
Declarative Configuration Management
for Complex and Dynamic Networks

Xu Chen†§ Yun Mao† Z. Morley Mao§ Jacobus Van der Merwe†

§ University of Michigan - Ann Arbor † AT&T Labs - Research

Abstract— Network management and operations are com-
plicated, tedious, and error-prone, requiring significanthu-
man involvement and domain knowledge. As the complex-
ity involved inevitably grows due to larger scale networks
and more complex protocol features, human operators are in-
creasingly short-handed, despite the best effort from existing
support systems to make it otherwise. This paper presents
COOLAID, a system under which the domain knowledge of de-
vice vendors and service providers is formally captured by
a declarative language. Through efficient and powerful rule-
based reasoning on top of a database-like abstraction over a
network of devices,COOLAID enables new management prim-
itives to perform network-wide reasoning, prevent miscon-
figuration, and automate network configuration, while re-
quiring minimum operator effort. We describe the design
and prototype implementation ofCOOLAID, and demonstrate
its effectiveness and scalability through various realistic net-
work management tasks.

1. INTRODUCTION
Network management and operation arguably remains a

domain that continues to thwart modernization attempts by
the networking community. There are a number of reasons
for this state of affairs. First, network management is inher-
ently difficult because of the scale, the distributed natureand
the increasing complexity of modern communication net-
works. Second, network management tools and practices
fail to keep up with the ever–evolving and complex nature
of the networks being managed. Third, and perhaps most
importantly, current network management approaches fail to
capture and utilize, in a systematic fashion, the significant
domain expertise (from vendors, service providers and pro-
tocol designers), which in essenceis the foundational pillar
enabling the continued operation of the network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 – December 3 2010, Philadelphia,
USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$5.00.

In a typical large Internet service provider setting, hun-
dreds or thousands of network devices are distributed across
vast geographic distances, and their configurations collec-
tively determine the functionality provided by the network.
The protocols and mechanisms that realize such network
functionality often have complex dependencies that have to
be satisfied for correct operations. Such dependencies are
often not precisely defined, or at least not expressed in a sys-
tematic manner. When they are violated through miscon-
figurations, software bugs, or equipment failures, network
troubleshooting becomes an extremely difficult task.

Despite these complexities, network management oper-
ations still largely rely on fairly rudimentary technologies.
With only a few notable exceptions for specialized tasks,
network configuration management is still performed via ar-
chaic, low-level command line interfaces (CLIs). Vendors
describe protocol dependencies and network-wide capabili-
ties in device manuals or other technical documents. Net-
work engineers manually interpret these vendor documents
and in turn produce service provider documentation, which
describes in prose with configuration excerpts, on how net-
work services might be realized. Similarly, disruptive ac-
tivities like planned maintenance rely on the experience of
human operators and their ability to interpret and follow pro-
cedures documented by domain experts to prevent undesired
side effects. In short, current network management prac-
tices depend on the knowledge base of domain experts cap-
tured in documents meant for human consumption and fur-
ther attempts to derive, from this captured knowledge, sys-
tems and procedures to ensure that the correct documents are
consulted and followed to perform network operations.

In cases where network operations have progressed be-
yond the capacity of human interpretation and manual exe-
cution of procedures, tools attempt to automate the proce-
dures that a human operator would have performed and/or
reverse engineer the protocol and network dependencies that
prevail in an existing network. For instance, sophisticated
network configuration management tools [12, 9] attempt to
capture the actions of human experts for subsequent automa-
tion. Existing fault and performance management practices
involve, in part, reverse engineering protocol actions andde-
pendencies [20]. Unfortunately, all such tools are highly

1

specialized, each focusing on a specific management aspect.
In this paper, we presentCOOLAID (COnfiguring cOmpLex

and dynamic networks AutomatIcally and Declaratively), a
network management framework that automates a variety
of dominant network operations relying on configurations,
while minimizing human involvement. The key idea is to
formally capture the domain knowledge using a declarative
logic-based language, then apply the knowledge on top of
a database-like abstract data model that represents network-
wide information. As such,COOLAID can derive high-level
views for network-wide reasoning, automate network con-
figuration, and prevent misconfiguration, allowing operators
to better manage their networks without being exposed to the
overwhelming details.

We describe the design and implementation ofCOOLAID,
and demonstrate the effectiveness and scalability ofCOOLAID

in a realistic distributed network testbed and on other simu-
lated large-scale topologies. We expect thatCOOLAID enables
a move towards higher formalism in representing domain
knowledge from different stakeholders and role players (e.g.,
device vendors, service providers, network management tool
developers), so that such knowledge can be captured within
the same framework and combined systematically to auto-
mate network operations by systems likeCOOLAID, funda-
mentally relieving the excessive burden on human operators.

This paper makes the following contributions:

• Demonstrates with real-world examples of how do-
main knowledge from both device vendors and service
providers can be concisely captured using a declarative
language;

• Builds a unified data model abstracting network-wide
information to facilitate the automation of rule-based
domain knowledge;

• Exemplifies distributed recursive query, updatable
view, and distributed transaction management as use-
ful enabling techniques for new and enhanced network
management primitives;

• Implements and evaluates a prototype of theCOOLAID

system to automate a variety of useful network opera-
tions requiring minimal human involvement.

2. MOTIVATION
Modern networks are complexity-plagued, large-scale,

and highly dynamic. This is particularly true for large ISP
networks, which typically house thousands of devices inter-
connected across dispersed geographic regions and support
diverse network services and features. Next we explain three
key challenges in managing such networks.

Network functionalities are complex: Large ISPs support
a variety of revenue-generating network services in addition
to traditional IP transit. For example, Virtual Private Net-
work (VPN) service, which allows multiple sites of a cus-
tomer organization to be seamlessly connected together, and
Voice-over-IP (VoIP) service are commonly offered. Sup-
porting these services is very challenging, even purely from

a configuration’s point of view. Setting up these services
requires operators to understand voluminous configuration
manuals and apply the knowledge to specific network se-
tups. A particular complication stems from the fact that net-
work services or features are commonly dependent on each
other1. These dependencies are usually verbally described
in documentations and impose a steep learning curve.
Network-wide reasoning is hard: Understanding the net-
work functionalities given the configurations on the phys-
ical devices is crucial for network management. Opera-
tors commonly ask (mostly themselves) questions like, “Is
that MPLS/VPN instance configured correctly for the cus-
tomer?” and “What services might be impacted if I shut
down this loopback interface?” Mistakes in answering these
questions might result in network-wide outages. Yet answer-
ing these questions is difficult for two reasons: (i) Reasoning
about each network feature requires understanding a chain
of dependent features; (ii) More importantly, understanding
each feature requires not only inspecting individual device
configurations but also reasoning about the distributed pro-
tocol execution logic,e.g.,how the routes propagate through
OSPF within a network. The complexity quickly increases
with the number of network elements and network features,
and therefore human errors in reasoning about complicated
protocols on thousands of routers become unavoidable, es-
pecially when operators are constrained with short main-
tenance windows to rush management tasks. Even worse,
when multiple operators are working on the same network,
their concurrent actions, each might be fine to perform in-
dividually, can cause significant network disruptions if not
properly synchronized. This calls for an automation support
to accurately reason about network services and protocols
at scale. To the best of our knowledge, no existing tool is
capable of providing such generic support.
Networks are dynamic: Last but not the least, modern net-
works are quickly evolving. Besides providing new features,
much of the network evolution is purely driven by growth de-
mand,e.g.,adding core or edge routers to handle more cus-
tomers with higher throughput. These device introduction,
upgrade and re-purpose activities are commonly performed
in today’s large networks, and they need to be handled cor-
rectly and efficiently to ensure the continuous service deliv-
ery. In general, removing devices must not interfere with
existing network functionalities, while new devices must be
configured with proper functionalities to become an integral
part of the network,e.g.,to participate in OSPF routing or to
establish iBGP sessions to other routers. Figuring out what
to configure on the new devices is non-trivial and usually re-
quires reverse-engineering the existing network setups. Re-

1For example, as we later show in Figure 4, on commodity routers
(e.g., from Cisco or Juniper), setting up a VPLS (Virtual Private
LAN Service, a form of VPN to provide layer-2 connectivity) de-
pends on establishing LSPs (Label-Switching Paths) and BGPsig-
naling, while LSPs in turn depend on an MPLS- and RSVP-enabled
network, and BGP signaling further relies on other factors,e.g.,a
properly configured IGP.

