
Towards an Understanding of Anti-virtualization and Anti-debugging Behavior
in Modern Malware

Xu Chen∗ Jon Andersen∗ Z. Morley Mao∗ Michael Bailey∗ Jose Nazario+
∗University of Michigan – Ann Arbor +Arbor Networks

Abstract

Many threats that plague today’s networks (e.g., phish-
ing, botnets, denial of service attacks) are enabled by a
complex ecosystem of attack programs commonly called
malware. To combat these threats, defenders of these net-
works have turned to the collection, analysis, and reverse
engineering of malware as mechanisms to understand these
programs, generate signatures, and facilitate cleanup of
infected hosts. Recently however, new malware instances
have emerged with the capability to check and often thwart
these defensive activities — essentially leaving defenders
blind to their activities. To combat this emerging threat,
we have undertaken a robust analysis of current malware
and developed a detailed taxonomy of malware defender
fingerprinting methods. We demonstrate the utility of this
taxonomy by using it to characterize the prevalence of
these avoidance methods, to generate a novel fingerprinting
method that can assist malware propagation, and to create
an effective new technique to protect production systems.

1 Introduction

Protecting end hosts from infections and break-ins re-
mains a challenging problem today given the inherent soft-
ware vulnerabilities in existing applications and commod-
ity operating systems. Exploits and vulnerabilities are the
primary means by which attackers gain unauthorized con-
trol over computer resources. Vulnerabilities are generally
specific to particular software versions and configurations.
Before attempting to compromise a system, attackers often
perform reconnaissance by fingerprinting the attack target
to discover specific artifacts or behavior of the target, pos-
sibly revealing certain properties that are useful for subse-
quent targeted infection attempts. The advantage of collect-
ing such information about the target before further mali-
cious behavior is to improve attack efficiency as well as to
avoid detection.

A related essential goal of reconnaissance is to identify
and avoid potential monitoring systems that attempt to an-
alyze malware behavior. Such undesirable targets include

honeypot-based monitoring systems [3] that collect infor-
mation about attackers’ behavior, including the very meth-
ods by which they attempt to identify these systems. In this
perpetual arms race, this information is then used to better
identify attackers in the future and to hide the evidence they
use to identify monitors. Therefore, to avoid disclosing mal-
ware behavior to defenders, stealthy attackers intentionally
avoid monitoring systems. From a defender’s perspective,
it would be best to hide or eliminate identifying information
for both production and monitoring systems to increase at-
tack difficulty. Unfortunately, such fingerprints are difficult
to eliminate completely.

Based on the above discussion, we can generalize de-
ployed computer systems into two broad categories:pro-
duction systemsactively used for real computing purposes
andmonitoring systemsmainly used to attract and analyze
attacker activities for detection purpose. The focus of our
work is analyzing and exploiting the difference of malware
execution under these two different environments. The con-
tributions of our work are:

1. We introduce a detailed taxonomy that captures essen-
tial techniques for distinguishing between production
systems and monitoring systems, which typically op-
erate in virtualized and debugger environments.

2. We characterize the prevalence of malware evasion
methods by executing 6,900 recently-captured mal-
ware samples under different environment — more
than 40% of the total malware samples reduce their
malicious behavior under virtual machines or with a
debugger attached, and they account for potentially
90% of the Internet attacks during certain periods.

3. We provide a remote network-based reconnaissance to
differentiate between virtual machines and plain ma-
chines, and even possibly between variants of virtual
machines. To the best of our knowledge, this is the
first remote network-based fingerprinting method for
detecting VMs.

4. Given the prevalence of evasive malware, we introduce
a new paradigm of protecting production systems by

1



making them appear to be monitoring systems. We im-
plemented several fingerprint imitation techniques and
evaluated our method using real malware samples.

The paper is organized as follows: after briefly survey-
ing related work in§2, we provide a taxonomy of mal-
ware evasion techniques, focusing on anti-virtualizationand
anti-debugging behavior in§3. We then describe three ap-
plications based on this taxonomy in§4, namely evasion-
informed malware characterization, remote network finger-
printing, and deterring malware by imitating fingerprints.
We discuss the implications and limitations of our work in
§5 and conclude in§6.

2 Related Work

Understanding the execution behavior of malicious pro-
grams is of critical importance. Compared to static malware
analysis [22], dynamic analysis of malware programs gives
rich information about runtime behaviors. Recent work
performs malware identification based on behavioral pat-
terns [11, 12]. For example, behavior-based clustering of
malware programs was proposed [8]. Another interesting
approach [24] is to take advantage of virtualization — ma-
nipulating memory objects during run-time to exploit mul-
tiple execution paths of malware and building a full view
of the malware behavior. Though it is known that evasive
malware does exist, to the best of our knowledge, no exist-
ing work has extensively studied the difference in malware
behavior across various execution environments.

Virtual machines can be an effective environment in
which to study activities and techniques of attackers [4,
17, 20]. For example, VMs have been used to infiltrate a
botnet to discover its internal structure [26]. Security re-
searchers also use debuggers, such as WinDbg, SoftICE,
etc., to extensively characterize malware behavior. The two
approaches are similar in the sense that they both execute
the real code, as opposed to static analysis. In reaction to
this trend, attackers have sought to fingerprint VMs and de-
buggers during runtime [9, 14, 10] by checking either OS
objects or benchmarking CPU instruction execution time to
actively avoid monitoring systems. Some malwares, such
as the IRC bot Agobot [7], actively seeks to detect the pres-
ence of VMs and then changes its behavior accordingly.

