Declarative Configuration Management
for Complex and Dynamic Networks

Xu Chen™® yunMao® z. Morley Mao® Jacobus Van der Merwe'
8 University of Michigan - Ann Arbor T AT&T Labs - Research

Abstract— Network management and operations are com- In a typical large Internet service provider setting, hun-
plicated, tedious, and error-prone, requiring signifidaumt dreds or thousands of network devices are distributed acros
man involvement and domain knowledge. As the complex- vast geographic distances, and their configurations collec
ity involved inevitably grows due to larger scale networks tively determine the functionality provided by the network
and more complex protocol features, human operators are in-The protocols and mechanisms that realize such network
creasingly short-handed, despite the best effort frontiegis ~ functionality often have complex dependencies that have to
support systems to make it otherwise. This paper presentshe satisfied for correct operations. Such dependencies are
cooLAID, a system under which the domain knowledge of de- often not precisely defined, or at least not expressed in-a sys
vice vendors and service providers is formally captured by tematic manner. When they are violated through miscon-
a declarative language. Through efficient and powerfutrule figurations, software bugs, or equipment failures, network
based reasoning on top of a database-like abstraction over droubleshooting becomes an extremely difficult task.
network of devices;ooLap enables new management prim- Despite these complexities, network management oper-
itives to perform network-wide reasoning, prevent miscon- ations still largely rely on fairly rudimentary technolegi
figuration, and automate network configuration, while re- With only a few notable exceptions for specialized tasks,
quiring minimum operator effort. We describe the design network configuration management is still performed via ar-
and prototype implementation aboLaipb, and demonstrate chaic, low-level command line interfaces (CLIs). Vendors

its effectiveness and scalability through various reialisét- describe protocol dependencies and network-wide capabili

work management tasks. ties in device manuals or other technical documents. Net-
work engineers manually interpret these vendor documents

1. INTRODUCTION and in turn produce service provider documentation, which

Network management and operation arguably remains adescribes in prose with configuration excerpts, on how net-
domain that continues to thwart modernization attempts by work services might be realized. Similarly, disruptive ac-
the networking community. There are a number of reasonstivities like planned maintenance rely on the experience of
for this state of affairs. First, network managementis inhe human operators and their ability to interpret and follow-pr
ently difficult because of the scale, the distributed nasune cedures documented by domain experts to prevent undesired
the increasing complexity of modern communication net- side effects. In short, current network management prac-
works. Second, network management tools and practicestices depend on the knowledge base of domain experts cap-
fail to keep up with the ever—evolving and complex nature tured in documents meant for human consumption and fur-
of the networks being managed. Third, and perhaps mostther attempts to derive, from this captured knowledge, sys-
importantly, current network management approachesifail t tems and procedures to ensure that the correct documents are
capture and utilize, in a systematic fashion, the significan consulted and followed to perform network operations.
domain expertise (from vendors, service providers and pro- In cases where network operations have progressed be-
tocol designers), which in essenisghe foundational pillar ~ yond the capacity of human interpretation and manual exe-
enabling the continued operation of the network. cution of procedures, tools attempt to automate the proce-

dures that a human operator would have performed and/or
reverse engineer the protocol and network dependencies tha
Permission to make digital or hard copies of all or part of tvork for prevail in an existing network. For instance, sophistidate
personal or classroom use is granted without fee providatldbpies are natwork configuration management tools [12, 9] attempt to
not made or distributed for profit or commercial advantage that copies .
bear this notice and the full citation on the first page. Toyooiherwise, to capture the actions of human experts for subsequent automa-
republish, to post on servers or to redistribute to listguires prior specific tion. Existing fault and performance management practices

permission and/or a fee.
ACM CoNEXT 2010, November 30 — December 3 2010, Philade|phia involve, ".q part, reverse engineering protocol aCtlonsm
USA. pendencies [20]. Unfortunately, all such tools are highly

Copyright 2010 ACM 1-4503-0448-1/10/11$5.00.