2

Human

Rules

Data Model

Controller

Domain Knowledge

Service providerVendor

StatusFacts Configurations

Physical Network

Manual

Interaction

COOLAID

Interaction

COOLAID

Component

Figure 1: COOLAID vs. manual management

dundant or missing configurations result in redundant fea-
tures or, more problematically, non-functional networks.It
quickly becomes cumbersome for operators when network
changes are frequent and network features are diverse. The
emerging trend of network virtualization further raises the
bar [27], as the network inventory can be dynamically allo-
cated and the topology can be easily modified. An ideal sup-
port to address this challenge is to allow the specification of
network-wide properties, which are enforced no matter how
the network changes. Unfortunately, there is no systematic
support to address this need.

3. MANAGING NETWORKS IN COOLAID
Our key observation about the current network manage-

ment practice is that the required domain expertise is unfor-
tunately not captured in a systematic manner for the purpose
of re-use and automation. Therefore, the current practice is
inherently limited by human capability. As illustrated in Fig-
ure 1 with solid lines, human operators play a central role to
absorb a tremendous amount of domain knowledge and di-
rectly interact with the underlying physical networks via a
variety of rudimentary interfaces,e.g.,router CLIs. In par-
ticular, operators need to interpret networkfacts (e.g., the
list of routers, how they are connected, and customer ser-
vice agreements), the currentconfigurationsand up-to-date
networkstatus(e.g.,if a BGP session is indeed established),
based on which to reason about existing network-level func-
tionalities (e.g.,if a VPN service is correctly configured for
a customer) or realize additional features by changing con-
figurations, and enforce network-wide constraints,e.g.,there
must be a BGP full-mesh on core routers.

To minimize human involvement, a management system
must satisfy three requirements: (i) it must systematically
and formally capture the domain knowledge, in particular
protocol dependencies and network-wide properties; (ii) the
resulting representations should allow the system to expose
high-level management primitives for automating manage-
ment tasks; (iii) the system can re-use the knowledge base
to assist operators and other network management tools in a
network-wide (cross-device) manner.

In this section, we describeCOOLAID, a network man-
agement system that satisfies these requirements. We first

overview three key building blocks of the system, and then
unfold the new network management primitives enabled by
COOLAID. The enabling techniques for these primitives are
described in §4, and our system implementation in §5.

3.1 COOLAID building blocks
Conceptually, COOLAID models a network of inter-

connected devices as a distributed but centrally managed
database, exposing an intuitive database-style interfacefor
operators to manage the entire network. Figure 1 depicts the
COOLAID building blocks with rounded-boxes, and their in-
teraction with operators and the network using dotted lines.
Data model: The data model creates a logically centralized
database abstraction and access point to cover all the tra-
ditional network management interfaces, which largely in-
clude reading and modifying router configurations, check-
ing network status and provisioning data. The abstraction is
designed to work with commodity devices, and interopera-
ble with existing management tools. We define three types
of base tables2: (i) Regular tablesstore fact-related data that
naturally fit into a conventional database (e.g.,MySQL). (ii)
Config tablesstore thelive network configurations, in par-
ticular, router states that are persistent across reboots,e.g.,
IP addresses and protocol-specific parameters. (iii)Status
tablesrepresent the volatile aspect of device/network state,
such as protocol running status, routing table entries, or
other dynamic status relevant to network health, for exam-
ple,ping results between routers.

The key benefit of having these tables is thatCOOLAID ab-
stracts away the details of individual management interfaces
and instead works on a unified abstraction, which funda-
mentally enables the systematic expression and integration
of domain knowledge from different role players as we de-
scribe next. We want to emphasize that the traditional us-
age of databases in network management is predominantly
for archiving snapshots of network-related information tofa-
cilitate subsequent analysis. In contrast,COOLAID uses the
database notion as anabstractionlayer that sits on top of
the actual network for enabling new management primitives.
To enable a new distributed transaction support,COOLAID

chooses not to store data from config tables or status ta-
bles in a conventional SQL database but rather accesses them
through software artifacts exposing database interfaces.We
describe how to enable this abstraction on commodity net-
work devices in §5.2.

Regular tables are only modified when necessary to reflect
network changes,e.g.,new devices or new customer agree-
ments. Config tables are always in-sync with the network
devices, and modifying these tables causes actual configura-
tion changes. Status tables are read-only, and table entries
are generated on-demand from traditional management in-
terface, such as CLI and SNMP3.

2We use the following naming convention: names of regular, config
and status tables begin with T, C, S respectively.
3Status tables contain important information for various manage-
ment operations (e.g.,fault diagnosis). However, because this pa-

3

Rules: COOLAID represents network management do-
main knowledge, in particular protocol dependencies and
network-wide requirements, as rules in a declarative query
language. Each rule defines a database view table (or view in
short), which is derived from a query over other base tables
or views. Intuitively, a view derives higher-level network
properties (e.g.,if a feature is enabled) based on lower-level
information (e.g.,the availability of the required configura-
tions and other dependent services.) Formalizing domain
knowledge as declarative rules has two benefits. First, view
querying is a well-defined procedure that hides intermedi-
ate steps and presents meaningful end-results to the opera-
tors. Comparing to a manual reasoning process, which is
inherently limited by human operators,COOLAID can handle
expanding knowledge base and network size with ease. Sec-
ond, the rules can be re-used, as they can be queried many
times even on different networks. Note that operators do not
need to write any such rules. Specifically, we envision an en-
vironment where (i) device vendors provide rules to capture
both device-specific capabilities and network-wide protocol
configuration and dependency details (§3.2, §3.4) and (ii)
service providers define rules on how these vendor capabil-
ities should be utilized to reliably deliver customer services
(§3.3, §3.5), and more importantly these rules operate within
the same framework.
Controller: As the “brain” of COOLAID, the controller acts
as a database engine to support straightforward database op-
erations, like table query, insertion and deletion. We will
explain in the following sections about how these operations
correspond to a set of new management primitives. By ap-
plying the rule-based domain knowledge onto the network
states stored in the data model, the controller significantly
relieves the burden on operators. The operators can stay at
a high-level of interaction, without touching the low-level
details of the network. From the database perspective, the
controller supports recursive query processing, global con-
straint enforcement, updatable views, and distributed trans-
action management.