In response to these fingerprinting techniques, defend-
ers may attempt to hide VM fingerprints [23] or develop
more stealthy debuggers [29]. Despite these efforts, several
works have shown limitations on how well the presence of
a VM can be hidden. For example, legacy CPU instruction
sets may contain instructions that simply cannot be virtu-
alized [28], and the discrepancies revealed by physical re-
sources are inherently difficult to eliminate [13, 27, 28, 19]
due to the side effect of virtualization. To successfully fake

such a genuinity test, a VM would need orders of magnitude
more computing power than the hardware that it is emulat-
ing. Instead of focusing on eliminating fingerprints associ-
ated with monitoring systems, our work simplifies the prob-
lem by deterring attackers through production systems that
appear as monitoring systems, thereby contributing to de-
fenders’ ability to compete in the arms race by misleading
attackers.

3 Taxonomy of Anti-Virtualization and Anti-
debugging Techniques

In an effort to avoid potential monitoring by adversaries,
attackers often attempt to distinguish systems running on
virtual machines and in debuggers from those running on
plain machines. While a great deal of attention has been
given to specific techniques used to detect these systems,
(e.g., Redpill [5]) with few exceptions (e.g., Honeypot De-
tection [14]) the questions of how these techniques relate
to each other, to the systems they are monitoring, and to
the goals of the adversaries have remained largely unex-
plored. To better understand how to answer these questions,
we have developed a taxonomy of anti-virtualization and
anti-debugging techniques.

As is the case with the general class of adversarial finger-
printing, anti-virtualization and anti-debugging techniques
are based on the assumption that systems of interest carry
characteristics that differentiate them from “normal” sys-
tems. In our taxonomy, we group these techniques by the
system abstraction at which they operate as well as the class
of virtualization or debugging characteristics they exploit.
In addition, for each method we develop a set of metrics
to evaluate and differentiate the various classes. These in-
clude: 1) What is the least level of access required to un-
cover the characteristic? 2) How accurate is the method,
assuming no evasion is done by the target? 3) What is the
complexity involved in building a practical tool to detect
this characteristic? 4) How difficult is it to try and mask
this characteristic? 5) How can we imitate the characteristic
on OSes running on plain machines to fool existing finger-
printing software? This analysis can be found in Table 1,
with detailed explanations of the various categories occur-
ring in subsequent sections.

3.1 Hardware

Both virtual machines and debuggers can make
hardware-detectable changes to the system when they are
present. For example, debuggers can set hardware break-
points and a virtual machine, by definition, emulates hard-
ware. Such hardware differences between debuggers or
VMs and a native, non-instrumented environment are de-
tectable.

2



Abstraction Artifact Accuracy Access level Complexity Evasion Imitation Examples

Hardware device high local network medium easy easy Reptile
driver high local user low medium easy Roxio

Environment memory high local root medium hard medium Reptile, Agobot, Peacomm.C
system high local root high hard hard Reptile

Application installation high local user low easy easy Reptile, Rbot, Phatbot
execution high local user low medium easy Rbot, Phatbot

Behavioral timing medium remote network medium medium medium Reptile, Nugache

Table 1. A taxonomy of common malware anti-virtualization a nd anti-debugging techniques.

3.1.1 Device

Virtual machines often create specific hardware devices
with identifiable attributes, either overt or subtle. An
overtly virtual device would include an Ethernet device
from VMWare with a specific, well-known manufacturer
prefix. A more subtle attribute would be a failure of the
CPU emulator or translator to handle illegal opcodes. The
VMWare VGA adapter, for example, has a well-known
device string that is specific to that environment. Other
VMWare devices have identifiable strings such as “Bus-
Logic BT-958” and “pcnet32” on Linux, and in Windows
on VMWare, registry keys associated with the SCSI disk
drivers also have specific strings associated with them. Fi-
nally, the Bochs emulator has a debug port visible from the
system specific to that emulated platform. In these cases,
malware can use these features to determine that it is in a
non-native environment. Thedoo tool [6] on Linux and
Windows uses shell scripts that look for such fingerprints in
the form of vendor strings and special hardware types in the
Linux system messages and Windows registry table.

3.1.2 Driver

Most virtual machines and debuggers create telltale drivers
that are specific to the tool being used and generally do
not appear otherwise. For virtual systems, these drivers are
needed to adapt the guest OS to the host OS. For debuggers,
these drivers are needed to communicate with the rest of the
system. The SoftICE kernel debugger, for example, uses
virtual drivers to communicate with the kernel. These are
identifiable as files with names such asSICE, NTICE, and
SIWVID. Software can look for these drivers to determine
that it is in a suspicious environment.

3.2 Execution Environment

The execution environment of a process is altered when
it is in a virtual machine or running under a debugger
when compared to a native machine under normal condi-
tions. Kernel space memory values, for example, are usu-
ally slightly different between native and virtual systems.
Furthermore, debuggers have to perturb process and some-
times kernel memory to instrument the process for inspec-

tion. In both cases, these differences can be used to mark an
environment as “instrumented” to a malware process.