specialized, each focusing on a specific management aspect configuration’s point of view. Setting up these services
In this paper, we presenboLaip (COnfiguring cOmpLex requires operators to understand voluminous configuration
and dynamic networks Automatically and Declaratively), a manuals and apply the knowledge to specific network se-
network management framework that automates a varietytups. A particular complication stems from the fact that net
of dominant network operations relying on configurations, work services or features are commonly dependent on each
while minimizing human involvement. The key idea is to other!. These dependencies are usually verbally described
formally capture the domain knowledge using a declarative in documentations and impose a steep learning curve.
logic-based language, then apply the knowledge on top of Network-wide reasoning is hard: Understanding the net-
a database-like abstract data model that represents tetwor work functionalities given the configurations on the phys-
wide information. As suchgooLaip can derive high-level ical devices is crucial for network management. Opera-
views for network-wide reasoning, automate network con- tors commonly ask (mostly themselves) questions like, “Is
figuration, and prevent misconfiguration, allowing operaito that MPLS/VPN instance configured correctly for the cus-
to better manage their networks without being exposed to thetomer?” and “What services might be impacted if | shut

overwhelming details. down this loopback interface?” Mistakes in answering these
We describe the design and implementatiorcobLaip, guestions might result in network-wide outages. Yet answer
and demonstrate the effectiveness and scalabiligpofaip ing these questions is difficult for two reasons: (i) Reasgni

in a realistic distributed network testbed and on other simu about each network feature requires understanding a chain
lated large-scale topologies. We expect tt@adLAID enables of dependent features; (ii) More importantly, understagdi

a move towards higher formalism in representing domain each feature requires not only inspecting individual devic
knowledge from different stakeholders and role playerg.(configurations but also reasoning about the distributed pro
device vendors, service providers, network managemehttoo tocol execution logice.g.,how the routes propagate through
developers), so that such knowledge can be captured withinOSPF within a network. The complexity quickly increases
the same framework and combined systematically to auto- with the number of network elements and network features,

mate network operations by systems likeoLap, funda- and therefore human errors in reasoning about complicated
mentally relieving the excessive burden on human operators protocols on thousands of routers become unavoidable, es-
This paper makes the following contributions: pecially when operators are constrained with short main-

tenance windows to rush management tasks. Even worse,
when multiple operators are working on the same network,

providers can be concisely captured using a declarative their concurrent actions, each might be fine to perform in-
language: dividually, can cause significant network disruptions it no

e Builds a unified data model abstracting network-wide Properly synchronized. This calls for an automation suppor
information to facilitate the automation of rule-based 0 accurately reason about network services and protocols
domain knowledge; at scale. To the best of our knowledge, no existing tool is

e Exemplifies distributed recursive query, updatable capable of providing such generic support.
view, and distributed transaction management as use-Networks are dynamic: Last but not the least, modern net-

ful enabling techniques for new and enhanced network works are quickly evolving. Besides providing new features

e Demonstrates with real-world examples of how do-
main knowledge from both device vendors and service

management primitives; much of the network evolution is purely driven by growth de-

e Implements and evaluates a prototype of theLAD mand,e.g.,adding core or edge routers to handle more cus-
system to automate a variety of useful network opera- tomers with higher throughput. These device introduction,
tions requiring minimal human involvement. upgrade and re-purpose activities are commonly performed

in today’s large networks, and they need to be handled cor-
2. MOTIVATION rectly and efficiently to ensure the continuous servicevdeli

Modern networks are complexity-plagued, large-scale, €ry. In general, removing devices must not interfere with
and highly dynamic. This is particularly true for large ISP existing network functionalities, while new devices must b
networks, which typically house thousands of devices inter configured with proper functionalities to become an integra
connected across dispersed geographic regions and suppogart of the networke.qg. to participate in OSPF routing or to

diverse network services and features. Next we explairethre establish iBGP sessions to other routers. Figuring out what
key challenges in managing such networks. to configure on the new devices is non-trivial and usually re-

. . quires reverse-engineering the existing network setups. R
Network functionalities are complex: Large ISPs support

a variety of revenue-generating network services in aoditi ~ ‘For example, as we later show in Figure 4, on commodity reuter
to traditional IP transit. For example, Virtual Private Net (€.g.,from Cisco or Juniper), setting up a VPLS (Virtual Private

; ; ; ; _ LAN Service, a form of VPN to provide layer-2 connectivityg-d
work (VPN) service, which allows multiple sites of a cus pends on establishing LSPs (Label-Switching Paths) and 8GP

tomer organization to be seamlessly connected together, an naling, while LSPs in turn depend on an MPLS- and RSVP-edable

Voice-over-IP (VoIP) service are commonly offered. Sup- network, and BGP signaling further relies on other facters,,a
porting these services is very challenging, even purelynfro properly configured IGP.

overview three key building blocks of the system, and then

/ Vendor / / Service provider / = >y
unfold the new network management primitives enabled by