Listing 1: Rules for OSPF Route Learning
R0 EnabledIntf(ifId, rId) :- TRouterIntf(ifId, rId),

CInterface(ifId, "enabled");
R1 OspfRoute(rId,prefix) :- EnabledIntf(ifId,rId),

CIntfPrefix(ifId,prefix), CIntfOspf(ifId);
R2 OspfRoute(rId1,prefix) :- OspfRoute(rId2,prefix),

TIntfConnection(ifId1,rId1,ifId2,rId2),
EnabledIntf(ifId1,rId1), CIntfOspf(ifId1),
EnabledIntf(ifId2,rId2), CIntfOspf(ifId2);

3.2 Network-wide reasoning
COOLAID achieves the primitive of automated network-

wide reasoning through materializing the views by dis-
tributed recursive queries on top of the data model pre-
sented in §3.1. We demonstrate how the knowledge regard-

per primarily focuses on the configuration management, we leave
exploiting status tables as future work.

SF LASJ

SF:lo0
192.168.1.9/32

SJ:lo0
192.168.1.10/32

LA:lo0
192.168.1.11/32

SF:fe0 SJ:fe1 SJ:ge3 LA:ge0

Interface w/ OSPF Configured

Interface w/o OSPF Configured

Route
learned
locally

Route
Propagation Doesn’t

Propagate

Figure 2: Example network with OSPF configuration

TRouterIntf("SF:lo0","SF")

CInterface("SF:lo0","enabled")

CIntfPrefix("SF:lo0","192.168.1.9/32")

CIntfOspf("SF:lo0")

OspfRoute("SF", "192.168.1.9/32")

OspfRoute("SJ", "192.168.1.9/32")

Apply

R2

Apply

R1

Figure 3: Bottom-up view evaluation

ing OSPF route learning can be written as three rules in List-
ing 1. The rules are written in a declarative language based
on Datalog [29]4, where each rule is defined as
rule name rule head :- rule body;

The rule head contains exactly one predicate as the view
to be defined, and the rule body contains predicates and
Boolean expressions that derive the view. A rule is intu-
itively read as “if everything in the body is true, then the
head is true.”

Rule R0 defines a viewEnabledIntf for identifying the list
of enabled interfaces in the network. It first joins a regu-
lar tableTRouterIntf that contains the router interface inven-
tory and a config tableCInterface with interface setups, and
then selects the interfaces that are configured as"Enabled".
Rule R1 captures how a router imports local OSPF routes,
by stating that if an interface on a router is enabled (as in
EnabledIntf) and configured to run OSPF (as inCIntfOspf),
then the prefix of its IP address should be in the OSPF rout-
ing table of the router (OspfRoute). We are ignoring some
details, such as OSPF areas, for brevity. Finally, ruleR2 ex-
presses how routes are propagated across routers, by stating
that anyOspfRoute on routerrId2 can propagate to routerrId1
if they have directly connected interfaces and both are en-
abled and OSPF-speaking. Note thatR2 is both distributed
and recursive, as the query touches multiple devices and the
rule head is part of the rule body.

Figure 2 shows a small network with three routers. The
interfaces connecting routersSF andSJ, as well as their loop-
back interfaces, are OSPF-speaking and enabled, so that the
loopback IP"192.168.1.9/32" configured on routerSF should
propagate to routerSJ, according to how OSPF works. Fig-
ure 3 illustrates how the entries in the view tables are gener-

4We choose Datalog with stratified negation as our query language
for its conciseness in representing recursive queries and negations
and its tight connection to logic programming. Other query lan-
guages, such as SQL and XQuery, if augmented with necessary
features, such as recursion, are also suitable to our framework.

4

CLogicalRouter

CProtocolOSPF

CRSVPInterface

CLogicalInterface CBGPNeighbor

CRoutingInstanceCOSPFInterfaceCMPLSInterface

CLSPConfig

LoopbackConstraint

ActiveLSP

LSPLinkByRSVP

EnabledRSVPInterface

LogicalTunnelInterface

EnabledOSPFInterfaceEnabledMPLSInterface EnabledVPLSInterface

ConfiguredBGPSession

ConnectedOspfPrefix

PairedLogicalTunnel

ConnectedLogicalInterface

OSPFLinkMPLSLink RSVPLink

OSPFPath

ActiveBGPSession

VPLSSignaling

MPLSPath RSVPPath

ActiveVPLSLink

VPLSLinkTransitiveConstraint VPLSLinkReflectiveConstraint

VPLS

OSPF

iBGP

RSVP

MPLS

LSP

Interface Setup Details

view

constraint

config table

legends:This dependency graph is for complexity

demonstration only. The texts in the little

boxes are not meant to be legible.

Figure 4: VPLS related view dependency graph

ated in a bottom-up fashion based onR0-R2, and eventually
the entryOspfRoute("SJ","192.168.1.9/32") shows that “pre-
fix 192.168.1.9/32 in the OSPF route table of routerSJ.” On
the other hand, there is no("LA","192.168.1.9/32") entry, be-
cause the dependencies are not met.

Effectively, a simple query overOspfRoute can reveal the
OSPF routes on all routers to the operators without requiring
them to understand how the route propagation works across
distributed network devices. Figure 4 shows that the knowl-
edge regarding complicated services like VPLS can be mod-
eled with a stack of dependent views. Operators only need to
query the top viewActiveVPLSLink to acquire a list of enabled
VPLS connections, without understanding the details of all
the dependent protocols, such as MPLS, RSVP,etc.

3.3 Misconfiguration prevention
COOLAID usesconstraintsto detect and prevent misconfig-

uration. The constraints dictate what data should not ap-
pear if the database is in a good state. That is,COOLAID

rejects an operation (e.g., made by operators who under-
estimate the network-wide impact) if the outcome would vi-
olate the given constraints,before the changes take effect
on the routers. As a result,COOLAID can help prevent unde-
sired properties, such as network partitioning, service dis-
ruption, or large traffic shift. Constraints exist in traditional
relational database management systems (RDBMS), but are
usually limited to uniqueness of primary keys and referential
integrity of foreign keys. In contrast,COOLAID allows more
expressive constraints capable of reasoning about multiple
devices and different network service layers.

Specifically, inCOOLAID, a constraint is defined the same
way as views by a set of rules. A constraint is satisfied if
and only if the associated view is evaluated to an empty list.
Conceptually, each entry in a non-empty constraint view cor-
responds to a violation to a desired network property.

Constraints help prevent misconfigurations when com-
bined with our new transaction primitive (described in §3.6.)
In essence, a group of network intended changes are de-
clared as a transaction and executed in an all-or-nothing
fashion. The changes are effective only if the transaction
commits. Before committing a transaction,COOLAID checks
if any constraints are violated by the changes, and if so aborts

the transaction. For example, an access router has two inter-
faces connecting to the core network, and one of them is
shut down for maintenance. If an operator mistakenly at-
tempts to shut down the other link, such an operation (on
CInterface table) would not be committed, because it vio-
lates the constraint that an access router must be connected
to the core. Such support automates a network-wide “what-
if” analysis, avoiding erroneous network operations due to
operators’ lack of understanding of complex network func-
tions or their inability to reason at a large scale.

3.4 Configuration automation
COOLAID supports a new primitive of automating network

configuration by allowingwritesto view tables. Specifically,
COOLAID allows the operators to specify intended network
changes as insert/delete/update to view tables, then automat-
ically identifies a set of low-level changes to config tables
that can satisfy the given intention. For example, an op-
erator can express goals, like establish a VPLS connection
between two interfaces, by a simple view insert statement,
ActiveVPLSConnection.insert("intA","intB").