3.2.1 Memory Artifacts

VMWare creates a “ComChannel” channel between the
host and guest OS, allowing for inspection and control be-
tween the two systems. VMware and Virtual PC hooks
work similarly [18, 2], and programs likecheckvm [6] can
look for these VMware hooks. Another VMWare feature
that qualifies as a memory artifact is the interrupt descrip-
tor table (IDT), whose presence is detected by tools such as
“Red Pill” [5]. This table reliably resides at a well-known
memory address that is different from a native Windows
value. For debuggers, the Windows API sets a flag that is
detectable using the IsDebuggerPresent() and CheckRemot-
eDebugger() API calls, helping to prevent debugger attach-
ment loops, as well as software breakpoints. In both cases
these are intentional markers and alterations to provide fea-
tures, and often can be masked by the system with the right
tools. Because these are accessible to any process with the
right minimum permissions, the process can look for these
markers and assume a modified environment.

3.2.2 Execution Artifacts

OS-level changes that are the results of bugs in the im-
plementation are inadvertent artifacts and just as useful to
the attacker as specific markers. These can include CPU
instruction bugs in the virtual machine and how they are
handled by the guest OS. Debuggers may also leave unin-
tentional traces in the execution path and modify the call-
stack, such as altering the UnhandledExceptionFilter or sin-
gle byte instructions in the case of OllyDbg. These can be
significantly harder to thwart for the honeypot or sandbox
operator because they are often poorly defined and systemic
flaws in the implementations.

3.3 Application

Some of the easiest methods to detect the presence of
an instrumented environment is through the tools that are
installed and executed on the system. Both virtual machines
and debuggers usually have external applications that are
visible to the process checking the environment.

3



3.3.1 Installation

Even if the processes associated with the sandbox environ-
ment are not executing, if the tools are installed with well-
known names and in a well-known location, they can be
used to mark a system as “suspicious” to a malicious exe-
cutable. Both registry keys (in the case of Windows) and
files on disks can be enumerated by the application to look
for VMWare Tools, for example, or debuggers. These de-
tection techniques are usually reliable to qualify a host as
an instrumented environment, and are also easy to mask
through simple, non-default installations.

3.3.2 Execution

The running processes, services, and windows associated
with debuggers and virtual machine management can also
be used to identify their presence to a suspicious process.
Unless their names have been altered, the malware can enu-
merate processes, services and window titles to look for
names associated with well-known virtual machine man-
agement software or debuggers. For instance, malware can
assume that only a virtual machine would have a service
named “VMtools,” or that a window with the title “OLLY-
DBG” is associated with a debugger. This detection can be
trivially defeated by renaming processes or through API call
hooking.

3.4 Behavior

An artifact more difficult to conceal is the timing dif-
ferences between two environments. When single-stepping
a process through a debugger, for instance, the wall clock
differences between any two points will grow dramatically
when compared to a native execution. Malware can per-
form two time checks and infer that it is running under such
conditions if unusual difference is seen. Similarly, some in-
structions take much longer to finish in virtual machine than
in a normal machine due to virtualization overhead. A pro-
gram continuously executing these instruction can soon tell
VMs apart from plain machines.

3.5 Limitations of This Taxonomy

The taxonomy of monitoring environments described
above is by no means a complete listing of all of the meth-
ods by which malcode could detect that it is running in
an analysis environment. Techniques that we omit include
those suggested by Zhou and Cunningham, for example,
describing complex infection propagation mechanisms that
are hard to defeat without the honeypot becoming a risk
source [30]. Also, this taxonomy omits any detection of
AV processes that may influence malcode behavior. Instead,

this taxonomy focuses on commonly-found evasion mecha-
nisms that we routinely observe in actual malware samples.

4 Application of Malware Evasion Taxonomy

In this section, we introduce three interesting applica-
tions of the malware evasion taxonomy. In§4.1, we attempt
to develop an understanding of how recent malware behaves
under different execution environments by characterizing
the actual differences in terms of malicious behavior. So far,
existing techniques of malware evasion all require access to
the target host. We have developed a novel technique tore-
motelydetermine suspicious execution environment without
any local host access. We outline this network-based finger-
printing technique in§4.2. Given the observed gap between
the malware behavior under plain-machine execution and
suspicious execution environments, we developed a novel
technique toimitatesuspicious environment fingerprints on
production systems with low overhead to help deter mal-
ware. We describe this technique, its implementation and
evaluation in§4.3.

4.1 Malware Characterization

To better understand the prevalence of the techniques
used by malware to evade monitoring systems, in this sec-
tion we characterize the difference of malware runtime be-
havior by running malware samples under three different
environments (for Windows) — in plain machines, in vir-
tual machines, and with a debugger attached. We execute
6,900 distinct malware samples1 collected from September
3rd, 2006 to September 9th, 2007, using a variety of sources
including Web page crawling, spam traps, and honeypot
systems. When executed in Norman Sandbox and under
a variety of anti-virus software, 99% of them are reported
to be known malware [25].

4.1.1 Execution Environments and Results

We set up three standard Windows environments to exe-
cute malware samples. Forplain-machine execution, we
install Windows directly on a plain machine and automat-
ically execute each malware sample after system booting
finishes. Forvirtual-machine execution, we install Win-
dows inside VMware Server running on Linux. Forde-
bugger execution, we install Windows on a plain machine,
but execute samples with WinDbg attached, using the com-
mand line:cdb.exe -o -g -G malware.exe. We
studied Windows XP SP2 without applying any additional

1For interested readers, the scanning results from various anti-virus
software can be downloaded fromhttp://www.eecs.umich.edu/
robustnet/malware/avdetails.tar.gz.

4



patches in our analysis, given the time frame in which the
malware samples are obtained.