Domain Knowledge —_

..... Manual cooLAID. The enabling techniques for these primitives are
l A Interaction described in 84, and our system implementation in §5.
,..‘ """""""""""" - 3.1 COOLAID building blocks
@ [SooLAD Conceptually, cooLap models a network of inter-
r ” connected devices as a distributed but centrally managed
H COOLAID database, exposing an intuitive database-style inteftace
/ Facts/ / Status/ / Configurations / operators to manage the entire network. Figure 1 depicts the
/ Physical Network / COOLAID bw_ldlng blocks with rounded—boxe_s, and their in-
teraction with operators and the network using dotted lines
Figure 1: cooLAID vs. manual management Data model: The data model creates a logically centralized

database abstraction and access point to cover all the tra-
dundant or missing Conﬁgurations result in redundant fea- ditional network management interfacesy which |arge|y in-
tures or, more problematically, non-functional networks. cjude reading and modifying router configurations, check-
quickly becomes cumbersome for operators when networking network status and provisioning data. The abstraction i
changes are frequent and network features are diverse. Thejesigned to work with commodity devices, and interopera-
emerging trend of network virtualization further raisee th ple with existing management tools. We define three types
bar [27], as the network inventory can be dynamically allo- of hase tablé’s (i) Regular tablestore fact-related data that
cated and the topology can be easily modified. An ideal sup- naturally fit into a conventional databased.,MySQL). (ii)
port to address this challenge is to allow the specificatfon o Config tablesstore thelive network configurations, in par-
network-wide properties, which are enforced no matter how ticylar, router states that are persistent across rebeats,
the network changes. Unfortunately, there is no systematic|p addresses and protocol-specific parameters. Status

support to address this need. tablesrepresent the volatile aspect of device/network state,
such as protocol running status, routing table entries, or
3. MANAGING NETWORKS IN COOLAID other dynamic status relevant to network health, for exam-

Our key observation about the current network manage- ple, pi ng results between routers.
ment practice is that the required domain expertise is unfor ~ The key benefit of having these tables is tbabLAD ab-
tunately not captured in a systematic manner for the purposestracts away the details of individual management intedac
of re-use and automation. Therefore, the current practice i and instead works on a unified abstraction, which funda-
inherently limited by human capability. As illustrated iigF mentally enables the systematic expression and integratio
ure 1 with solid lines, human operators play a central role to of domain knowledge from different role players as we de-
absorb a tremendous amount of domain knowledge and di-scribe next. We want to emphasize that the traditional us-
rectly interact with the underlying physical networks via a age of databases in network management is predominantly
variety of rudimentary interfaces,g.,router CLIs. In par- for archiving snapshots of network-related informatiofato
ticular, operators need to interpret netwdakts (e.g.,the cilitate subsequent analysis. In contrastoLAD uses the
list of routers, how they are connected, and customer ser-database notion as abstractionlayer that sits on top of
vice agreements), the curresinfigurationsand up-to-date the actual network for enabling new management primitives.
networkstatus(e.g.if a BGP session is indeed established), To enable a new distributed transaction suppodoLAaiD
based on which to reason about existing network-level func- chooses not to store data from config tables or status ta-
tionalities €.g.,if a VPN service is correctly configured for bles in a conventional SQL database but rather accesses them
a customer) or realize additional features by changing con-through software artifacts exposing database interfagfes.
figurations, and enforce network-wide constraietg, there describe how to enable this abstraction on commodity net-
must be a BGP full-mesh on core routers. work devices in §5.2.

To minimize human involvement, a management system Regular tables are only modified when necessary to reflect
must satisfy three requirements: (i) it must systematicall network change.g.,new devices or new customer agree-
and formally capture the domain knowledge, in particular ments. Config tables are always in-sync with the network
protocol dependencies and network-wide properties;n@) t devices, and modifying these tables causes actual corfigura
resulting representations should allow the system to expos tion changes. Status tables are read-only, and table gntrie
high-level management primitives for automating manage- are generated on-demand from traditional management in-
ment tasks; (iii) the system can re-use the knowledge baseterface, such as CLI and SNMP
o assist operators and o_ther network management tools in ®\We use the following naming convention: names of regularfigo
network-wide (cross-device) manner. and status tables begin with T, C, S respectively.