The traditional mindset for configuration management is
that operators (i) change the configurations on one or more
devices and (ii) check if a network feature change is effected.
These two steps are repeated until the check succeeds. For a
failed network check, the operators reason about the symp-
tom and fulfill the missing dependencies based on domain
knowledge. InCOOLAID, to the contrary, operators can stay
unaware of how to realize certain network functions, instead
they specify at a high-level what functions they need. In
the previous example, the operator only needs to deal with
ActiveVPLSConnection view, rather than fiddling with all the
dependent network functionalities.

3.5 Network property enforcement
COOLAID allows the operators to specify certain properties

to enforce on the network. For example, a network may be
required to configure loopback IP address on every router,
and establish full-mesh iBGP sessions. We model a de-
sired network property also using constraint views, while an
empty constraint means that the associated property is valid
on the network. When the underlying network changes,e.g.,
with a new router introduced, constraint violations may oc-
cur, meaning that certain network-wide properties no longer
hold. COOLAID takes advantage of deletion operations on a
view to automatically resolve the constraint violations. For
example, by callingLoopbackAddressConstraint.remove all(),
COOLAID automatically changes related configuration tables,
say modifyingCIntfPrefix table to configure the loopback
interfaces in question, so that the constraint view becomes
empty. This means that the operator only needs to specify
the desired properties, andCOOLAID can automatically en-
force them in the face of dynamic network changes.

3.6 Atomic network operations
Device failures during network operations are not uncom-

mon, especially in large-scale networks. If not handled

5

Query

Processing (§4.1)

Updatable View

Solver (§4.2)

Transaction

Management (§4.3)

Network-wide

Reasoning (§3.2)

Misconfiguration

Prevention (§3.3)

Atomic

Operations (§3.6)

Configuration

Automation (§3.4)

Property

Enforcement (§3.5)

COOLAID Primitives

COOLAID Techniques

enables

Figure 5: COOLAID primitives and techniques

properly, they often put the network in inconsistent states.
A network operation involving configuring several routers
might be abandoned half way because of unforeseen circum-
stances, such as an unexpected transient network failure, or
overloaded routers. Current operational procedures would
require a manual rollback, which may be incomplete, leav-
ing “orphaned” configuration excerpts and leading to secu-
rity holes or unintended network behavior.

The problem in the above example is due to the lack
of “all-or-nothing”, or atomicity, in network management
primitives. In fact, we argue that the ACID properties of
transactional semantics (§4.3), namely atomicity, consis-
tency, isolation, and durability, are all highly desirableas
primitives to compose network operations. They are pro-
vided naturally inCOOLAID by the database abstraction.

We note that modern routers already allow atomic config-
uration changes on a per-device basis. In contrast,COOLAID

not only extends such semantics to anetwork-widefash-
ion, but also supports additional assertions on network-wide
states, by checking constraint views, to validate transactions.

3.7 Summary
In this section, we have presented an overview of the

COOLAID framework. COOLAID builds on a database abstrac-
tion that captures all aspects of the network and its opera-
tions in a data model, consisting of regular, config, and status
tables. COOLAID allows vendors and providers to collabora-
tively capture domain knowledge in the form of rules, in a
declarative query language. By leveraging such knowledge,
COOLAID provides new network management primitives to
network operators, including network-wide reasoning, mis-
configuration prevention, configuration automation, network
property enforcement, and atomic network operations, all in
the same cohesive framework.

4. TECHNIQUES
In this section, we explain key techniques thatCOOLAID

utilizes to enable the network management primitives de-
scribed in §3. Figure 5 shows their relationships.

4.1 Query processing
Query processing is essential for network-wide reasoning

(§3.2) and misconfiguration prevention (§3.3). We highlight
a few design choices in building the query processor effi-
ciently, despite the differences betweenCOOLAID and con-
ventional RDBMS.

First, besides traditional database-style queries,COOLAID

heavily relies on recursive queries due to the distributed na-

View1(x,y) :- View1(x,z), View2(y,z)

Propagation

Exploration

View2(y,z) :- Config1(z), Regular1(y,z)

Constrain possible values

Bound

Figure 6: Solving updatable view operations

ture of network protocols. Recursive query evaluation and
optimization is a well-studied area in databases [29]. Recent
work has also examined recursive queries in a distributed en-
vironment with a relaxed eventual consistency model [23].

Second,COOLAID manages a much smaller amount but dis-
tributed data. The largest portion of the data comes from
configurations. If we assume that a configuration file is
100KB on average, and there are a thousand routers in a net-
work, then we need roughly a hundred megabytes of space
to store the raw data. On the other hand, the configura-
tion exists on different routers might require hundreds of
milliseconds of round-trip time to access, for a typical ISP
with national footprints. Therefore, we always first aggre-
gate all data to the main memory of a centralized master
node (§5.1) before query evaluation. Centralized process-
ing is also preferred in order to enforce a strong consistency
model as opposed to the eventual consistency model [23].
Once all data are available, we apply the semi-naı̈ve evalu-
ation algorithm [29], which is both efficient and generic, to
evaluate recursive queries.

We further apply the technique ofmaterialized view main-
tenanceto speed up query performance. The entire contents
of all views are cached in memory once computed, rather
than generated on-demand at each query evaluation time.
Each view has the meta data that describe which base tables
it depends on. Once the base tables of a view are updated,
the view isincrementallyupdated by only computing the dif-
ferences to reduce overhead.

4.2 Updatable view solver
Updatable view operations, like view insertions or dele-

tions, enable configuration automation (§3.4) and network
property enforcement (§3.5). Underneath the simple APIs
called by operators,COOLAID controller finds the config table
entries to change to realize the intended view changes.

We explain two techniques to update views with differ-
ent trade-offs. In practice, we use a combination of both
to achieve the best performance and usability. First, we de-
signed an automatic updatable view solver, using standard
techniques from Prolog, such as exploration and propaga-
tion. As illustrated in Figure 6, to insert an entry(x,y)
into View1, we need to recursively guarantee tuples(x,z) and
(z,y) are inView1 andView2. If there are no such combina-
tion, a recursive view insertion is attempted. For the valueof
x andy, we can directly propagate from the left-hand side to
the right-hand side. But we have to enumerate the possible
values forz and try them one-by-one: some guessed values
may not be possible to insert intoView2, for example. For
non-recursive rules, the recursion in this solving processis

6

bounded by the level of dependencies. For recursive rules,
this solving process might be expensive: for example, to in-
sert tuple(x,y) into View1, we need to further insert(x,z)
into View1, and this may go on many times. There are two
key factors that keep this process feasible: (i) We do not
change regular tables, because the values are treated as facts
of the network. As a result, regular tables bound the domain
for many fields in views. For example,View2 is defined by
joining a config table and a regular table, so the tuples in
View2 can only possibly come fromRegular1. In this case,
COOLAID can bound the exploration for literalz, when insert-
ing to View1. (ii) Network functionalities are almost always
cumulative, so that negations rarely occur in the rules. This
greatly reduces the search space.

Note thatCOOLAID prunes the solutions that violate con-
straints. The key benefit of this approach is thatCOOLAID only
needs a single solver to handle all protocols and features.
The main downside, however, is that the results provided
by the solver may not always be preferred. The is because
many solutions can be found to satisfy the same updatable
view operation. For example, if we want to establish IGP
connectivity on a set of ISP core routers, we can use OSPF,
IS-IS, or simply static routes. With OSPF, we can configure
a subset of the interfaces to establish a spanning tree touch-
ing all routers, still enabling all-pair connectivity, although
this is clearly undesired for reliability concerns. In practice,
we assign customizable preference values to different rules,
so that the solver prioritizes accordingly.