Only one malware sample is executed during each itera-
tion to prevent potential interference, after which the whole
system is rolled back to a clean state to prevent disrup-
tion across executions. No network traffic, except for DNS
query, is permitted, to prevent spreading infection to other
hosts. For each malware sample, we execute it for two min-
utes to capture most, if not all, of its behavior. We believe
two minutes is sufficiently long for most malware samples
to exhibit malicious behavior. We execute malware samples
that behave differently across environments for a slightly
longer duration to ensure that we capture their key behav-
ior.

We use the Backtracker system [20] to capture the
system-level behavior of malware samples and compare ex-
ecution traces across environments. This includes program
execution events related to every malware execution, in-
cluding disk read/write, registry table read/write, memory
mapped read/write, process fork, inode update, file execu-
tion of the malware process and its child processes. We
treat the events that cause persistent state changes and sys-
tem state changes to be malicious, including file/registry
key/named pipe modification and process fork/execution.

Some malware samples cause the system to crash or to
reboot so that we cannot collect complete execution traces.
To ensure fair comparisons, we ignore 217 (3.1%) sam-
ples with missing data in at least one of the execution se-
tups. Further investigation shows that some of these mal-
ware samples directly cause Windows to reboot, even under
a freshly-installed system. Some samples only reboot Win-
dows under VM execution, which we will discuss later. It is
also possible that some malware programs crashed because
of our instrumented Backtracker system.

We ignore another 461 (6.7%) samples that do not ex-
hibit any malicious behavior under plain-execution, mostly
due to an incompatible Windows version or lack of user in-
teraction.

4.1.2 Impact of Virtual Machines

Among the remaining 6,222 samples, 5,929 (95.3%) of
them exhibit the same behavior under VM execution as
under plain execution. 167 (2.7%) samples exhibit fewer
malicious behaviors. In those cases, the VM environment
prevented 225 file modifications, 188 process creation at-
tempts, 203 named pipe read/writes and 5,102 registry mod-
ifications. 75 (1.2%) samples crashed and caused Doctor
Watson to start. Overall, at least 4% (167+75

6222 ) of the mal-
ware samples exhibit less malicious behavior under VM ex-
ecutions. Further analysis shows that 60 malware samples
directly reboot Windows under VM, which results in miss-
ing execution traces for them. We suspect these cases are
caused by malware intentionally rebooting the system to

evade VM-based analysis.

4.1.3 Impact of Debuggers

For the same 6,222 malware samples, 3,662 (58.5%) of
them exhibit the same behavior with debuggers attached as
plain execution. Quite surprisingly, 2,481 (39.9%) of them
have fewer malicious behaviors, reducing the number of file
modifications or creations by 8,406, that for registry key
modifications by 57,510, named pipe read/writes by 3,201,
and file execution by 2,150. Another 28 samples seem to
have additional process execution behavior in the debug-
ging environment, but further investigation shows that a file,
removeMeXXXX.bat, is created on the disk and then ex-
ecuted to remove the malware executable and the bat file
itself. We suspect that these malware samples try to elim-
inate their traces upon detecting debugging environments.
Overall, around 40% of malware samples exhibit less mali-
cious behavior in debugging environments.

4.1.4 Popularity of Environment-aware Malware

Our malware dataset only records the first day when a par-
ticular sample was observed, without any indication of pop-
ularity. Fortunately, mwcollect.org [1] keeps a detailed log
of when and which malware sample is observed by their
honeypot machines. We obtain the hit log from mwcol-
lect.org and correlate it with our malware samples.

Only 101 samples appear in both data sets during the
overlapping time period. These samples account for a total
of 68912 hits in the mwcollect database. Among these sam-
ples, 20 of them have less malicious behavior under VM and
account for 11928 (17.3%) of the total hits. 69 of them have
less malicious behavior with debugger attached and account
for 64719 (93.9%) of the total hits. This result might be bi-
ased because of the small number of overlapping samples.
However, it clearly demonstrates the tremendous popularity
of environment checks present in modern malware samples.

4.1.5 A Malware Case Study: Storm Worm

We take a particular malware sample as an inter-
esting example to illustrate the behavioral differ-
ence across environments. We compare the execu-
tion traces for a malware program with MD5 hash
6d0e98688ec3ce31479e02dad96882e0, a known
variant of the currently prevalent Storm Worm.

Under plain execution, the malware extracts two files,
dNVeHk3.exe andwincom32.sys, and then executes
dNVeHk3.exe. During the execution, a registry key is
modified to disable the Windows Firewall/Internet Connec-
tion Sharing (ICS) service. Under VM execution, no files
are extracted or executed, but the registry key is modi-
fied. Interestingly, under debugger execution, it terminates

5



quickly without modifying any system state. This again
confirms our observation that current malwares are increas-
ingly more intelligent at avoiding debugger and VM-like
environments.

4.2 Fingerprint Remote Virtualized Hosts

To the best of our knowledge, all the current evasion
techniques happen after the executable is uploaded and ex-
ecuted on the target host, which could very well be a moni-
toring system. From the attacker’s point of view, they may
not want their programs to even land on those monitoring
systems, in order to delay detection and signature genera-
tion on them and thus prolong their prevalence.

In this section, we briefly introduce two methods that can
be used by malware to detect remote virtualized hosts. We
found that it is possible to accurately detect a remote VM
host by sending a few hundreds SYN packets, even when
network delays are as high as 300ms. Our method can even
differentiate among different VMM types, namely VMware
and Xen, which could be potentially used to exploit differ-
ent vulnerabilities on each VMM system.

