arrives at the native method, Tango does not execute the method—
instead, it replicates the effects on the Dalvik state and returns the
same result. Figures 1 and 2 show the separation between these
non replicated components (the darker boxes) and the application
replicas, depending on which endpoint is leading.

Many of these non-replicated methods perform I/O. Such meth-
ods are sources of external nondeterminism. Data received from
the user, the network, inter-process communication (IPC), sensors,
and other sources must be logged and replayed so that each replica
receives the same inputs. We observe that many of these data
sources have natural affinity with one particular replica, and we
pin each to its natural replica. For example, user input, IPC, and
sensor data must come from the mobile client. In contrast, the cloud
server almost always has a better network connection (e.g., lower
latency and higher bandwidth) than the mobile device, so network
communication should be done on the server. This is why network
state is kept on the server while UI state and sensors are tied to the
client in Figures 1 and 2.

Tango partitions execution so that these pinned methods run in
a separate thread of control, called the native thread. Because they
are deterministic, both replicas will execute the same methods with
the same data in the same order. To call such a method, each replica
sends a message to the native thread; for the replica on the local
computer, this is a memory operation, but for the other replica, this
is a network message. The native thread executes the method and
sends the results to both replicas, as shown in Figures 1 and 2. The
trailing replica may not have reached this point in its execution, so
it logs the result until it is needed. Note that the follower need not
send a request to the native thread.

There exists a final class of nondeterminism that is not inherently
tied to any computer, which we call internal nondeterminism. This
includes thread scheduling decisions, the timing of the delivery of
asynchronous events, time queries, and entropy queries (e.g. read-
ing /dev/random). Because Dalvik thread scheduling decisions
are frequent, Tango implements a deterministic thread scheduler

so that each replica independently makes the same scheduling
choices—this avoids the need to communicate such choices be-
tween replicas. For asynchronous events and time queries, a
single replica, called the leader, is responsible for executing such
operations and sending the result to the other replica, called the
follower. For example, in Figure 1, the client is the leader and
thus handles the internal non-determinism. The follower generates
the same asynchronous events at the same point in its execution
and supplies the same time values to ensure replica equivalence.
Because asynchronous events can be scheduled at any point in
execution, the follower is prevented from surpassing the leader.

Tango implements a mechanism we call flip-flop replication
to allow leadership to switch between replicas. Using a set of
simple heuristics, this mechanism attempts to have the replica that
can execute faster be the leader at any moment. Since different
computers have different strengths, it is common for leadership to
switch back and forth between computers; for instance, the mobile
phone typically leads during periods of user interaction, and the
server typically leads during compute-intensive periods or periods
with network communication. The differences in Figures 1 and 2
illustrate that when the server is the leader, it can externalize the
UI state on behalf of the client. In contrast, when the client is the
leader, only the client will generate UI output.

3. EXAMPLE SCENARIO
In this section, we illustrate how Tango works by describing how

it would accelerate an example application.
The scenario begins with the user interacting intensively with the

application user interface. Events such as button and screen presses
are broadcast to both replicas, but the client replica receives them
first because communication with the server replica is subject to a
network round trip. Thus, the client replica is the leader and decides
when these events are scheduled into the application execution. The
application may execute many synchronous native methods that
query UI state; the leading client replica receives a quick response
because of its co-location with the UI.

In a standard thin client solution, the server replica would lag far
behind during this stage since it would initiate many synchronous
UI requests and each would be subject to a full round-trip delay
over a high-latency mobile network. In Tango, however, the UI
events, the asynchronous scheduling decisions, and the result of
synchronous native methods are all pushed to the server before the
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Figure 3: Compute-intensive phase: comparing Tango’s
speedup from faster server execution with normal execution.

server asks for the results. Thus, all the information the server will
need for its execution is sent in pipeline fashion, before the server
even asks for the data, and the server replica lags only a one-way
network delay behind the client replica at the end of this phase.

The application next enters a compute-intensive phase of ex-
ecution triggered by the user’s input, as illustrated in Figure 3.
Since the server has a faster processor than the client, the server
replica quickly catches up and Tango switches leadership to the
server. Note that because the server replica has followed the same
execution as the client, it has the same state as the client replica and
no state needs to be sent during the leader switch.

During the compute-intensive phase of execution, the server
replica calls UI methods that send output directly to the client native
thread. The client displays this output even though the local replica
on the mobile computer is lagging behind the server because it is
still working through the computation that was just externalized by
the client native thread. This allows the user to experience the faster
responsiveness of the server replica during this phase.

After receiving the output, the user spends some time thinking
about his/her response to this output. While the user is thinking,
the client replica catches up to the current state of the server. When
the user interacts with the UI, the client again becomes the leader.
In the event that the client does not have time to catch up before
the next user interaction, the server will continue to operate as
leader until the client does catch up. During this time Tango will be
operating like a thin client, with all user interactions being routed
through the server.

The next phase of the application involves frequent network
communication with an external computer, as shown in Figure 4.
The network operations are best done on the server, since it has
a lower latency connection to the network. The server therefore
assumes leadership.

The network communication involves several rounds of syn-
chronous message exchanges with the external computer. Each
round involves sending a message to the external computer, waiting
for its response, then computing the next step in the message
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Figure 4: Network-intensive phase: comparing Tango’s
speedup from faster network response times from the server
replica with a normal interaction with a Web server.

exchange (e.g., an SSL handshake followed by several database
queries with data dependencies). In an unmodified client, this phase
is slow since it involves many round trips over the high-latency
wireless network. However, the server replica interacts with the
external computer much faster because it runs in a data center
and has an excellent Internet connection. In a mirror image of
the first phase, network input, asynchronous scheduling decisions
from the leading server replica, and responses to network methods
are all sent to the client in pipeline fashion. Even with a slower
processor, the client remains only a one-way network delay behind
the server. Although the client takes longer to perform the small
amount of computation in this phase, it catches up during network
communication. The server waits for the remote computer to
respond to each message, while the slightly-lagging client replica
already has the response in its log. Thus, either the server or the
client replica can quickly display output at the end of this phase.