Second, an alternative solution is to allow the rule com-
posers to customize resolution routines for view insertion
and deletion. For example, when an insertion is called on a
view, the corresponding resolution routine is executed based
on the value of the inserted tuple. The key benefit is that rule
composers have better control over the resulting changes to
the network. Such resolution routines can explicitly encode
the best practice. For example, to enable OSPF connectivity,
we can customize the routine to configure OSPF on all non-
customer interfaces in the core network, comparing to the
generic solver that may give a partial configuration. The flip
side is the extra work on rule composers to develop these
routines, comparing to using a generic solver to automat-
ically handle the intended changes. Based on our experi-
ence, however, such resolution functions are very simple to
develop, largely thanks to the unified database abstraction.
Also, this requires one-time effort by vendors or network ex-
perts, while the operators can stay unaware of such details.

4.3 Transaction management
Misconfiguration prevention (§3.3) and atomic network

operations (§3.6) both rely on the transaction processing ca-
pability in COOLAID. We describe the transactional semantics
and our design choices.

In the context of databases, a single logical operation on
the data is called a transaction. Atomicity, consistency, isola-
tion, and durability (ACID) are the key properties that guar-
antee that database transactions are processed reliably. In

COOLAID, a network operational task is naturally expressed
as a distributed database transaction that may span across
multiple physical devices. In our data model, the regular
tables inherit the exact ACID properties from a traditional
RDBMS. Interestingly, we find that ACID properties natu-
rally fit config tables as follows:
Atomicity: The configuration changes in an atomic opera-
tion must follow an “all-or-nothing” rule: either all of the
changes in a transaction are performed or none are.COOLAID

aborts a transaction if failure is detected, and rolls back to
the state before the transaction started. Note that atomicity
also applies in a distributed transaction where config changes
involve multiple devices. The atomic feature greatly sim-
plifies the management logic in handling device and other
unexpected failures.
Consistency:The database remains in a consistent state be-
fore the start of the transaction and after the transaction ter-
minates regardless of its outcome. The consistency defini-
tion in COOLAID is that all constraints must be satisfied. Be-
fore each commit in a transaction,COOLAID checks all the
constraints. In case of constraint violations, an operatorcan
simply instructCOOLAID to roll-back thus abort the transac-
tion, or resolve all violations and still proceed to commit.
The database ends up in a consistent state in both cases.
Isolation: Two concurrent network operations should not in-
terfere with each other in any way,i.e.,as if both transactions
had executed serially, one after the other. This is equivalent
to the serializable isolation level in a traditional RDBMS.
For example, an operation in an enterprise network might
be to allocate an unused VLAN in the network. Two of
such concurrent operations without isolation might choose
the same VLAN ID because they share the same allocation
algorithm. Such a result is problematic and can lead to se-
curity breach or subtle configuration bugs.COOLAID provides
transaction isolation guarantees to prevent such issues.
Durability: Once the user has been notified of the success
of a transaction commit, the configurations are already effec-
tive in the routers. Most commodity routers already provide
this property.

To implement the ACID transactional semantics in
COOLAID, we use the Two-Phase Commit protocol for atomic-
ity due to its simplicity and efficiency; we use Write-Ahead-
Logs for crash recovery; and we use Strict Two-Phase Lock-
ing for concurrency control [28]. These design decisions are
customized for network management purposes. For exam-
ple, we favor conservative, pessimistic lock-based concur-
rency control because concurrent network management op-
erations occur much less frequently than typical online trans-
action processing (OLTP) workload, such as online banking
and ticket booking websites. Once two concurrent network
operations have made conflicting configuration changes, it is
very expensive to roll back and retry one of them. We choose
to prevent conflicts from happening, even at the cost of lim-
iting parallelism. We discuss the detailed implementations
of transaction management in §5.1.

7

5. IMPLEMENTATION

Queries Operations

Rules
Transaction

Manager
Query

Processor
Meta-data
Manager

Controller

Tables

Global
Config
Tables

Global

Tables

Global
Status
Tables

Data
Model

Tables

Global
Regular
Tables

Master
Node

Router1

ConfigConfig
Tables

Regular
Tables

Status
Tables

RouterDB

Router2

PostgreSQL

ConfigConfig
Tables

Status
Tables

RouterDB

Figure 7: COOLAID system architecture

The overall system architecture ofCOOLAID is depicted
in Figure 7. We have implemented a prototype system in
roughly 13k lines of Python code with two major software
pieces described next.

5.1 Master node
The master node unifies all data sources and manages

them as a centralized database. We use PostgreSQL as the
backend to manage regular tables. Each physical router is
managed by a RouterDB (§5.2) instance, which exports the
corresponding config tables and status tables. The config ta-
bles on RouterDBs are aggressively combined and cached
on the master node for performance improvement. When an
entry in a config table is modified, the appropriate RouterDB
instance will be identified and notified (known as horizontal
partitioning in data management) based on the primary key
of the entry, which has the physical router ID encoded.

The controller on the master node has three components:
Query processor: The query processor first parses the
declarative rules and rewrites them in expressions of re-
lational algebra (set-based operations and relational oper-
ators such as join, selection and projection). We imple-
mented a library in Python, with a usage pattern similar to
Language INtegrated Query (LINQ) in the Microsoft .NET
framework [2], to express and evaluate those relational ex-
pressions. The library is capable of integrating queries from
Python objects, tables in PostgreSQL, and XML data. We
implemented the algorithm described in §4.1 for query eval-
uation and view maintenance and an updatable view solver
described in §4.2.
Meta-data manager: Meta-data, such as the definitions of
all tables, views and constraints, are managed in the format
of tables as well. In particular, the controller manages the
meta-data by keeping track of the dependencies between the
views, which is used by the view maintenance algorithm
(§4.1) for caching and incremental updates, and updatable
view operations (§4.2).

Transaction manager: The master node serves as a dis-
tributed transaction coordinator, and passes data recordsto
and from the underlying local database engines. It does not
handle any data storage directly, and achieves the transac-
tional ACID properties as follows:

Atomicity and durabilityare achieved by realizing the
two-phase commit protocol (2PC) [28] among the underly-
ing database participants (i.e., PostgreSQL and RouterDB
instances): In phase 1, the master node asks all of the par-
ticipants to prepare to commit. The transaction aborts if any
participant responds negatively or fails to reply in time. Oth-
erwise, in phase 2, the master node flushes the commit deci-
sion to a log on disk, then asks all nodes to commit.

Consistencyis enforced by checking all constraints after
the commit request is received. Unless all constraints are
satisfied (directly or through violation resolution), the 2PC
protocol starts to complete the transaction.

Isolation is enforced by a global lock among transactions
in the current prototype. Effectively, this only allows a sin-
gle transaction at a time—the most conservative scheme.
While it clearly limits the parallelism in the system, serial-
izing them is acceptable as backlog is unlikely even in large
networks. Using finer-grained locks for higher parallelism
could introduce distributed deadlocks, which could be costly
to resolve. We leave exploring this trade-off as future work.

To recover from a crash of the master node, the transac-
tion manager examines the log recorded by the 2PC protocol.
It will inform the participants to abort pending transactions
without commit marks, and recommit the rest. If the master
node cannot be restarted, it is still possible for network op-
erators to directly interact with individual RouterDBs. This
allows raw access and control over the network for emer-
gency and manual recovery. We talk about removing master
node as a single point of failure in §7.