4.2.1 Remote Timing Test

The TCP timestamp option [16] is intended to improve
high-performance, high-bandwidth connections by giving
the sender a more accurate way to measure RTT (round
trip time). A TCP timestamp clock increases monotonically
with fixed frequency (FREQ) between 1Hz and 1000Hz.
TCP timestamp was first exploited by Kohnoet al. [21] as
a convert channel to reveal a target host’s physical clock
skew, which uniquely identifies a physical machine.

Our observation is that virtualized hosts have a more per-
turbed clock skew behavior (visualized in Figure 1). The
difference inrandomnessis because OSes running on plain
machines keep accurate timing by receiving regular hard-
ware interrupts generated by hardware oscillators, while
guest OSes rely on VMM-generated software interrupts,
which can be lost or delayed. We use this discrepancy to
determine whether the target is running on a VM. We fol-
low two steps to remotely measure randomness:

Determining TCP Clock Frequency: There are only a
few common TCP clock frequencies; Windows hosts ex-
hibit a clock frequency of 10Hz, while most new distribu-
tions of Linux exhibit clock frequencies of 100Hz, 250Hz,
etc. To determining a target host’s TCP clock frequency,
for each TCP packet from the target host, we record our
system timet when the packet is received and the TCP
timestampT stored in the option field. By taking two
packets separated by a few seconds, we can estimate how
quickly the TCP timestamp is incremented by calculating
F = (T1 − T2)/(t1 − t2) and truncating it to the nearest

possible TCP clock frequency. We find this method works
for all tested operating systems running on both plain ma-
chines and VMs.

Characterizing Randomness: For any packet from the tar-
get host, we consider its TCP timestampTi and the time we
receive itti. Given that we have the TCP clock frequency
FREQ, we can transform the TCP timestamps into clock
readings. Given a timestampTi, the time elapsed since the
first packet should be roughly(Ti − T0)/FREQ seconds.
Then, we have two clocks to look at: 1)xi = (ti−t0) which
is the time elapsed locally2; 2) wi = (Ti − T0)/FREQ,
which is the time elapsed on the target host. We can plot
(xi, yi), whereyi = xi − wi is the clock skew. Since the
two clocks come from different physical devices, the clock
skew(yi) becomes greater as time passes, as shown in Fig-
ure 1.
We uselinear least squares fittingto get a linef(x) =
Sx + q. We then quantify the deviation of each point from
this line using the squared error (SE): SEi = [f(xi)−yi]

2.
Correspondingly, the sample mean ofSE (MSE) is calcu-

lated asSE =
P

i [f(xi)−yi]
2

N
, which we use as the random-

ness indicator.
To obtain TCP packets, we actively initiate TCP connec-
tions to a few known ports — port 22 for Linux standard
ssh service and 3389 for Windows remote desktop ser-
vice. Each new TCP connection gives us one TCP times-
tamp sample. We stop probing when the samples give a
converged linear least squares fitf(x). All our experiments
finish within a few minutes, even when probing at a very
slow rate of one connection per second. Passive sniffing is
a better choice, if we have access to a machine within the
same subnet of the target host.

After obtaining the randomness indicatorMSE from a
remote host, we compare it with thebaselinevalues from
OS installed on plain machines. For Linux machines, we
have a theoretical estimate ofMSE. We examined var-
ious versions of the Linux kernel source and found TCP
timestamps are a simple truncation of the hardware clock
using FREQ, so the TCP timestamp is updated exactly
everyh = 1/FREQ seconds. The deviation of the TCP
clock to real clock should ideally be uniformly distributed
across[−h/2, h/2]. Thus the mean of the theoretical error

should beµSE =

R h/2

−h/2
x2dx

h
= h2

12 . For Linux hosts with
FREQ = 250Hz andFREQ = 1000Hz, the theoreti-
cal mean forSE should be1.33ms2 and0.083ms2 respec-
tively. Various experiments have verified that this estimate
is very accurate. Also, we found that the randomness in net-
work delay within a short period is usually not large enough
to cause a significant increase inMSE.

2We assume the local system clock is accurate because it can achieve a
1µs accuracy — much finer-grained than TCP clocks.

6



0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

O
bs

er
ve

d 
of

fs
et

 (
m

s)

Time since start of measurement (seconds)
0 50 100 150 200 250 300 350 400 450

−100

0

100

200

300

400

500

Time since start of measurement (seconds)

O
bs

er
ve

d 
of

fs
et

 (
m

s)

(a) Clock skew of a Linux host (1000Hz) (b) Clock skew of a Linux on VMware (250Hz)

Figure 1. Clock skew of Linux hosts on a plain machine and a VM.

For Windows, we have no access to the source code, so
we do not know how the TCP timestamps are generated.
Therefore, we measured theSE of clock skew from Win-
dows hosts and came up with an empirical value. It turns out
that theMSE is roughly1667ms2 for Windows running
on plain machines — exactly twice as large as the theoreti-
cal value of1/(102∗12) = 833ms2, like because Windows
generates TCP timestamps using a proprietary algorithm. In
our experiments we use1667ms2 as the baseline for Win-
dows installed on plain machines.

Fingerprinting a remote host is simply done by compar-
ing the randomness indicatorMSE with baseline random-
ness values. Experimental results are shown in Table 2.
For Linux hosts running on plain machines, theMSE is
extremely close to theoretical values, even for target hosts
whose RTT is 300ms away from our test machine. On the
contrary, Linux hosts installed on virtual machines within
the same subnet exhibit orders of magnitudes largerMSE
than theoretical values. Interestingly, Xen introduces much
less randomness than VMware does, probably because they
have different algorithms for firing software interrupts. On
Windows machines, the randomness is already very large
due to the relatively smallFREQ value. However, the
randomness introduced by VMM is still very obvious —
VMware adds around270ms2 to MSE, while Xen adds
around130ms2. We have applied the Z-test to obtain the
statistical confidence of the likelihood that the target host is
running under different virtualized platforms. The details of
this method is omitted for simplicity.