This multi-phase execution may repeat indefinitely. For exam-
ple, the application may next interact heavily with the user, and so
on. In each phase, Tango allows external components (i.e., the user
and other computers) to experience the faster responsiveness of
the replica that executes most quickly during that phase, while the
slower replica can catch up to the faster replica during idle periods
(e.g., when the application waits for the user and other computers).
These two phases, compute-intensive and network-intensive, can
be combined to get further benefits from Tango.

This scenario helps identify the specific instances in which
we expect Tango to show the most benefit. First, to benefit
from use of a remote server, the application should include at
least one computation-heavy phase or network phase with multiple
communication round-trips. Second, for Tango to outperform
a thin-client solution, the application should have a phase that
interacts with the user or other I/O on the client. Finally, if the



application has compute-heavy phases, there should also be phases
with user think time or I/O during which the client computation can
catch up with the server. We believe that many mobile applications
share these exact characteristics, in other words they combine user
interaction with computation and/or network communication.

4. IMPLEMENTATION
To build our prototype, we modified the Dalvik Virtual Machine

used in the Android operating system. Our modifications are built
on top of version 10.1 of the CyanogenMod open source project [8]
(based on Android’s Jellybean branch).

Conceptually, an application running within the Dalvik VM can
be thought of as consisting of two components: the Java state
managed by the Dalvik VM and the native state managed by
native code external to the Dalvik VM. The Dalvik VM’s behavior
is mostly deterministic, while interactions with many sources of
nondeterminism such as user input, the network, the file system,
and device sensors go through the native code. Therefore, it is most
natural to deterministically replicate the Dalvik code, but not (by
default) the native code.

4.1 Thread Scheduling
In order to make the behavior of the Dalvik VM fully de-

terministic, each replica must make the same thread scheduling
decisions. Potentially, Tango could require the leader to record all
thread scheduling decisions and send them to the follower, which
would then replay those decisions. However, that strategy would
add considerable network traffic to communicate those decisions.
Instead, Tango uses a deterministic thread scheduling algorithm so
that each replica independently makes the same decisions.

Tango allows a single managed thread to execute at a time. A
thread is managed any time it is directly interacting with Dalvik
VM state. As will be discussed in the next section, a thread
interacting with native state can be unmanaged and can execute
concurrently with a managed thread or other unmanaged threads.

Tango performs deterministic round-robin scheduling among the
managed threads. The pre-existing Dalvik VM garbage collection
mechanism intercepts all backwards jumps, method invocations,
and exceptions raised—an executing Java thread must occasionally
execute some of these GC points in order to continue to run.
If a thread executes a pre-defined number of GC points without
blocking, the Tango deterministic scheduler preempts it and runs
the next runnable managed thread in the round-robin queue.

The Tango scheduler also provides deterministic implementa-
tions of synchronization primitives such as locks and condition
variables. For instance, a thread requesting a lock simply checks
if the lock is already owned. If so, it adds itself to a wait list for
the lock and yields execution to the next runnable managed thread.
Otherwise, it acquires the lock and continues executing.

4.2 Native Methods
A Java thread invokes native methods (which are usually written

in C/C++) by using the Java Native Interface (JNI). Native methods
do not interact directly with Dalvik VM state; instead, they use
the JNI to do things like create objects, invoke Java methods, and
access/modify object data. Tango records which calls are made
by native code and what parameters are provided, so that it can
faithfully replicate interactions between the Dalvik VM and the
native code on both replicas. Since Tango records and determin-
istically reproduces all interactions between native methods and
Dalvik state, it is able to run a native thread concurrently with
another managed thread without leading to replica divergence (The

reason it cannot run two managed threads concurrently is that it
does not observe interactions via shared memory).

Thus, when a Java thread invokes a native method, Tango’s de-
fault behavior is to move it from managed to unmanaged execution.
This process requires no logging; the thread simply allows the next
managed thread to execute and continues executing itself (although
it may no longer access Dalvik VM state).

When the native method finishes, the unmanaged thread that
invoked it must transition back to managed mode. At this point,
the thread is inserted back on the round-robin scheduling queue of
the Tango scheduler. However, to prevent replica divergence, both
replicas must insert the thread at the exact same point in the exe-
cution of the managed threads. Essentially, the two replicas must
agree on when an asynchronous event, in this case the completion
of the native method, happens in relation to the execution stream of
the Dalvik VM.

Tango uses the number of context switches as a convenient
counter that denotes particular points in the application’s execu-
tion. Asynchronous events are allowed to occur only at context
switches. The leader has sole authority over determining when an
asynchronous event happens. It logs the counter value and sends
it to the follower. The follower schedules the identical event at the
same point in its execution stream, ensuring replica determinism.
Note that this implies that the follower should never execute ahead
of the leader; otherwise, it may learn too late that it should have
inserted an asynchronous event at a context switch that it has
already executed.

In summary, when a native method finishes, the leader transitions
the invoking thread from unmanaged to managed mode at the next
context switch among managed threads. The follower will execute
the same transition at the same point. Tango uses this technique
for all asynchronous events. For instance, when a Java thread
performs a timed wait on a condition variable, the replicas must
agree on when the thread wakes up. Tango casts the wakeup as an
asynchronous event to ensure determinism.

Finally, there can be long periods of execution where the leader
does not need to record any asynchronous scheduling decisions. To
allow the follower to make progress, the leader occasionally sends a
negative acknowledgment confirming that no asynchronous events
were inserted up to the current point in its execution. This allows
the follower to continue execution up to that point.

4.3 Native Method Invocation
We next describe the invocation of a generic native method;

the following section describes specific optimizations that Tango
employs for certain classes of native methods.

A generic native method is not called directly by the unmanaged
thread; instead the native method is run on the client in another
thread context, called the native thread. Thus, if the client is the
leader, its unmanaged thread performs an IPC to invoke the method.
If the server is the leader, its unmanaged thread performs a remote
procedure call.

The use of native threads allows the progress of the native code
to be decoupled from the progress of the replica. For instance,
if the server is the leader, it can update the screen via a native
method running on the client, even though the corresponding thread
on the client replica may still be working through the proceeding
computation.