In this section, we de_SC_ribeOO'-AlD, a r_letwork man- 3status tables contain important information for variousiage-
agement system that satisfies these requirements. We firstnent operationse(g.,fault diagnosis). However, because this pa-

Rules: cooLap represents network management do- TR e, e,

. . . B Propagation . " Doésn’ '.,.

main knowledge, in particular protocol dependencies and SI o Povagme LA
. . . . Route .:@ SF:fe0 SJ:fe1@SJ:ge3 LA:ge0

network-wide requirements, as rules in a declarative query amed % =<
language. Each rule defines a database view table (or view in locally
short), which is derived from a query over other base tables o2 200 L0/32 Lo 1000052 o
or views. Intuitively, a view derives higher-level network T
properties €.9.,if a feature is enabled) based on lower-level R

information €.g.,the availability of the required configura-
tions and other dependent services.) Formalizing domain
knowledge as declarative rules has two benefits. First, view , OSPIROULE("SJ", "192.16B.L.9/32") §iitriiiisirsiinioniiiiniins i

ETInthonnection(” :fel", "g)", "SF:fe0", "SF")

querying is a well-defined procedure that hides intermedi- | oyu, \fnab'ed'nfﬂ"w "SF)

Figure 2: Example network with OSPF configuration

: CIntfOspf("SF:fe0")

i - . : EnabledIntf("S):fe1","S)")
ate steps and_presents meaningful end results to the opera SO0 NP et 5
tors. Comparing to a manual reasoning process, which is aoygy | T
inherently limited by human operatorsyoLaip can handle R e P o A TR
expanding knowledge base and network size with ease. Sec- Enabledinf(*SFlo07"5F)

Apply
RO =-»> Clnterface("SF:l00","enabled")
TRouterlntf("SF:lo0","SF")

ond, the rules can be re-used, as they can be queried many
times even on different networks. Note that operators do not
need to write any such rules. Specifically, we envision an en- Figure 3: Bottom-up view evaluation

vironment where (i) device vendors provide rules to capture

both device-specific capabilities and network-wide protoc ing OSPF route learning can be written as three rules in List-
configuration and dependency details (§3.2, §3.4) and (ii) N9 1. The rules are written in a d_eclargtive language based
service providers define rules on how these vendor capabil-on Datalog [291, where each rule is defined as

ities should be utilized to reliably deliver customer seea "l e-nane rule-head : - rul e_body; _ .
(§3.3, §3.5), and more importantly these rules operatemvith The rule head contains exactly one predicate as the view
the same framework. to be defined, and the rule body contains predicates and
Controller: As the “brain” of cootaip, the controller acts ~ Boolean expressions that derive the view. A rule is intu-
as a database engine to support straightforward database ogtively read as “if everything in the body is true, then the
erations, like table query, insertion and deletion. We will head is true.” . S _
explain in the following sections about how these operation ~ Rulero defines a vievenabl edint f for identifying the list
correspond to a set of new management primitives. By ap- ©f enabled interfaces in the network. It first joins a regu-
plying the rule-based domain knowledge onto the network lar tableTrout er I nt f that contains the router interface inven-
states stored in the data model, the controller signifigantl tory and a config tableinterface with interface setups, and
relieves the burden on operators. The operators can stay athen selects the interfaces that are configurett@sl ed'.

a high-level of interaction, without touching the low-léve Rule Rt captures how a router imports local OSPF routes,
details of the network. From the database perspective, theby stating that if an interface on a router is enabled (as in
controller supports recursive query processing, globatco Enabledintf) and configured to run OSPF (asdmtf Gspf),

straint enforcement, updatable views, and distributenstra then the prefix of its IP address should be in the OSPF rout-
action management. ing table of the routercépf Route). We are ignoring some

details, such as OSPF areas, for brevity. Finally, ralex-
presses how routes are propagated across routers, bystatin
that anyospf Rout e ON routetrt | d2 can propagate to routerd1
if they have directly connected interfaces and both are en-

Listing 1: Rules for OSPF Route Learning
RO Enabledintf(ifld, rid) :- TRouterIntf(ifld, rid),
Cinterface(ifld, "enabled");

RL OspfRoute(rld, prefix) :- Enabledintf(ifld,rid), abled and QSPF-speaking. Note tRais l_)oth distributed
CintfPrefix(ifld, prefix), CntfGspf(ifld); and recursive, as the query touches multiple devices and the
R2 OspfRoute(rldl, prefix) :- OspfRoute(rldz, prefix), rule head is part of the rule body.
TIntfConnection(ifldl ridl, ifld2 rid2), Figure 2 shows a small network with three routers. The

Enabl edI ntf (ifldl,rldl), CntfCspf(ifldl),

Enabl edi ntf (i f1d2.r1d2). O ntfQepf (ifld2). interfaces connecting routegsandsy, as well as their loop-

back interfaces, are OSPF-speaking and enabled, so that the

. . loopback I1P'192. 168. 1. 9/ 32" configured on routesr should

3.2 Network-W|de rea}SQ_n'”g propagate to routex, according to how OSPF works. Fig-
cootap achieves the primitive of automated network- e 3 jllustrates how the entries in the view tables are gener

wide reasoning through materializing the views by dis-

tributed recursive queries on top of the data model pre- :W‘? choose Datalog with stratified negation as our que%',aggu