To imitate such fingerprint on plain machines, we can ob-
fuscate the TCP timestamps by introducing extra random-
ness. On the other hand, we can erase such fingerprint on
VMs by normalizing the TCP timestamp at the VMM layer.
The details are omitted due to space limit.

4.2.2 MAC Address

Besides the TCP clock, we can also exploit properties
related to virtualized network devices. The Media Ac-

cess Control (MAC) address is a unique identifier for net-
work hardware devices. VM software by default set MAC
addresses of virtual network interfaces within particular
ranges. By extracting the MAC address of a raw packet,
we can infer whether the sender is using a real NIC or a vir-
tual one. Fingerprinting a subnet of machines can be done
within a few seconds by sending ARP queries and gather-
ing MAC addresses from the reply messages. However, this
fingerprinting method assumes that the attacker has com-
promised at least one host within the same subnet of the tar-
get host and has acquired root access of that compromised
machine to sniff packets.

4.3 Deterring Malware by Imitating De-
buggers and VMs

Given the goal of most anti-debugging and anti-
virtualization code is to avoid detection by defenders, a
common reaction by a malware upon detecting these envi-
ronments is to suppress any additional behavior that might
disclose it presence. Given this tendency, one possible ap-
proach to reducing the amount of malicious behavior exhib-
ited on a defender’s system would be to make it appear as
a monitored environment. In this section, we discuss our
work in building a set of tools that are capable of mimick-
ing those monitoring systems on production systems for the
purpose of deterring malware. We discuss our general emu-
lation approach as well as an evaluation of these techniques
using our malware sample set.

4.3.1 Approach

In order to deter attackers, we use several techniques de-
scribed in our taxonomy in§3 to disguise production sys-
tems as virtualized and debuggers. These include:

• Drivers: For Windows hosts, we created a program
that changes the driver information strings in the Win-
dows registry table to appear to be VMware. To

7



Linux Windows
Setup Plain 1kHz VMware 1kHz Xen 100Hz Plain 10Hz VMware 10Hz Xen 10Hz

MSE(ms
2) 0.0854 245.8 23.1 1671 2042 1804

Base Line (ms
2) 0.0833 0.0833 8.33 1667 1667 1667

Table 2. Remote timing fingerprinting results for various se tups.

fake the presence of SoftICE, we modify the API
Openfile(), which is used to open device drivers.
If a program requests\\.\NTICE, we return a non-
NULL value to imitate the existence of SoftICE driver.

• System: In order to appear virtualized, we also in-
tercepted system calls that would have triggered ex-
ceptions in non-virtualized hosts. Since we do not
have direct access to the source code of Windows, we
used Detours [15] to intercept Windows API calls, and
in particularKiUserExceptionDispatcher()
in ntdll.dll is intercepted in order to imitate
VM hook fingerprints. If the register values match
the VM checks, we return artificial values with-
out causing any exception. In addition, we modify
KiUserExceptionDispatcher() to deal with
malware searching forint 1.

• Memory: With the Windows Detours pack-
age, we are able to further modify the be-
havior of IsDebuggerPresent() and
CheckRemoteDebuggerPresent(). On a
production machine where no debugger is present,
we can returntrue for both API calls for any
executables. This can successfully fake the presence
of WinDbg under these checks.

• Execution: To fool run-time anti-debugging checks
we also created an empty Windows application with
window nameOllyDbg so that a direct window
search will falsely conclude the existence of OllyDbg.

These tools are certainly quite simple and superficial,
only serving as a proof-of-concept. It is not our purpose
to imitate all the possible existing fingerprints.

4.3.2 Evaluation

To evaluate our system, we ran our 6,900 malware samples
in two environments: one in a vanilla Windows XP install,
and one with our imitated VM and debugger fingerprints
installed. Of these samples, 264 have missing execution
traces, which we ignore. Also excluded are those 461 sam-
ples that do not exhibit any malicious behavior, even under
real environments. We compare the execution results for the
remaining 6205 samples.

Comparison of behaviors We found that 610 malware
samples have reduced malicious behavior with our imitated

fingerprints. Our tool set altogether prevented 1,850 file op-
erations, 578 process creations, and 15,680 registry modi-
fications. Besides these prevented operations, 27 samples
also created the fileremoveMeXXXX.bat to erase them-
selves. 19 samples causeddwwin.exe (Microsoft Doctor
Watson error reporting tool) to execute. These indeed show
that our imitation tools are capable of misleading malwares
into detecting the existence of virtual machines and debug-
gers. Overall, 2,625 (42.2%) samples reduced their mali-
cious behavior under either VM execution or debug execu-
tion. Our simple tools are shown to be able to create similar
effects on 656 (25%) of them.

The detailed comparison of the effectiveness of VM, de-
bugger and our imitated fingerprints in terms of deterring
malicious behavior is shown in Table 3. We only created
very few imitated fingerprints, especially those related to
debuggers, yet our tools still effectively deterred one fourth
of what a real debugger can and already more than what VM
can deter. Overall, these results demonstrate great promise
of our approach.