In our implementation, there are actually many native threads.
Each native thread corresponds to a Java thread within the Dalvik
VM. A native thread operates by running an event loop waiting
for invocations from the corresponding Java thread on the leader
replica. After finishing, it sends its response, containing the return



values and/or modified Dalvik state, to both replicas. Tango syn-
chronizes the native threads so that they do not perform concurrent
conflicting operations.

The following replica may actually receive the response before
it reaches the point in its execution where it invokes the native
method. In this case, it logs the response and simply uses the
logged values rather than invoking the method again. If the re-
sponse has not yet arrived by the time it reaches the method
invocation, the unmanaged thread on the follower blocks until it
receives the response.

4.3.1 Native Method Annotations
Handling every native method in a totally generic way is im-

practical given the overhead of the generic approach and the large
number of native methods called during an application’s execution.
Fortunately, there are several optimizations we can make for many
native methods that have known behavior. We have annotated the
most commonly used methods in the Android runtime to identify
which optimizations can be used.

The possible annotations are as follows:

• Deterministic: the native method always produces the same
results given the same inputs and has no external side effects.
Such a method may be natively deterministic, or we may
have added sufficient logging and replay of logged values to
make it deterministic. Each replica executes a deterministic
method locally; there is no divergence because both execu-
tions produce the same result.

• Sync: a method with the deterministic annotation that is
also guaranteed never to block. For such methods, the
calling Dalvik thread remains in managed mode rather than
switching to unmanaged mode. This avoids the overhead
of scheduling an asynchronous event to transition back to
managed mode.

• Inlineable: a method with the sync annotation that is also
guaranteed to be of short duration and which can run in
any thread context. Calls to this method may be performed
directly on the invoking thread within the replica as a per-
formance optimization. Section 4.3.3 has additional details
about these methods.

• Ideal: an inlineable method that also relies on no state from
other native methods and does not externalize output. For
Tango’s purposes, these methods are considered part of the
Dalvik VM itself. For example, java.lang.Math.log() is ideal.

4.3.2 Pointer Derandomization
Many methods that we would like to annotate as deterministic

are not actually deterministic from Tango’s perspective because
they write a pointer to some native resource (as an int or long) into
the Dalvik VM’s state. If both replicas run such a method locally,
then they would write different values to the VM state, leading
to divergence. To address this issue, Tango implements pointer
aliases. Pointer aliases map the native pointers to a deterministic
index in a table. The alias can then be stored in the Dalvik VM
without leading to state divergence. When the resource is accessed,
it must be dealiased by the native code.

To implement this correctly, any thread that attempts to create a
pointer alias should operate independently and draw from a differ-
ent set of aliases. Otherwise it would be necessary to communicate
the order in which the aliases were created. Tango accomplishes
this by using the high bits of the alias to represent the thread context
that created it and the low bits to represent the index into a pointer
alias table for that context.

4.3.3 Inlining
The primary overhead when invoking native methods with Tango

is that all data must be communicated between the Java thread and
the corresponding native thread. Moving this data and switching
thread contexts is substantially more expensive than simply invok-
ing the native method directly on the Java thread. The Inlineable
annotation provides a hint that a method can be run in the context
of the calling Java thread to avoid this overhead.

However inlining works against one of the goals of Tango;
namely, that the native state should be able to progress beyond the
replica state. When a method is inlined, it gets its inputs from the
calling replica, which prevents the desired decoupling. Therefore,
a method is only inlined by the leading replica.

Additionally, the decision to inline a method cannot easily be
undone. If a method was inlined and then did not return quickly,
it could keep the replica and native state coupled for an extended
period of time. It is for this reason that we use the inlineable
annotation only for short-lived methods.

Finally, allowing a method to be inlined means that it may
be executed in different thread contexts (the Java thread or the
corresponding native thread). Some native methods make use of
thread-local storage or are otherwise sensitive to the thread context,
and they will not function correctly when inlined. Therefore, a
native method must be agnostic to its executing thread in order to
be marked inlineable.

4.4 External Nondeterminism
External nondeterminism refers to nondeterminism that has its

source outside of the Dalvik VM and can be generated by only one
device. Examples include user input, interprocess communication,
network communication, and querying device sensors. Most of
these sources of nondeterminism must be provided by the client
device. However, some sources, like network communication, are
better provided by the replay server.

4.4.1 External Inputs
The client and server run proxy threads that receive input from

external sources such as the user interface and network. When
such input is received, the proxy thread pushes the data to both
the client and server replicas. This avoids the need for the leader
to ask for input data when the data is not received by the computer
that is currently leading (for example, network data when the client
is leading).

Although both replicas receive the same data, the leader decides
when the data arrives within the replicated execution stream. The
arrival of external data is an asynchronous event that is scheduled
using the methods described in Section 4.2.

Next, we describe how Tango handles each source of external
nondeterminism.

4.4.2 Network Communication
One of the main ways that Tango improves user-perceived per-

formance is by moving network communication to the server. Data
received from the network is pushed to both replicas as soon as it
arrives. The leader decides when the data arrives in the execution
stream. This means that it decides the number of bytes returned
by a read socket call (though the content of those bytes is pushed
to both replicas). If the following replica has not yet received the
data, it blocks until it arrives and delivers the specified amount of
bytes. The leader also decides the timing and results of poll and
select.



4.4.3 User Interface
User input is handled similarly to network input, except that it is

the client that receives and broadcasts the input to both replicas.
User output is more complicated because Java threads invoke

many native methods to perform even the simplest UI output op-
erations. We originally found these interactions to be a significant
source of performance overhead. However, we observed that al-
most the entirety of the Android UI stack is in fact deterministic, or
can be made to behave deterministically with minor modifications
including the use of pointer aliases described in Section 4.3.2.
Therefore, Tango replicates the UI stack and runs separate copies
on the client and server.