5.2 RouterDB

NETCONF

API
XML

schema

mapper

config tables

status tables
RouterDB

Figure 8: RouterDB implementation

RouterDB provides a 2PC-compliant transactional
database management interface for a single router device.
Our current prototype works for Juniper routers, but can be
easily extended to other router vendors. RouterDB utilizes
the programmable APIs standardized by the Network Con-
figuration Protocol (NETCONF) [3] to install, manipulate,
and delete the configuration of network devices over XML.

When a RouterDB instance starts, it uses a given creden-
tial to initiate a NETCONF session overssh with the corre-
sponding router, and fetches the currently running configu-
ration in XML format. Then a schema mapper is used to
convert configurations from the tree-structured XML format
into relational config tables.

8

Transaction APIs: To update config tables, a transaction
must be started by calling thebegin txn RouterDB API. It
saves a snapshot of the current configuration in XML, and
returns a transaction context ID. Further data manipulation
operations, such asinsert, update, delete to the config ta-
bles, must use the ID to indicate their transaction affiliations.
Once a manipulation call is received, the schema mapper
converts it back to an XML manipulation snippet, and uses
theedit-config NETCONF API to change the configuration
on the router. Note that this change is made to a candidate
target, which is separate from the running configuration of
the router. Then, the updated configuration in the candidate
target is fetched, and the change is propagated to the config
tables via the schema mapper.

To be compliant with the two-phase commit protocol
used by the master node, RouterDB implements theprepare,
commit, androllback APIs. When executingprepare(), the
configuration in the candidate target is validated by the
router. An invalidated configuration will raise an exception
so that the transaction will be aborted. Duringcommit(), the
configuration in the candidate target is first made effectiveby
issuing acommit NETCONF call, and then the saved snap-
shots are freed. Duringrollback(), the candidate target is
discarded on the router.
Placement:We chose to host a RouterDB close to the corre-
sponding router,e.g.,on the same LAN, reliably connecting
to the dedicated management interface. The placement is
advantageous over hosting RouterDB on the physical router
itself because: (i) Data processing on RouterDB is isolated
from other tasks on the router, and it is guaranteed not to
compete for router resources (e.g.,CPU and memory); (ii)
When RouterDB is separated from the router, it is much
more likely to differentiate failures between RouterDB and
the physical router from the master node, and treat them
differently; (iii) Only selected high-end commercial routers
provide enough programmability to build RouterDB [21].
On the other hand, by placing RouterDB close to the router
instead of the master node, we have the opportunity to re-
duce the amount of data transferred from RouterDB to the
master node, by pushing some database operators, such as
filters, into RouterDB.
Handling failures: Following the Write-Ahead-Log proto-
col [28], RouterDB records every operation in a log file on
persistent storage. When recovering from a previous crash,
RouterDB locates all ongoing transactions at the time of
crash, rolls back the ones that are not committed, and re-
commits those transactions that the master node has issued
commit commands.

During the downtime of a RouterDB instance, the master
node still has the configuration data in its cache so that it is
readable. However, any write requests will be denied. The
data in corresponding status tables become unavailable too.

Physical router failures detected by RouterDB are re-
ported to the master node, which temporarily marks the re-
lated entries in the regular table caches as “offline” so that

they do not show up in query results, until the physical router
comes back online. Operators cannot change configuration
or check status on the router during the offline time.

6. EVALUATION
We evaluated several key aspects ofCOOLAID to show that

it effectively reduces human workload and prevents miscon-
figurations in realistic management tasks, at the same time
scales to large networks. We used Juniper M7i routers run-
ning JUNOS V9.5. The Linux servers, which host master
nodes and RouterDB instances, were equipped with Intel
Dual Core 2.66GHz processors and 4GB RAM.

6.1 Automating configuration
We created the network topology of Internet-2 core net-

workwith 10 routers and 13 links on top of the ShadowNet
platform [10] for network experimentation. The actual
router instances are distributed across Texas, Illinois and
California. Besides the links in the topology, each router has
another interface connecting a local virtual machine, simu-
lating a customer site. We run one RouterDB for each router
and a single master node in Illinois. All routers in this ex-
periment started with minimum configurations that only de-
scribe interface-level physical connectivity.

Our goal is to configure a VPLS service connecting two
customer-facing interfaces on two different routers. Thisis
a heavily involved procedure as operators need to deal with
allocating interface IPs, configuring OSPF or IS-IS routing,
iBGP sessions, building a MPLS network with RSVP sig-
naling, establishing LSPs and finally the VPLS instances.

If an operator were to manually perform the task entirely,
she must start with executing at least 25 lines of config-
uration commands on average on all routers, and 9 addi-
tional lines on the two customer-facing routers, in total 268
lines. For larger networks with more routers and links, this
number should increase linearly. The lines of configuration
changes is measured byshow configuration | display set on
JUNOS, which displays the current configuration with mini-
mum number of commands. In reality, the actually executed
commands are usually more. Besides, this number does not
reflect the manual reasoning effort to realize this VPLS ser-
vice, which commonly requires multiple iterations of trial-
and-test and accessing low-level CLIs.

In COOLAID, enabling such a complicated service re-
quires a single operation by the operator, calling
ActiveVPLSConnection.insert(int1 id,int2 id). This stays the
same no matter how large the network is. Also, the operator
does not have to deal with any of the dependencies.

6.2 Handling network dynamics
In contrast to the previous setup, we started with a well-

configured 9-router subset of the Abilene network topol-
ogy on ShadowNet. The intention is to study howCOOLAID

enforces network properties when new, barely configured
routers are introduced in an existing network. When the reg-
ular tables were updated to include the 10th router and the
associated links, several network properties that were spec-

9

ified as constraints were immediately flagged as violated.
For example,LoopbackAddressConstraint showed that the new
router did not have an loopback interface configured with a
proper IP address andBGPFullMeshConstraint reported that the
new router had no iBGP sessions to other routers.COOLAID

checks constraints for property enforcement whenever there
is a network change, and automatically tries to resolve the vi-
olations. In this case, the customized view solver was used
to produce 26 lines of config changes on the new router, and
9 lines on the existing routers for iBGP sessions, such that
specified network properties are enforced automatically.

6.3 Performance
In this section we isolate the DB processing capability

from device access overhead to evaluate the performance of
the view query processor and the view update solver.

Network Abilene 3967 1755 1221 6461 3257 1239
Router # 10 79 87 108 141 161 315
Link # 13 147 161 153 374 328 972

Time (ms) 0.3 20 24 28 73 116 592

Table 1: Query processing time forOSPFRoute

Processing queries:To evaluate the query processing per-
formance, we chose the recursive viewOspfRoute because it
is one of the most expensive queries, where the complex-
ity grows quadratically with the network size. We use the
topologies of Abilene backbone and five other ASes inferred
by Rocketfuel [33]. The config tables were initialized such
that all interfaces on each router are OSPF enabled, includ-
ing the loopback interfaces. Then we queriedOspfRoute to
get the OSPF routes on all routers for each topology. The
query time is showed in Table 1. It only took 0.3ms to
complete the query for Abilene. For the largest topology
on AS1239 with 315 routers and 972 links, it took less than
600ms. This suggests that processing queries has negligible
overhead compared with device related operations, such as
physically committing config to routers (on the order of tens
of seconds on the Juniper routers).