. for its conciseness in representing recursive queries agdtions
sented in 83.1. We demonstrate how the knowledge regard and its tight connection to logic programming. Other queny-|
per primarily focuses on the configuration management, weele guages, such as SQL and XQuery, if augmented with necessary

exploiting status tables as future work. features, such as recursion, are also suitable to our frarkew

This dependency graph is for complexity
demonstration only. The texts in the little |
boxes are not meant to be legible.

legends:

I H
| i<config table>:

Figure 4: VPLS related view dependency graph

ated in a bottom-up fashion based mnr2, and eventually
the entryGspf Rout e(" SJ", "192. 168. 1. 9/ 32") shows that “pre-
fix 192. 168. 1. 9/32 in the OSPF route table of router.” On
the other hand, there is noLA", "192. 168. 1. 9/ 32") entry, be-
cause the dependencies are not met.

Effectively, a simple query ovemwspf Route can reveal the
OSPF routes on all routers to the operators without requirin
them to understand how the route propagation works acros
distributed network devices. Figure 4 shows that the knowl-

edge regarding complicated services like VPLS can be mod-
eled with a stack of dependent views. Operators only need to

query the top viewct i veVPLSLi nk to acquire a list of enabled
VPLS connections, without understanding the details of al
the dependent protocols, such as MPLS, RN®,

3.3 Misconfiguration prevention
COOLAID Usesconstraintgo detect and prevent misconfig-

uration. The constraints dictate what data should not ap-

pear if the database is in a good state. ThatisyLAD
rejects an operatiore(g., made by operators who under-
estimate the network-wide impact) if the outcome would vi-
olate the given constraintbeforethe changes take effect
on the routers. As a resultpoLaip can help prevent unde-
sired properties, such as network partitioning, service di
ruption, or large traffic shift. Constraints exist in tragiital
relational database management systems (RDBMS), but ar
usually limited to uniqueness of primary keys and refeegnti
integrity of foreign keys. In contrastooLaip allows more
expressive constraints capable of reasoning about naultipl
devices and different network service layers.

Specifically, incooLaip, a constraint is defined the same
way as views by a set of rules. A constraint is satisfied if
and only if the associated view is evaluated to an empty list.
Conceptually, each entry in a non-empty constraint view cor
responds to a violation to a desired network property.

Constraints help prevent misconfigurations when com-
bined with our new transaction primitive (described in §B.6

In essence, a group of network intended changes are de
clared as a transaction and executed in an all-or-nothing

fashion. The changes are effective only if the transaction
commits. Before committing a transactiamoLaip checks
if any constraints are violated by the changes, and if sotabor

S

the transaction. For example, an access router has twe inter
faces connecting to the core network, and one of them is
shut down for maintenance. If an operator mistakenly at-
tempts to shut down the other link, such an operation (on
Cnterface table) would not be committed, because it vio-
lates the constraint that an access router must be connected
to the core. Such support automates a network-wide “what-
if” analysis, avoiding erroneous network operations due to
operators’ lack of understanding of complex network func-
tions or their inability to reason at a large scale.

3.4 Configuration automation

COOLAID supports a new primitive of automating network
configuration by allowingvritesto view tables. Specifically,
cooLAD allows the operators to specify intended network
changes as insert/delete/update to view tables, then atrtom
ically identifies a set of low-level changes to config tables
that can satisfy the given intention. For example, an op-
erator can express goals, like establish a VPLS connection
between two interfaces, by a simple view insert statement,
ActiveVPLSConnection.insert("intA","intB").
The traditional mindset for configuration management is
that operators (i) change the configurations on one or more
devices and (ii) check if a network feature change is effiecte
These two steps are repeated until the check succeeds. For a
failed network check, the operators reason about the symp-
tom and fulfill the missing dependencies based on domain
knowledge. IncooLAlD, to the contrary, operators can stay
unaware of how to realize certain network functions, indtea
they specify at a high-level what functions they need. In
the previous example, the operator only needs to deal with
ActiveVPLSConnecti on view, rather than fiddling with all the
dependent network functionalities.