When the server is the leader, it broadcasts invocations of native
methods in the UI stack to both of the replicated stacks. The
server stack does not update the screen, but it provides immediate
responses to the server replica to each of the numerous method
invocations without intervening round-trip network delays. This
lets the server execute quickly and continue to generate UI updates.
Critically, the server knows what information the client user inter-
face stack will need because it has its own stack requesting the same
data. This allows all of the needed data to be sent to the client in
pipelined fashion.

4.4.4 File System
Tango replicates portions of the client file system on the server.

A significant percentage of the file system on Android phones is
normally mounted as read only; this portion is simply replicated on
the server.

Additionally, the Android file system implements strong par-
titioning separating different applications. Tango replicates the
application-specific portion of the file system by having each replica
update its local copy. Since each replica deterministically performs
the same operations and the file system is itself deterministic, this
ensures that the state of the file system remains consistent.

The remaining portion of the file system (e.g., the SD card) can
be updated by many applications, some of which may run under
Tango and some of which may not. Therefore, reads and writes to
these files are not deterministic and instead must be performed by
a native thread running only on the client.

This strategy makes all file system operations deterministic.
Most operations require no extra communication, since they are
performed deterministically on both the client and server. For
instance, a newly installed application will start with the initial
application-specific file system portion on both the client and server.
Since the same file system operations are performed in both loca-
tions, the application-specific portion remains in sync throughout
multiple executions of the application. Our implementation also
provides deterministic access to Dalvik’s SQLite interface, which
is the standard database implementation on Android.

4.4.5 Time
Android applications frequently query the time. In Tango, the

leader produces the timestamp and the follower uses the same
value in response to the time query. During a leader switch, the
previous leader sends the new leader its current timer values. The
new leader adjusts time values that it subsequently returns to the
application by an appropriate delta. To reduce the amount of data
sent from the leader to the follower, we could potentially adopt a
semi-deterministic clock, such as the one used in Arnold [9].

4.5 Leader Switching
Switching leadership is implemented by having the current leader

send a message to the follower requesting a switch. This message

includes the point where the current leader is in the execution of the
program, and the current leader pauses its execution at this point
until it receives a reply. If the follower accepts leadership, it will
act as leader once it reaches the designated point in the program’s
execution. If the follower rejects leadership, it sends a rejection
message to the current leader; that replica resumes execution and
acts as leader. Thus, for any given point in the execution of the
program, there is exactly one leader. A leadership switch incurs at
least a one-way message delay in program execution (and possibly
more if the follower has not fully caught up when it receives the
message). A rejected leadership switch incurs a RTT delay.

The last challenge of Tango is then to determine when to switch
leaders, using the above mechanism. Intuitively, the server should
become the leader when there is a significant amount of com-
putation to perform, or when there is network communication.
Similarly, we want the client to lead when there is user interaction
or other activities that are pinned to the client.

Because switching leadership is cheap, it always makes sense
to switch when there is a dependency that will require an RTT to
satisfy by the current leader. Therefore, if the leader needs data
from the follower and the follower replica is not too far behind,
the leader switches leadership to the follower. This heuristic
is how switches due to UI input, network communication, and
pinned native methods are informed. In the case of network
communication, switches are triggered during a call to connect or
when data is sent. This could degrade performance only in the case
that no data is received in response to a request or when another
dependency forces leadership back to the client before a response
is received. Otherwise, this heuristic does not degrade performance
compared to normal application execution.

Deciding to switch leadership due to computation is significantly
more difficult. Tango must predict that there will be enough
computation before the next dependency pinned to the client to at
least make up for the RTT penalty incurred by switching leaders
back and forth. Tango uses a technique similar to COMET [16]
in which it tracks how much computation has been done since the
last invocation of a native method that was pinned on the client.
Currently, we switch after 200 ms of computation. Empirically,
this value seems to set a good balance between not triggering
superfluous leader switches and not forcing the client to lead for
large amounts of computation. A more sophisticated approach
would also factor in RTT and relative computation performance.

However, in all cases, a switch does not occur until Tango
believes that the execution of the follower has “caught up” to
the execution of the leader. This property is somewhat tricky to
determine in a distributed system where there can be substantial
latency between the two replicas.

To address this problem, we use a simple heuristic based on
the following replica’s lag. When the follower receives an asyn-
chronous event or negative acknowledgment, it tags the event or
negative acknowledgment with a timestamp indicating when the
event was received. When the follower reaches the corresponding
point in its execution, it compares the current time with the tagged
timestamp to determine the lag for that event. If the lag exceeds
a pre-defined threshold (500 ms), the follower transitions into a
lagging state, pushing a notification of this change to the leader.
While the follower is in this state, it rejects all leadership switches,
and (upon receipt of the notification) the leader will no longer offer
to switch, even if one of the triggering events above occurs.

To switch out of the lagging state the follower must observe an
event lag of under 100 ms. This transition causes a notification to
be pushed to the leader, and the leader may again offer to switch
leadership if a triggering event occurs.



4.6 Server faults
Tango is designed to tolerate server faults. Consider the fol-

lowing potential problem. If the remote server is the leader,
it may fail after sending several messages to remote computers.
The content of these messages may depend on non-deterministic
operations that the server has previously executed (e.g., random
number generation, thread scheduling, or data received from a
remote computer in a previous decision). The following replica on
the client does not know these non-deterministic values, so it cannot
produce the same application state that led to the messages already
seen by external computers. Thus, there is no way to continue
application execution. This scenario is why current offloading
solutions such as Maui [7] and CloneCloud [6] do not allow
methods that involve external communication to execute on the
server.

In Tango, we solve this problem by sending the log of non-
determinism to a backup server located near the remote replica,
a standard log-based, rollback-recovery technique [11]. The non-
deterministic events are sent to the backup server asynchronously
as they are recorded. Prior to externalizing any output (e.g.,
network messages and UI updates), the remote server waits for the
backup server to acknowledge the receipt of all non-deterministic
events that precede the output.

When the client detects that the server has failed, it can fetch the
logged non-deterministic events from the backup server. The client
replica simply replays these events in the same manner as if they
had come directly from the remote server. Once the client replica
is caught up to the last operation performed by the remote server, it
continues alone as a non-replicated execution. In principal, it could
also start a new remote replica and resume Tango replication.