Case 1: OSPF Case 2: iBGP Case 3: iBGP w/ OSPF
14.112s 14.287s 0.025s

Table 2: Time to solve view updates

Solving view updates: We tested our view update solver
in three cases with the Abilene topology. We picked a pair
of routers (r1 andr2) that are farthest from each other in the
topology. In Case 1, starting with the minimal configuration,
we inserted two tuples intoOspfRoute, intending to have the
loopback IPs ofr1 andr2 reachable to each other via OSPF.
In Case 2, also starting with the minimum configuration, we
inserted a single tuple inActiveIBgpSession, intending to cre-
ate an iBGP session betweenr1 andr2. In Case 3, we started
with a network with OSPF configured on all routers, and per-
formed the same operation as in Case 2. As captured by the
rules, active iBGP sessions depend on IGP connectivity, so
in Case 2 the solver automatically configured OSPF to con-
nectr1 andr2 first and then configured BGP on both routers.

Table 2 shows the running time for each case. We ob-
serve that (i) Case 3 was much faster, because the solver
was able to leverage existing configurations; (ii) Case 1 and
Case 2 took about the same amount of time, because the
OSPF setup dominated. The OSPF setup in Case 1 is slow
because it starts with a network without configuration and
requires multiple levels of recursion to solve this view in-
sertion. While 14 seconds is not short, in practice, one only
needs to configure OSPF for a network once, and most of
the common tasks, including configuring a new router to run
OSPF, are incremental to existing configurations, thus can
be done quickly, like in Case 3.

We also evaluated the same tasks using the rules with cus-
tomized resolution routines. In this case, view update oper-
ations are achieved by calling a chain of hard-coded resolu-
tion routines, thus the reasoning overhead is zero.

6.4 Transaction overhead

Step 1 Step 2 Outcome
w/o COOLAID 8.4s 8.4s Disconnected network
w/ COOLAID 8.4s Rejected Disruption avoided

Table 3: Network operations with and without COOLAID

To study the device-related performance and transaction
overhead, we use the following setup. First, we assume 3
routersr1-r3 with pair-wise links, and all routers are config-
ured with OSPF. In step 1, we shut down the link betweenr1
andr2 (by disabling one of its interfaces). Such operations
are common for maintenance purpose and benign, because
the network is still connected. In step 2, we try to shut down
the link betweenr1 andr3 to emulate a misconfiguration
that would cause a network partition.

We compare the experience of usingCOOLAID to perform
such operations with using a script that directly calls NET-
CONF APIs, and then show the result in Table 3. Without
COOLAID, the two steps took 8.4 seconds each, ending with
a disconnected network. The time is mostly spent by the
router internally to validate and commit the new configura-
tion. With COOLAID, step 1 takes the same amount of time,
suggesting a negligible overhead in constraint checking or
any other extra overhead introduced byCOOLAID. Because we
specified a constraint that every router’s loopback IP must be
reachable to all other routers, step 2 is rejected byCOOLAID

before it could take effect on the actual routers.

7. DISCUSSION
Feasibility: Using the database abstraction and the declara-
tive rules represents a drastic but reasonable shift. First, net-
work databases are commonly practiced in modern ISPs [7].
The emerging trend of XML-based configuration files fur-
ther reduces the effort, since XML files can be directly
queried. Second, according to our experience, the time-
consuming part of writing the rules is to derive the correct
dependency by reading documentations and performing field
tests. In reality, we found the amount of work manageable
for a single graduate student to decipher VPLS, despite the

10

complex dependency involved. Furthermore, as we have
suggested, we envision an environment where, in addition
to providing the text documents, vendors can also provide
libraries of rules. Such an approach greatly simplifies the
service creation by service providers.
Deployment: While COOLAID is designed to take over man-
aging the whole network, we note that it is amenable to a va-
riety of partial deployment scenarios. For example,COOLAID

can initially work in a read-only mode to assist network rea-
soning. When operators are comfortable enough about using
the new database primitives, they can gradually enable write
permission to config tables. Note that configuring certain
network features do not require touching all routers.
Availability: In the current centralized implementation, the
system is not available when the master node is offline. To
remove this single point of failure, we can adopt the repli-
cated state machine approach [32] where multiple copies
of theCOOLAID controller are running simultaneously as pri-
mary node and backup nodes. Another alternative is to adopt
a fully decentralized architecture, where all query process-
ing and transaction management is handled in a distributed
fashion by RouterDB instances. There are sophisticated al-
gorithms and protocols, such as Paxos commit [16], that are
designed for this scenario. How they compare with the cen-
tralized architecture in performance and ease of maintenance
is an interesting direction for our future work.
Limitations: (i) Routing protocols are not transaction-
aware, as they require time to converge upon configuration
changes. The order and timing of such changes are impor-
tant in determining the consequences,e.g.,temporary rout-
ing loops and route oscillations. Therefore, transaction roll-
back support for handling failures in such tasks is usually in-
adequate without creating case-specific handlers to deal with
failure exceptions. (ii) It is possible that some resourcesare
released during the transaction execution and cannot be re-
acquired in the case of rollback. The problem could be ad-
dressed through a locking mechanism to hold the resources
until the transaction finishes. (iii) We assume the set of con-
straints are complete to prevent inconsistent states; however,
this is difficult because new constraints can be introduced
and discovered over time. One potential solution is to roll-
back previous operations to a point where no constraints, in-
cluding the new ones, are violated, and then replay the trans-
actions, such as updateable view operations. (iv)COOLAID

currently does not address the issues of protocol optimiza-
tion, e.g.,tweaking the OSPF link weights for traffic engi-
neering [14]; however, existing techniques can be invoked
in the customized view solvers to integrate their results with
our data model.

8. RELATED WORK
Network management:A clean-slate approach to configu-
ration management is advocated in CONMan [4], in which
protocols are abstracted as modules and network configura-
tion is done through piping the modules. Template-driven
approaches [15, 12] are commonly used in production en-

vironments. A template program extracts parameters from
provisioning databases and generates configuration snippets,
optionally with some validation [35]. Unfortunately, the
dependencies among templates and between the generated
snippets and the existing configurations, still need to be re-
solved manually. Sunget al. built a query engine for evalu-
ating Class of Service (CoS) configuration [34]. In contrast,
COOLAID advocates using declarative rules as a concise repre-
sentation of domain knowledge, which can be contributed by
both vendors and service providers. The reasoning support is
generic to all services.COOLAID further provides constraint
checking with transactional semantics, not simply emitting
configuration snippets to network devices. Relating to the
4D project [17],COOLAID fulfills the functionalities of the
decision and dissemination planes. KarDo [22] automates
generic operations on PCs, and the enabled automation does
not apply to complex network management tasks.

There are also many existing systems that apply rule-
based approaches to general system management. On the
commercial side, IBM’s Tivoli management framework and
HP’s OpenView allow event-driven rules to be expressed
and automated for system management. These languages
are best suited for reacting to system condition changes by
triggering pre-defined procedural code, but not suitable for
specifying domain knowledge of network protocol behav-
iors and dependencies. On the research side, InfoSpect [31],
Sophia [36] and Rhizoma [37] all proposed to use logic pro-
gramming to manage nodes in large-scale distributed sys-
tems such as PlanetLab or cloud environments. Providing
advanced support for and meeting the distinct requirements
of network management,COOLAID’s main techniques differ
drastically from those systems. For example, features like
distributed recursive query processing, view update resolu-
tion, and transactional semantics with constraint enforce-
ment, are all unique toCOOLAID. PoDIM [11] is a languange
designed to express cross-machine constraints in an enter-
prise environment.COOLAID captures more general and com-
plex dependencies and constraints in wide-area networks.