3.5 Network property enforcement

cooLAD allows the operators to specify certain properties
to enforce on the network. For example, a network may be
required to configure loopback IP address on every router,
and establish full-mesh iBGP sessions. We model a de-
sired network property also using constraint views, while a
eempty constraint means that the associated property i vali
on the network. When the underlying network chanees.,
with a new router introduced, constraint violations may oc-
cur, meaning that certain network-wide properties no longe
hold. cooLap takes advantage of deletion operations on a
view to automatically resolve the constraint violationsr F
example, by calling.oopbackAddr essConstraint. renove.al | (),
cooLAID automatically changes related configuration tables,
say modifyinga ntfPrefix table to configure the loopback
interfaces in question, so that the constraint view becomes
empty. This means that the operator only needs to specify
the desired properties, armmboLAD can automatically en-

force them in the face of dynamic network changes.

3.6 Atomic network operations
Device failures during network operations are not uncom-
mon, especially in large-scale networks. If not handled

COOLAID Primitives Configuration 7Propag$\
Network-wide Misconfiguration Automation (§3.4) Atomic . _\/i .
Reasoning (§3.2) Prevention (§3.3) Property Operations (83.6) VIer(X’y) - Viewl(x,z), V|ew_2(y,z)
Enforcement (§3.5) Expl(:rztlond
1, Boun
e"ab'ES\ / ‘\/‘k / View2(y,z) :- Configl(z), Regularl(y,z)
Query Updatable View Transaction Constrain possible values
Processing (84.1) Solver (84.2) Management (§4.3)
COOLAID Techniques Figure 6: Solving updatable view operations
Figure 5: cooLaip primitives and techniques ture of network protocols. Recursive query evaluation and

optimization is a well-studied area in databases [29]. Rece

iroperly, lihey oftgn p_ut tTe. nEtWO?_(In .|ncon5|stelnt States ok has also examined recursive queries in a distributed en
hetwork operation involving configuring several routers \;.,nment with a relaxed eventual consistency model [23].

might be abandoned half way because of unforeseen circum- SecondgooLaib manages a much smaller amount but dis-

stani:esc,j S(;JCh as an lgexpected trar15|er|1t netwgrk fa””re’lgtributed data. The largest portion of the data comes from
overloaded routers. Current operational procedures wou configurations. If we assume that a configuration file is

.reqliwe a man'L,JaI rolllback., which may be mcom_plete, leav- 100KB on average, and there are a thousand routers in a net-
ing orphaned _conflguratlon excerpts Qnd leading to secu- work, then we need roughly a hundred megabytes of space
”“_/I_EOIGS oiglunlnfcent(:]ed nbetwork beha;no_r. due to the lack to store the raw data. On the other hand, the configura-
o Iel pro im |'r’1 € above example 'Sk ue 1o e 1ack yion exists on different routers might require hundreds of
ofa _-or-nolt '?g , Of atommtyh n ﬂetv'x‘cngmanage_mentf milliseconds of round-trip time to access, for a typical ISP
primitives. In fact, we argue that the properties of i national footprints. Therefore, we always first aggre-
transaqtmna_l semantics (§.4.'3)’ namely_atom|0|ty, consis gate all data to the main memory of a centralized master
tencﬁ’. 'SOI?“OH’ and duratblhtyl; are ali_hlgthT(:]eswalale node (85.1) before query evaluation. Centralized process-
prcljm(lj Ves olf:qmpose nE Wﬁr dopetr)a |onst.) €y are pro- ing is also preferred in order to enforce a strong consigtenc
vided naturally incooLAip by the database abstraction. el as opposed to the eventual consistency model [23].
We note that modern routers already allow atomic config- Once all data are available, we apply the semi-naive evalu-

ura‘uonl changej on aﬁer'de"'c? basis. In c;nt_r:s:mﬁ ation algorithm [29], which is both efficient and generic, to
not only extends such semantics tanatwork-widefash- evaluate recursive queries.

ion, but also supports additional assertions on netwodewi We further apply the technique ofaterialized view main-

states, by checking constraint views, to validate traisast tenanceo speed up query performance. The entire contents
3.7 Summary of all views are cached in memory once computed, rather
In this section, we have presented an overview of the than generated on-demand at each query evaluation time.
cooLAID framework. cooLap builds on a database abstrac- Each view has the meta data that describe which base tables
tion that captures all aspects of the network and its opera-it depends on. Once the base tables of a view are updated,
tions in a data model, consisting of regular, config, andistat the view isincrementallyupdated by only computing the dif-
tables. cootaip allows vendors and providers to collabora- ferences to reduce overhead.
tively capture domain knowledge in the form of rules, in a 4.2 Updatable view solver

declarative query language. By leveraging such knowledge, : . . _— .
query’anguag y ging 9 Updatable view operations, like view insertions or dele-

cooLAID provides new network management primitives to .) : .
P 9 b tions, enable configuration automation (83.4) and network

network operators, including network-wide reasoning,-mis .
configuration prevention, configuration automation, nekwo property enforcement (83.5). Under_neath the S'mple APIs
called by operatorg,ooLaip controller finds the config table

roperty enforcement, and atomic network operationsnall i ; .) .
broperty P d entries to change to realize the intended view changes.