Tango currently tolerates a single server stop fault, but it could
tolerate up to n simultaneous stop faults by persisting the log to n
backup servers. Our measurements show that the overhead of per-
sisting the log is negligible for n = 2. Note that it would be much
harder to provide this fault tolerance in a standard offload system;
one would either need to save an entire checkpoint of application
state on the backup server prior to externalizing any output, or one
would have to reproduce much of the Tango functionality to add
log-based rollback-recovery to an existing offload system.

5. LESSONS LEARNED
We learned two major lessons in the course of this project; one

was painful and the other was a pleasant surprise. We discuss both
lessons in this section.

5.1 Engineering complexities
Retrofitting an established platform like Android that was not

created with Tango’s goals in mind proved to be considerably more
challenging than we originally expected. Our expectation, outlined
in our original position paper [14], was that using the Dalvik
VM as the unit of application replication would lead to a clean
partitioning, with the vast majority of the application executing
within the replicated portion and there being only a few narrow
interfaces between the replicated VM and the non-replicated sys-
tem infrastructure. Unfortunately, as evidenced by the long time
we have worked on this idea since publishing the original position
paper, that expectation proved to be overly optimistic.

The complexity of the Android platform had two effects. First,
it greatly increased the work required to support the unmodified
applications reported in this paper. Second, even after significant
implementation effort, many applications are still unable to reap
the benefits of Tango that they probably should. Broadly speaking,
there are three common reasons that applications that could benefit

from Tango do not: implementation errors in our code, inter-
process communication, and use of extensive native libraries such
as WebKit.

Tango operates on top of the large Android code base, significant
portions of which we have retrofitted to behave deterministically
(or to which have added sufficient logging to compensate for
nondeterminism). Ensuring correctness with a small developer
team has been very challenging. Many applications that should
benefit from Tango crash due to the resulting instability.

The interface between Dalvik applications and the rest of the
Android system has proven to be broad rather than narrow. For
instance, interaction with the UI stack was so frequent that we
were forced to replicate the UI stack itself. A current source of
pain for us is that Android IPC calls are common—all applications
must communicate with the system server (itself a Dalvik VM
instance). For many of these IPC calls, nothing is returned so
Tango can faithfully replay them without logging. However, many
other calls that are inherently deterministic may return values that
are dependent on state within the system server. A potential
solution to this problem is to replay the system server alongside the
application. However, this is a substantial engineering challenge
because the system server makes use of many native methods not
available within normal applications.

Most Android applications execute a large number of native
methods, and the percentage of such methods appears to be grow-
ing over time. This is challenging for Tango because we must
identify, categorize, and possibly make deterministic each such
method. Additionally, some applications make heavy use of native
libraries, notably the WebKit browser engine. While it should be
technically possible to make most elements of WebKit and similar
libraries behave deterministically, the engineering effort is again
substantial. So, Tango currently does not work effectively with
applications that use these libraries. In particular this means that
Tango does not work with Web browsers that use WebKit.

Tango is designed to work with any conformant implementation
of the Dalvik Virtual Machine. Therefore Tango should work just
as well in the presence of a JIT or within Android’s new Ahead-
of-Time compilation system, ART. However, the current prototype
does not support the JIT and was built on the traditional Dalvik vir-
tual machine. Supporting the JIT would require more engineering
effort. Switching over to ART would require a significant porting
effort.

Given these limitations, it is clear that Tango should be regarded
as a research prototype for demonstrating the potential of repli-
cation. We believe it has been successful in this regard. Were
we to start afresh, we might consider other methods of replicating
execution: for example, requiring that the ISA be the same between
client and server and enforcing determinism at the process level
inside the OS.

5.2 Benefit to network applications
Originally, we envisioned Tango solely as a way to accelerate

applications with computation-heavy phases. The pleasant surprise
during the course of this project was discovering that Tango could
also benefit applications with network-intensive phases. The key
insight is that the log of non-determinism simultaneously provides
a method to keep the client and server executions in sync and a log
for rollback-recovery that allows the server to safely externalize
network output after committing the log to another server.

Indeed, we expect that the number of network-intensive ap-
plications that could benefit from Tango currently far exceeds
the number of compute-intensive applications that could benefit.
Mobile application developers currently go to considerable effort



Benchmark Package Name Description Interaction Network RTTs

Sudoku de.georgwiese.sudokusolver Game aid, solves Sudoku puzzles
given known values

Finish solving a Sudoku grid
given a single cell. N/A

Poker com.leslie.cjpokeroddscalculator Game aid, uses Monte Carlo sim-
ulation to find odds of winning a
poker game

Compute the probability of
winning from initial poker
state.

N/A

Hoot com.hootsuite.droid.full Manages posts to/from multiple
social networks including
Twitter, Facebook, LinkedIn,
and Foursquare.

Search Twitter given a keyword
(queries api.twitter.com) 5

TapTu com.taptu.streams A social news reader that supports
Facebook, Twitter, and LinkedIn

Update Facebook feed (queries
api.facebook.com) 4

Email com.android.email A built-in email application for
Android platforms

Update Email’s inbox 4

Instagram com.instagram.android A social network application for
sharing photos and videos

Update Instagram posts 3

Pinterest com.pinterest A social network application for
creating and sharing visual book-
marks

Update Pinterest boards 2-8

Table 1: Description of applications used in macrobenchmarks.

to reduce the number of round-trips between the client and the
cloud, adding considerable development cost and complexity. With
Tango’s form of replication, this application complexity is not
necessary; the cost of multiple round-trips are automatically hidden
by execution on the server replica.

6. EVALUATION
To evaluate Tango, we ran it both against small microbench-

marks and whole applications from Google Play. The macrobench-
marks in Section 6.2 show how Tango performs on unmodified,
real-world applications, demonstrating that performance gains can
be obtained for both compute-intensive and network-intensive ap-
plications. The microbenchmarks in Section 6.3 quantify the
overhead of preemption and the overhead added to the Java Native
Interface.