In the enterprise network management space, Ethane [8]
and NOX [18] focus on network flow access control manage-
ment. Along the same line, Flow-based Management Lan-
guage [19] is based on the Datalog syntax to express policies
of flow control. These resemble most of the policy-based
network management work [1]. In contrast, the language
proposed inCOOLAID effectively captures domain knowledge
in protocol behaviors and dependencies.
Declarative systems:Declarative programming in system
and networking domains has gained considerable attention
in recent years. The declarative networking project proposes
a distributed recursive query language to specify and imple-
ment traditional routing protocols at the control plane [25,
30]. The declarative approach has been explored by numer-
ous projects,e.g.,to implement overlays [24], data and con-
trol plane composition [26], and specify distributed storage
policies [5]. Compared to those studies,COOLAID focuses

11

on re-factoring current network management and operations
practices. Specifically, inCOOLAID the declarative language
is used for describing domain knowledge, like dependencies
and restrictions among network components, as opposed to
implementing protocols for execution or simulation. As a
stand-alone management plane,COOLAID orchestrates net-
work devices in a declarative fashion, while not requiring
the existing routers to be modified.
Databases:Database technologies are routinely utilized as
part of network management and operations. One class of
existing work, represented by NetDB [7], uses a relational
database to store router configuration snapshots, where one
can write queries to audit and perform static analysis of ex-
isting configurations in an offline fashion,e.g.,for BGP [13].
From a network operator’s perspective, the database is read-
only and is not necessarily consistent with live configura-
tions. In contrast,COOLAID provides a unifying database ab-
straction that integrates router configurations, live network
status and provisioning data, provides transactional write op-
erations to change network configurations, and enforces con-
straints to detect and prevent policy violations during opera-
tion, as opposed to a postmortem support tool.

To realize the database abstraction ofCOOLAID, we take
advantage of many existing techniques and concepts in
the database literature, including recursive query optimiza-
tion [29], distributed transaction processing [28], updatable
materialized views [6],etc. However, we note that while
some of these features are becoming available in commercial
database products, no existing database systems support all
of these features, or work with commodity routers as back-
end storage. To our knowledge,COOLAID is the first system
that integrates these features with unique optimizations cus-
tomized for network management and operations.

9. CONCLUSION
We presentedCOOLAID as a unifying data-centric frame-

work for network management and operations, where the do-
main expertise of device vendors and service providers can
be systematically captured, and where protocol and network
dependencies can be automatically exposed to operational
tools. Built on a database abstraction,COOLAID enables new
network management primitives to reason and automate net-
work operations while maintaining transactional semantics.
We described the design and implementation of the proto-
type system, and used case studies to show its generality and
feasibility. Our future plan is to improve the design and im-
plementation ofCOOLAID by adding new management primi-
tives, increasing concurrency, and improve reliability. While
COOLAID currently covers a variety of dominant network op-
erations that rely on configuration changes, we also plan to
exploreCOOLAID’s applicability in other management areas
such as fault diagnosis and performance management.

10. REFERENCES
[1] IETF Policy Framework Charter.http://ietf.org.
[2] LINQ. http://msdn.microsoft.com/netframework/future/linq/.
[3] Network configuration (netconf).

http://www.ietf.org/html.charters/netconf-charter.html.

[4] H. Ballani and P. Francis. CONMan: A Step Towards NetworkManageability.
In Proceedings of SIGCOMM, 2007.

[5] N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and R. Grimm. PADS: A Policy
Architecture for building Distributed Storage systems. InProc. of NSDI, 2009.

[6] A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relational Lenses: A Language
for Updateable Views. InProceedings of of PODS, 2006.

[7] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford. The cutting EDGE of IP router configuration. InProceedings of
HotNets Workshop, 2003.

[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: taking control of the enterprise. InProceedings of SIGCOMM, 2007.

[9] X. Chen, Z. M. Mao, and J. Van der Merwe. PACMAN: a Platformfor
Automated and Controlled network operations and configuration
MANagement. InProceedings of CoNEXT, 2009.

[10] X. Chen, Z. M. Mao, and J. Van der Merwe. ShadowNet: A Platform for Rapid
and Safe Network Evolution. InProceedings of USENIX ATC, 2009.

[11] T. Delaet and W. Joosen. PoDIM: A language for high-level configuration
management. InProceedings of LISA, 2007.

[12] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg, S. Rao, and
W. Aiello. Configuration management at massive scale: system design and
experience. InProceedings of USENIX ATC, 2007.

[13] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with
Static Analysis. InProceedings of NSDI, 2005.

[14] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford. NetScope:
Traffic engineering for IP networks. IEEE Network Magazine,March/April
2000, pp. 11-19.

[15] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Automated Provisioning of
BGP Customers.IEEE Network, Vol. 17, 2003.

[16] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions
on Database Systems, 31(1):133–160, 2006.

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach to Network Control
and Management . InProceedings of SIGCOMM CCR, 2005.

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: towards an operating system for networks. In Proceedings of
SIGCOMM CCR, 2008.

[19] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, andS. Shenker. Practical
declarative network management. InProceedings of SIGCOMM WREN
Workshop, 2009.

[20] C. R. Kalmanek, et al. Darkstar: Using Exploratory DataMining to Raise the
Bar on Network Reliability and Performance. InProceedings of DRCN, 2009.

[21] J. Kelly, W. Araujo, and K. Banerjee. Rapid service creation using the junos
sdk. InProceedings of SIGCOMM CCR, 2010.

[22] N. Kushman and D. Katabi. Enabling Configuration-Independent Automation
by Non-Expert Users. InProceedings of OSDI, 2010.

[23] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. InProceedings of SIGMOD, 2006.

[24] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. InProceedings of SOSP, 2005.

[25] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
Routing: Extensible Routing with Declarative Queries. InProceedings of
SIGCOMM, 2005.

[26] Y. Mao, B. T. Loo, Z. G. Ives, and J. M. Smith. MOSAIC: Unified Declarative
Platform for Dynamic Overlay Composition. InCoNEXT, 2008.

[27] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse
Through Virtualization. InProceedings of HotNets Workshop, 2004.

[28] R. Ramakrishnan and J. Gehrke.Database Management Systems.
McGraw-Hill, third edition, 2002.

[29] R. Ramakrishnan and J. D. Ullman. A Survey of Research onDeductive
Database Systems.Journal of Logic Programming, 23(2):125–149, 1993.

[30] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate routing:
enabling controlled networking. InProceedings of SIGCOMM CCR, 2003.

[31] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect: Using a Logic
Language for System Health Monitoring in Distributed Systems. In
Proceedings of the SIGOPS European Workshop, 2002.

[32] F. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial.ACM Computing Surveys, 22(4), 1990.

[33] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with rocketfuel.IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[34] Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen. Modeling and
understanding end-to-end class of service policies in operational networks. In
Proceedings of SIGCOMM, 2009.

[35] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards Validated Network
Configurations with NCGuard. InProceedings of INM Workshop, 2008.

[36] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: an Information Plane for
networked systems. InProceedings of SIGCOMM CCR, 2004.

[37] Q. Yin, A. Schuepbach, J. Cappos, A. Baumann, and T. Roscoe. Rhizoma: a
runtime for self-deploying, self-managing overlays. InProceedings of
Middleware, 2009.

12