the same cohesive framework. . . . X .
We explain two techniques to update views with differ-

4. TECHNIQUES ent trade-offs. In practice, we use a combination of both
to achieve the best performance and usability. First, we de-
signed an automatic updatable view solver, using standard
techniques from Prolog, such as exploration and propaga-
tion. As illustrated in Figure 6, to insert an entty,y)
4.1 Query processing into vi ewt, we need to recursively guarantee tugles) and

Query processing is essential for network-wide reasoning (z,y) are inviewt andview2. If there are no such combina-
(83.2) and misconfiguration prevention (83.3). We highligh tion, a recursive view insertion is attempted. For the value
a few design choices in building the query processor effi- x andy, we can directly propagate from the left-hand side to

In this section, we explain key techniques tleabLaD
utilizes to enable the network management primitives de-
scribed in 83. Figure 5 shows their relationships.

ciently, despite the differences betweevoLaip and con- the right-hand side. But we have to enumerate the possible
ventional RDBMS. values forz and try them one-by-one: some guessed values
First, besides traditional database-style queresLAD may not be possible to insert intbew2, for example. For

heavily relies on recursive queries due to the distribueed n non-recursive rules, the recursion in this solving proégss

bounded by the level of dependencies. For recursive rules
this solving process might be expensive: for example, to in-
sert tuple(x,y) into viewt, we need to further inserk, z)

into view, and this may go on many times. There are two
key factors that keep this process feasible: (i) We do not

,COOLAID, @ network operational task is naturally expressed

as a distributed database transaction that may span across
multiple physical devices. In our data model, the regular
tables inherit the exact ACID properties from a traditional
RDBMS. Interestingly, we find that ACID properties natu-

change regular tables, because the values are treatedsas facrally fit config tables as follows:
of the network. As a result, regular tables bound the domain Atomicity: The configuration changes in an atomic opera-

for many fields in views. For examplé,ew2 is defined by
joining a config table and a regular table, so the tuples in
View2 can only possibly come frorregul ar1. In this case,
cooLAID can bound the exploration for literalwhen insert-
ing toVviewt. (ii) Network functionalities are almost always
cumulative, so that negations rarely occur in the rulessThi
greatly reduces the search space.

Note thatcooLaip prunes the solutions that violate con-
straints. The key benefit of this approach is ttabLaip only
needs a single solver to handle all protocols and features
The main downside, however, is that the results provided

tion must follow an “all-or-nothing” rule: either all of the
changes in a transaction are performed or nonecar@.Aip
aborts a transaction if failure is detected, and rolls back t
the state before the transaction started. Note that attymici
also applies in a distributed transaction where config ceang
involve multiple devices. The atomic feature greatly sim-
plifies the management logic in handling device and other
unexpected failures.

Consistency:The database remains in a consistent state be-

fore the start of the transaction and after the transacépn t

minates regardless of its outcome. The consistency defini-

by the solver may not always be preferred. The is becausetion in cooLaip is that all constraints must be satisfied. Be-
many solutions can be found to satisfy the same updatablefore each commit in a transactionpoLaip checks all the

view operation. For example, if we want to establish IGP

constraints. In case of constraint violations, an operedor

connectivity on a set of ISP core routers, we can use OSPF,simply instructcooLap to roll-back thus abort the transac-

IS-IS, or simply static routes. With OSPF, we can configure

tion, or resolve all violations and still proceed to commit.

a subset of the interfaces to establish a spanning treetouchThe database ends up in a consistent state in both cases.

ing all routers, still enabling all-pair connectivity, lattugh
this is clearly undesired for reliability concerns. In piee,
we assign customizable preference values to differensyule
so that the solver prioritizes accordingly.