With respect to the Storm Worm variant mentioned in
§4.1, we found that our imitated fingerprints are capable of
achieving the same effect as VM execution, meaning that
file extractions and executions are successfully prevented.
However, a registry key is still modified, indicating our imi-
tation of debuggers is not complete. The reason might be
that we only superficially changed the result of the API
IsDebuggerPresent(), while a program can directly
read the corresponding bit in its process PEB. Imitating
such fingerprints to a deeper level can help deter such so-
phisticated malware.

Our experiments are mostly performed under Windows
XP SP2, which prevented us from logging the network ac-
tivities due to software incompatibility. To further under-
stand the effectiveness of preventing network behavior, we
set up a smaller experiment to run only those 656 mal-
ware samples under Windows XP, without any patches in-
stalled. We found that our imitated fingerprints can deter
4,029 (70.5%) of the 5,717 network connection attempts
made during plain execution, compared to 5,674 (99.2%)
that can be deterred by a debugger, disregarding the fact
that we only implemented a few debugger fingerprints.

Performance Overhead For VMware driver and Olly-
Dbg windows insertion, the introduced overhead to the sys-
tem is negligible, given that they are not accessed by any

8



Process File Registry Named Pipe

VM 188 225 5102 203
Debugger 2150 8406 57510 3201
Our Tools 578 1033 15680 839

Table 3. Malicious behavior prevented by different setups.

legitimate applications and do not consume much computa-
tion resources.

VMware hook and debugger checking API interception
are handled by the Detours package [15]. The overhead is
around15µs for intercepting a function call [15]. Moreover,
we only intercept a few functions that are rarely executed in
normal programs but used by malware. For example, ex-
ception handler is only executed when there is a significant
software fault.

4.3.3 Improving Imitated Fingerprints

During our experiment for evaluation, we tracked all po-
tential reconnaissance actions to get insight on improv-
ing our system, corresponding to many of the checks de-
scribed in§3. We found that among the 656 samples that
reduce malicious behavior with our imitated fingerprints,
IsDebuggerPresent() was checked for 1,040 times,
SoftICE driver checked for 458 times, VM hook checked
for 29 times. In addition, we found 5,162 search attempts
for the window name “creating rules for malware.exe,” 654
attempts for “Hidden Process Requests Network Access,”
and numerous others forFileMon, APIMonitor and
Regmon, indicating evasive actions against AV software,
like AVP and Kaspersky, and monitoring programs. We can
also apply malware multi-path execution techniques [24] to
reveal the condition checks that clearly separate benign and
malicious behavior — they are likely related to the discrep-
ancies that malware cares about. We can enrich our imitated
fingerprints based on these inputs.

5 Discussion
Intel-based VMs is a current topic with much research

and industry activity. As hardware and operating system
support for VMs improve, some existing VM fingerprints
may disappear, e.g., instruction fingerprints. On the other
hand, as VMs become more prevalent in production sys-
tems, the value of knowing that a particular OS is running
inside a VM diminishes. For example, the most sophisti-
cated worm so far, the Storm Worm, does not seem to care
about virtual machine environment. However, we should
notice that there always exists a significant gap between
monitoring systems and production systems in general. De-
buggers, as an example, are prevented by a large portion of
malware. Designing monitoring systems to be identical to
production systems is challenging; thus, there always exist
discrepancies to be potentially exploited.

By imitating fingerprints that only exist in monitoring
systems, we have shown that it is possible to deter many
sophisticated malware. However, a question that remains
is to what extent we should imitate such discrepancies.
For example, we can return a fake result by hooking the
IsDebuggerPresent() API, but malware can further
check the process PEB directly. We argue that for mal-
wares to detect monitoring systems, having false negatives
is much more disastrous than having false positives. In this
case, malware programs should exit even if only one of the
tests returns true. In this case, we can always raise the bar a
bit higher to help win this arms race.

Another question is how we deal with attackers’ attempts
to detect our imitated fingerprints. For example, we hook
theIsDebuggerPresent()API call, but do not change
the corresponding flag in PEB. This inconsistency is an ob-
vious indication that certain system artifacts are intention-
ally arranged purely for being fingerprinted. It is possible
that this may lead attackers to program higher levels of in-
telligence into more stealthy malware, e.g., testing the ac-
tual behavior of a driver, instead of simply detecting a de-
vice driver name. We would argue that as the escalation
worsens, attackers would suffer from more overhead to de-
tect sophisticated fingerprints. Also, the existence of such
inconsistency already indicates the target host is probably
monitored and guarded.

6 Conclusion

Our work is the first to develop a detailed taxonomy of
evasion techniques that are actively used by modern mal-
ware to avoid monitoring systems based on virtualization
and debugger characteristics. These techniques span differ-
ent layers of the computer system with varying levels of
difficulty to be performed, obfuscated, and imitated. As
a direct application of the taxonomy, we performed large-
scale experiments over 6,900 recent malware samples to
understand the behavioral gap among plain-machine exe-
cution, virtual machine execution, and debugger attached
execution. Our results show that a significant percentage
of malware samples actively evade monitoring systems by
exhibiting less malicious behavior. Despite various power-
ful evasion techniques, none can be used to detect a remote
networked monitoring system. To fill this gap, we devel-
oped a novel technique that detects a remote networked vir-
tual machine based on its clock skew behavior. Finally, we
proposed a novel approach to mislead attackers and subse-

9



quently deter them from infecting target hosts, by making
production systems operating on plain machines appear as
monitoring systems. We demonstrate that only a few light-
weight imitated fingerprints can already deter a fairly sig-
nificant portion of malware samples and a large portion of
malicious behavior. We believe our work makes important
progress to assist defenders in combating emerging threats
of evasive malware through a novel deterrence technique.