6.1 Methodology
We tested Tango on a Samsung Galaxy S3 smartphone running

the Android 4.2.2 (Jellybean) operating system. To provide support
for a variety of mobile platforms we implemented Tango on top of
the CyanogenMod [8] 10.1 code base. The replay server used for
all experiments has a 3.40 GHz i5 processor (i5-3570) with 4 GB
of RAM. For repeatability of results, the mobile client and replay
server were connected via USB. Network latency was emulated
during experiments by setting netem [19] rules on the client. To
further investigate Tango in real world environments, we also
evaluated Tango’s performance when the mobile client and replay
server are connected over a campus WiFi network.

Tango does not currently support the Just-In-Time compiler. All
baseline builds of the Dalvik VM are therefore built without a JIT
for a fair comparison.

6.2 Macrobenchmarks
We used seven applications available on Google Play to evaluate

the performance benefits of Tango. Two of these applications,
Sudoku and Poker, are compute-intensive, and the other five, Hoot,
TapTu, Email, Instagram and Pinterest are network-intensive. For
each application, we configured Tango to connect its mobile client
and replay server over either USB or WiFi and selected a rep-
resentative latency-sensitive interaction to measure user-perceived

latency. Table 1 details the applications and the recorded user
interactions. For the emulated configuration, we added from 0 ms
to 500 ms of network delay to both the baseline and Tango config-
urations.

The compute-intensive applications were selected from the ap-
plications used in COMET [16]. The network-intensive applica-
tions were selected by looking for popular or mash-up applications
that contained some repeatable user interaction for testing. From
this set, due to the challenges described in Section 5.1, we dropped
applications that do not currently work with Tango.

While investigating applications suitable for measurement, we
found approximately 10 applications that function properly with
Tango but cannot currently achieve performance improvements due
to the limitations discussed in Section 5.1. These applications have
several client-pinned dependencies due to either IPC or use of We-
bKit that force leadership back to the client after a compute chunk
but before the externalization of output, or, alternatively, before a
network transaction completes. In the case of computation-based
applications, this results in an RTT performance degradation. In
the case of network applications, there is typically no degradation.
We did not evaluate one additional application, Gmail, because we
saw that it completed its network operation in a single RTT and
therefore would not benefit from Tango.

6.2.1 Compute-intensive Macrobenchmarks
For the compute-intensive benchmarks, we recorded the time

difference between the user input that triggered the interaction
and the externalization of the final screen update as their user-
perceived latency. We repeated this experiment ten times for
each configuration. Figures 5 and 6 show average latencies and
95% confidence intervals for Sudoku and Poker, respectively. For
100 ms round-trip network latency, which is the typical delay for
current LTE networks, Tango reduced user-perceived latency for
Sudoku by 0.6 seconds (50%). For Poker at 100 ms network
latency, Tango reduced the user-perceived latency by 1.9 seconds
(68%). Over WiFi, Tango decreased user-perceived latency for
Sudoku and Poker by 0.6 seconds (53%) and 1.9 seconds (68%),
respectively.

To better understand where the performance benefits are coming
from and how much further Tango could be improved, we took
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Figure 5: Sudoku performance
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Figure 6: Poker performance

a closer look at the Sudoku application. Tango took on average
485 ms when performing the Sudoku interaction with no latency.
The first 268 ms after user interaction were spent with the client
leading execution. This corresponds to approximately 68 ms of
UI interaction, followed by 200 ms of computation before the
leadership switch is triggered. After the leadership switch, the
server finishes the computation and executes the screen updates on
its local UI stack in another 100 ms. The remaining 117 ms are
spent by the client to display the screen output created by the server.
This overhead is exacerbated by CPU contention with the client
replica still performing the replicated computation. By momentar-
ily stopping the replica execution on the client this overhead can
be brought down to 45 ms. This indicates that more sophisticated
scheduling could yield further performance benefits.

6.2.2 Network-intensive Macrobenchmarks
We evaluated Hoot, TapTu, Email, Instagram and Pinterest to

investigate Tango’s performance gain in network-intensive appli-
cations. Hoot and TapTu use social network APIs to allow users
to interact with multiple sites such as Facebook and Twitter. Email
is the built-in Email application in Android systems that retrieves
email update from remote servers. Instagram is a social network
application for users to share images and videos. Pinterest allows
users to bookmark image based posts on their pin boards.

In these network applications, we focus on the user-perceived
latency for a network update by refreshing the screen, a common
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Figure 8: TapTu performance

action in many network-based mobile applications. Similar to
the computation benchmarks, we recorded the time difference
between the first user input and the final display output as the
user-perceived latency. We repeated these experiments 14 times
for each configuration (we ran more trials because of the added
variance inherent in accessing external sites). The average latencies
and 95% confidence intervals are presented in Figures 7, 8, 9, 10
and 11. The results show that Tango achieves speedup of 1.6–2.3x,
1.5–2.6x, 1.5–2.2x and 1.3–2.2x under different network latencies
for Hoot, TapTu, Email and Instagram, respectively. The user-
perceived delay for Pinterest was similar in all scenarios except that
there was a 17% improvement in user-perceived latency at 500 ms
network latency.

Compared to the compute-intensive applications, the relation-
ship between performance gains and network latency is inverted.
The user-perceived latency under different network RTT values
follows a relatively simple model of αx + βx × RTT . For
baseline and Tango, αx is approximately the same. However,
βbaseline is proportional to the number of request/response pairs in
the interaction while βTango is fixed at approximately 1, reflecting
only two leadership switches. Using a least squares linear regres-
sion, we calculate βbaseline = 5.05 for Hoot, βbaseline = 4.16
for TapTu, βbaseline = 3.87 for Email and βbaseline = 3.60
for Instagram. These numbers indicate that Hoot, TapTu, Email
and Instagram do approximately 5, 4, 4 and 3 requests in serial,
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Figure 10: Instagram performance

respectively. The same linear regression computes βTango = 1.05,
βTango = 0.85, βTango = 1.03 and βTango = 0.34 for Hoot,
TapTu, Email and Instagram, respectively. The coefficient of
determination for Hoot, TapTu, Email are over 0.94 in the baseline
case and range between 0.7 and 0.93 in the Tango case, indicating
that the linear regression model is a good fit for characterizing
their latency. Instagram and Pinterest are exceptions. Applying
the same regression on them yields coefficient of determinations
of 0.48 and 0.52, respectively. We believe that this mismatch is
due to these applications overlapping computation and network
interaction in a sophisticated manner.