References

[1] Collaborative malware collection and sensing.http://
alliance.mwcollect.org.

[2] Detect if your program is running inside a vm.http://
www.codeproject.com/system/vmdetect.asp.

[3] The honeynet project.http://project.honeynet.
org.

[4] Honeypotting with VMware - basics. http:
//www.seifried.org/security/ids/
20020107-honeypotvmware-basics.html.

[5] Red pill. http://invisiblethings.org/papers/
redpill.html.

[6] Scoopy doo.http://www.trapkit.de/research/
vmm/scoopydoo/scoopy_doo.htm.

[7] C. Associates. Win32.agobot.http://www3.ca.com/
securityadvisor/virusinfo/virus.aspx?id=
37776, July 2004.

[8] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jaha-
nian, , and J. Nazario. Automated Classification and Analy-
sis of Internet Malware. In10th International Symposium
on Recent Advances in Intrusion Detection (RAID 2007),
September 2007.

[9] J. Corey. Advanced honeypot identification. Phrack
magazine, January 2004.http://www.phrack.org/
fakes/p63/p63-0x09.txt.

[10] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Per-
rig, and L. van Doorn. Remote detection of virtual machine
monitors with fuzzy benchmarking.ACM SIGOPS Operat-
ing System Review, April 2008.

[11] D. Gao, M. Reiter, and D. Song. Behavioral Distance for
Intrusion Detection. In8th International Symposium on Re-
cent Advance in Intrusion Detection (RAID 2005), Septem-
ber 2005.

[12] D. Gao, M. Reiter, and D. Song. Behavioral Distance Mea-
surement Using Hidden Markov Models. In9th Interna-
tional Symposium on Recent Advance in Intrusion Detection
(RAID 2005), September 2006.

[13] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. Com-
patibility is Not Transparency: VMM Detection Myths and
Realities. InProceedings of the 11th Workshop on Hot Top-
ics in Operating Systems (HotOS-XI), May 2007.

[14] T. Holz and F. Raynal. Detecting honeypots and other sus-
picious environments. InSystems, Man and Cybernetics
(SMC) Information Assurance Workshop, 2005. Proceedings
from the Sixth Annual IEEE, June 2005.

[15] G. Hunt and D. Brubacher. Detours: Binary Interceptionof
Win32 Functions. InProceedings of the 3rd USENIX Win-
dows NT Symposium, pp. 135-143. Seattle, WA, July 1999,
July 1999.

[16] V. Jacobson, R. Braden, E. Lagache, and M. K. Claffy. Tcp
extensions for high performance. RFC 1323, May 1992.

[17] X. Jiang and D. Xu. Collapsar: A VM-Based Architecture
for Network Attack Detention Center. InProceedings of the
13th USENIX Security Symposium, August 2004.

[18] K. Kato. Vmware backdoor i/o port.http://chichat.
at.infoseek.co.jp/vmware/backdoor.html.

[19] R. Kennell and L. H. Jamieson. Establishing the Genuin-
ity of Remote Computer Systems. In12th USENIX Security
Symposium, August 2003.

[20] S. T. King and P. M. Chen. Backtracking Intrusions. In
Proceedings of the 2003 Symposium on Operating Systems
Principles, October 2003.

[21] T. Kohno, A. Broido, and K. C. Claffy. Remote physical
device fingerprinting. InSP ’05: Proceedings of the 2005
IEEE Symposium on Security and Privacy, pages 211–225,
Washington, DC, USA, 2005. IEEE Computer Society.

[22] C. Krügel, W. K. Robertson, F. Valeur, and G. Vigna. Static
disassembly of obfuscated binaries. InUSENIX Security
Symposium, pages 255–270, 2004.

[23] T. Liston and E. Skoudis. On the cutting edge: Thwarting
virtual machine detection.http://handlers.sans.
org/tliston/ThwartingVMDetection_Liston_
Skoudis.pd%f.

[24] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple ex-
ecution paths for malware analysis. InProceedings of the
2007 IEEE Symposium on Security and Privacy, pages 231–
245, Washington, DC, USA, 2007. IEEE Computer Society.

[25] J. Oberheide, E. Cooke, and F. Jahanian. Rethinking An-
tivirus: Executable Analysis in the Network Cloud. InPro-
ceedings of the 2nd USENIX Workshop on Hot Topics in Se-
curity (HOTSEC ’07), Aug 2007.

[26] G. H. Project. Tracking Botnets, 2005.http://www.
honeynet.org/papers/bots.

[27] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting Sys-
tem Emulators. InProceedings of 10th Information Secu-
rity Conference (ISC), Lecture Notes in Computer Science,
Springer Verlag., 2007.

[28] J. S. Robin and C. E. Irvine. Analysis of intel pentium’sabil-
ity to support a secure virtual machine monitor. InUSENIX
Security Symposium, August 2000.

[29] A. Vasudevan and R. Yerraballi. Stealth breakpoints. In AC-
SAC ’05: Proceedings of the 21st Annual Computer Security
Applications Conference, pages 381–392, Washington, DC,
USA, 2005. IEEE Computer Society.

[30] C. C. Zou and R. Cunningham. Honeypot-aware advanced
botnet construction and maintenance. InDSN ’06: Proceed-
ings of the International Conference on Dependable Systems
and Networks, pages 199–208, Washington, DC, USA, 2006.
IEEE Computer Society.

10