We verified the regression models using tcpdump. Hoot updates
its Twitter feed by making an HTTPS query to api.facebook.com
during the first RTT. An HTTPS request from a new connection
takes one RTT to establish a TCP connection, two RTTs to com-
plete an SSL handshake, and a final RTT to request an object
over HTTPS and receive a response. In total, 5 RTTs are spent
in refreshing the Twitter feed in Hoot. Similarly, Email makes
an HTTPS request from a new connection, taking 4 RTTs. The
other applications had similar behavior. Pinterest, however, was
an outlier in that it appeared to vary the number of serial network
requests it made and it also seemed to have enough computation to
overlap with network activity so that only one round-trip was on
the critical path at low latencies.
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App. Baseline Tango Percentage
Sudoku 2.47±.18 J 2.43±.17 J -1.62%
Poker 7.14±.41 J 5.43±.22 J -23.9%
Hoot 2.77±.15 J 2.46±.21 J -11.2%
Taptu 2.14±.23 J 1.74±.21 J -18.7%
Email 1.74±.12 J 1.78±.18 J +2.30%
Instagram 2.26±.16 J 2.35±.20 J +3.98%
Pinterest 4.16±.49 J 4.06±.30 J -2.40%

Table 2: System energy consumption on the smartphone

6.2.3 Energy Consumption
We also measured the difference in energy consumption caused

by using Tango with each application. To measure energy, we
assume that a user will pause for a fixed think-time after seeing each
screen update before beginning the next iteration of the benchmark.
We used a user think time of 3 seconds for Poker and 1 second
for all other applications (in the case of Poker, this ensures that the
client catches up during the designated user think time). The energy
measurements are collected using a Monsoon Power Monitor with
WiFi used for communication and cellular data disabled on the
smartphone. Each energy measurement includes the time to finish
all computation on both the client and server, as well as the fixed
user think-time after displaying the result. Energy measurements
on each application benchmark are repeated 10 times. Table 2
shows the average values and 95% confidence intervals for the
amount of energy consumed by the smartphone for each applica-
tion.

Compared to the baseline, Tango uses less energy for most, but
not all, benchmarks. It uses 2–4% more energy for Email and
Instagram, but reduces energy usage by up to 19% for the other
network-intensive applications. For compute-intensive applica-
tions, Tango reduces energy usage by up to 24% (in Poker). There
are two factors at work. First, Tango introduces some overhead
through extra computation and communication, increasing energy
usage. However, Tango also reduces the time to display a result,
decreasing energy usage because activities take less time.

For the compute-intensive benchmarks, Tango must finish the
computation on the client after displaying the result; however, the
finish of the computation can be overlapped with user think-time
for interactive applications. In the future, we could further reduce
energy usage by shipping a checkpoint of application state from the



App. Received Data Sent Data
Sudoku 115 KB 25 KB
Poker 49 KB 25 KB
Hoot 195 KB 133 KB
TapTu 74 KB 14 KB
Email 98 KB 49 KB
Instagram 25 KB 45 KB
Pinterest 461 KB 39 KB

Table 3: Size of log being communicated during replay. Received data
refers to data being received by the client. Sent data refers to data being
sent by the client.

server to the client to avoid the need to finish the computation on
the client.

6.2.4 Log Sizes
Of course, Tango has to communicate log data between the client

and server to operate. Table 3 shows the amount of (compressed)
data being transmitted over the network between client and server
for Tango. The log sizes recorded in the table include application
initialization and three user interactions. Each run takes approx-
imately 30 seconds, putting the required average client upload
bandwidth at 3.7–35 kbps and the average client download speed at
6.7–125 kbps, which is very small compared to typical bandwidth
in modern cellular networks.

6.3 Microbenchmarks
There are two primary sources of overhead that Tango introduces

into the system; the code to implement preemptions (see Sec-
tion 4.1) and the handling of native calls made by an application.
Therefore, we measure overhead with two different benchmarks;
one tests the overhead of pure computation (no native calls) and the
other tests the overhead of a tight loop of native calls with varying
policies. In these tests, we replaced the replay server with a dummy
terminal that records all transmitted data (so leader switching is
disabled).

6.3.1 Pure Computation
We tested Tango on two pure computation applications and mea-

sured their relative overhead compared to the baseline build. The
first test, which simply calculates Fibonacci numbers recursively,
had an overhead of 8.48%. This test runs entirely in the interpreter
which should maximize the cost of preemption. The second test,
which allocated objects in a tight loop, had a lower overhead
of -2.01%. We expect this test to have a lower overhead than
the Fibonacci test because it spends more time doing allocations
and garbage collection where no overheads have been added. It
is unclear why Tango outperforms the baseline build for this
test, but the result is reproducible. The most likely cause is our
changes to the default Dalvik thread scheduler, which may favor
this benchmark.

6.3.2 Native Methods
Next we measured the performance overhead of invoking native

methods with different annotations. Table 4 shows the overhead of
making native calls with the Deterministic, Sync, Inlineable, and
Ideal annotations. The definitions of these annotations are given in
Section 4.3.1.

Each of these test scenarios calls a native method that performs
the same operation; a simple hash computation on a 10 character
string passed from Java. It is clear that executing an unannotated

Annotation Baseline Tango
Calls/ms Calls/ms Bytes/Call

None 729 9.18 2.87
Deterministic N/A 9.97 0.565
Sync N/A 13.1 ~0
Inlineable N/A 196 ~0
Ideal N/A 456 ~0

Table 4: The throughput and logging overhead during a tight loop
around a native method with various flags.

App. None Deter. Sync Inlineable Ideal Estimated
Overhead

Sudoku 20 880 1280 57271 3149 401 ms
Poker 17 935 788 26944 516 254 ms
Hoot 36 11106 3093 46001 9864 1510 ms
TapTu 31 6555 6054 22698 1662 1190 ms
Email 40 1448 3246 22011 655 474 ms
Instagram 2684 1676 851 43666 3721 684 ms
Pinterest 2638 3836 2126 189156 22642 1550 ms

Table 5: Number of different categories of native calls during
initialization and three user interactions.

native method can be very expensive, with a reduction in through-
put of nearly 80X. The Deterministic, Sync, and Inlineable tests
each show the reduction in overhead when the output of the native
method no longer needs to be logged, when no scheduling decisions
need to be logged, and when the native method can be executed
directly on the calling Java thread respectively. The most dramatic
difference is when the Inlineable flag is applied; revealing that
the overhead of invoking a native method on a native thread is
significant.

The Ideal annotation is used when the native method can be
passed a completely uninstrumented JNI function table, which
allows it to achieve the lowest overhead. The remaining overhead
comes from Tango-related code that touches all native functions
(i.e., the code that decides how to invoke a native function based on
these flags).

While these overheads are fairly high for this microbenchmark,
in practice, the number of native functions invoked during an
application’s execution is much lower. Table 5 shows how many
times native functions with different flags are called during a
sample run of three apps we used for testing. The overheads
were estimated using the data from Table 4. Each of these runs
represents about 30 seconds to a minute worth of execution, putting
the overhead in the 1–6% range.

7. RELATED WORK
Tango is the first method to deterministically replicate a com-

putation on the mobile client and a remote server to improve
performance.

Using cloud resources to improve the performance of mobile
applications is a tantalizing goal, so many prior systems have
focused on offloading computation from the mobile computer to
the server [13]. Prior systems such as Maui [7], CloneCloud [6],
Odessa [22], Comet [16], and Spectra [15] all partition function-
ality by executing a given piece of the computation on either a
mobile device or a server, but not on both. Partitioning of a
mobile application is a specific instance of partitioning distributed
applications in general [18]. Partitioning is usually subject to some
constraints related to functionality or privacy. For example, some
functionality is tied to a specific device (e.g., sensors on the mobile
device), and some state may be considered too sensitive to allow
it or data derived from it to migrate off the mobile device [4].



Partitioning of an application may take place at units of various
granularity, such as function calls or threads. None of these
partition-based offloading systems allow code that externalizes
network output to be offloaded because of the fault-tolerance issues
discussed in Section 4.6; thus, a major benefit of Tango is that it can
offload network-intensive phases that prior systems cannot.

Chroma [2] and Slingshot [24] replicate a computation on mul-
tiple servers, but they do not enforce determinism at all. Similarly,
Higgins et al. [17] replicate a simple speech recognition service
on a client and server, but rely on the service to be stateless and
deterministic. Unlike Tango, their replicas will diverge and yield
different results for more complex services.

Other systems deterministically replicate a mobile application
and execute it with additional instrumentation on the server to
debug the execution or add security checks [5, 21]. The goal of
such systems is not to improve performance; in fact, the server
replica always trails the mobile replica and so cannot offer faster
response time.

Replication has long been used to provide fault tolerance [11].
Some systems use deterministic record and replay to keep replicas
synchronized [3]. However, prior systems only switch the role
of leader on failure (because their goal is fault-tolerance, not
improving interactive performance). Tango targets a heterogeneous
environment in which different replicas have different strengths and
weaknesses. Therefore, it is often beneficial to switch the role
of leader as the application enters different phases of execution,
and Tango is designed to identify such opportunities and switch
appropriately.

Tango uses many techniques developed for deterministic record
and replay [10, 12, 23, 25] but applies them to replicate compu-
tation on multiple computers. It differs from these prior systems
in that different types of external nondeterminism are intercepted
on different computers for the same logical computation, then
broadcast to all computers. Further, some forms of nondeterminism
are mitigated by replicating additional software components such
as the file system and UI stack on multiple computers.

8. LIMITATIONS
Many of the limitations of Tango from an implementation per-

spective have been discussed in Section 5.1. The remaining limita-
tions are related to the actual design of Tango.

One of the most significant limitations of Tango is dealing with
false dependencies among threads. Suppose that an application
has a thread that does network communication and another that
is reading sensor information. The former thread would perform
better if the server is the leader, while the latter thread would
perform better if the client is the leader. With Tango, only one
endpoint can lead at any given time.

The other key limitations of Tango primarily affect computation-
heavy applications. First, Tango forces serialization of all managed
threads within an application. Modern phones usually have more
than one CPU core, meaning that applications running within
Tango cannot make use of all resources available to them. To
remedy this problem, we would need to adopt a deterministic
multicore scheduling algorithm such as Kendo [20].

Second, even when Tango correctly predicts a large amount
of upcoming computation, it is still possible to see a loss in
performance. This is because any time that the server must return
leadership to the client (e.g., due to a series of client-pinned native
methods) prior to externalizing output, then user-perceived latency
does not improve. Effectively, we have simply added an RTT to the
user perceived latency. We could potentially overcome this with
better prediction, or we could use checkpoint and restore to transfer

the server’s application state to the client. In the case of checkpoint
and restore, the amount of state transferred would have to be small
enough to make this practical.

Third, deciding when to switch leaders remains a difficult task.
This work provides a simple solution that appears to work well
in practice. However, on some applications, an oracle could do
significantly better. In the case of especially poor decisions, Tango
may even degrade user-perceived latency.

9. CONCLUSION
We have presented a system called Tango, which accelerates

mobile applications by replicating their execution on a remote
server. By displaying output to the user from the replica that is
currently leading the execution, Tango reduces the latency seen
by users. To accomplish this speedup, we developed a technique
called flip-flop replication, in which the leadership role floats to
the replica that is currently faster, with the other replica follow-
ing the execution through deterministic replay. Tango works for
unmodified applications that run on the Dalvik VM on Android
devices. We demonstrated speedups of 2–3x for two compute-
intensive applications and speedups of up to 2.6x for five network-
intensive applications.
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