Second, an alternative solution is to allow the rule com-
posers to customize resolution routines for view insertion

Isolation: Two concurrent network operations should notin-
terfere with each other in any wayg.,as if both transactions
had executed serially, one after the other. This is equitale
to the serializable isolation level in a traditional RDBMS.
For example, an operation in an enterprise network might
be to allocate an unused VLAN in the network. Two of

and deletion. For example, when an insertion is called on asuch concurrent operations without isolation might choose

view, the corresponding resolution routine is execute@thas
on the value of the inserted tuple. The key benefit is that rule

the same VLAN ID because they share the same allocation
algorithm. Such a result is problematic and can lead to se-

composers have better control over the resulting changes tocurity breach or subtle configuration bugsoLaip provides

the network. Such resolution routines can explicitly erecod

transaction isolation guarantees to prevent such issues.

the best practice. For example, to enable OSPF connegtivity Durability: Once the user has been notified of the success

we can customize the routine to configure OSPF on all non-
customer interfaces in the core network, comparing to the
generic solver that may give a partial configuration. The flip

of a transaction commit, the configurations are alreadyeffe
tive in the routers. Most commaodity routers already provide
this property.

side is the extra work on rule composers to develop these To implement the ACID transactional semantics in

routines, comparing to using a generic solver to automat-

ically handle the intended changes. Based on our experi-

cooLAID, we use the Two-Phase Commit protocol for atomic-
ity due to its simplicity and efficiency; we use Write-Ahead-

ence, however, such resolution functions are very simple to Logs for crash recovery; and we use Strict Two-Phase Lock-

develop, largely thanks to the unified database abstraction
Also, this requires one-time effort by vendors or network ex
perts, while the operators can stay unaware of such details.

4.3 Transaction management

Misconfiguration prevention (83.3) and atomic network
operations (83.6) both rely on the transaction processing ¢
pability in cooLaib. We describe the transactional semantics
and our design choices.

In the context of databases, a single logical operation on
the data is called a transaction. Atomicity, consistersola-
tion, and durability (ACID) are the key properties that guar

antee that database transactions are processed reliably. |

ing for concurrency control [28]. These design decisioes ar
customized for network management purposes. For exam-
ple, we favor conservative, pessimistic lock-based concur
rency control because concurrent network management op-
erations occur much less frequently than typical onlinedra
action processing (OLTP) workload, such as online banking
and ticket booking websites. Once two concurrent network
operations have made conflicting configuration changes, iti
very expensive to roll back and retry one of them. We choose
to prevent conflicts from happening, even at the cost of lim-
iting parallelism. We discuss the detailed implementagion
of transaction managementin 85.1.

5. IMPLEMENTATION Transaction manager. The master node serves as a dis-
tributed transaction coordinator, and passes data retords

Queries Operations and from the underlying local database engines. It does not
PR N I . handle any data storage directly, and achieves the transac-
: Controller : tional ACID properties as follows:

TR Query Meta-data Atomicity and durabilityare achieved by realizing the

: Manager Processor Manager || Rules two-phase commit protocol (2PC) [28] among the underly-

| ing database participantseg., PostgreSQL and RouterDB

i T’T;f;b;‘t} Giobal Global ' Data| Master i ips.tances): In phase 1, the master node as_ks all of the par-
'| 1 Regular; 1 Config Status | Model| Node ! ticipants to prepare to commit. The transaction abortsyf an

i [CTeblESt ' Tables Tables i participant responds negatively or fails to reply in timehO

erwise, in phase 2, the master node flushes the commit deci-
PostgreSQL sion to a log on disk, then asks all nodes to commit.
— Consistencys enforced by checking all constraints after
Conig | Status the commit request is received. Unless all constraints are
Tables Tables — Tables
satisfied (directly or through violation resolution), the@
protocol starts to complete the transaction.
Isolationis enforced by a global lock among transactions

Figure 7: cooLAD system architecture in the current prototype. Effectively, this only allows a-si

The overall system architecture oboLap is depicted ~ gle transaction at a time—the most conservative scheme.
in Figure 7. We have implemented a prototype system in While it clearly limits the parallelism in the system, séria

roughly 13k lines of Python code with two major software izing them is acceptable as backlog is unlikely even in large
pieces described next. networks. Using finer-grained locks for higher parallelism

could introduce distributed deadlocks, which could belgost
5.1 Master node . to resolve. We leave exploring this trade-off as future work
The master node unifies all data sources and manages 1, recover from a crash of the master node, the transac-

them as a centralized database. We use Postg_reSQL as t,hﬁ'on manager examines the log recorded by the 2PC protocol.
backend to manage regular tables. Each physical router is iy inform the participants to abort pending transacto

managed by a RouterDB (85.2) instance, which exports thewithout commit marks, and recommit the rest. If the master

corresponding config tables and status tables. The config B 0de cannot be restarted, it is still possible for network op

bles on RouterDBs are aggressively combined and cached, o< 1o directly interact with individual RouterDBs. igh
on the master node for performance improvement. When @Nallows raw access and control over the network for emer-

_entry ina c%nglg _taable_f|_s I’andl(;led, _tfhedaiproprlaterlfogterDl? gency and manual recovery. We talk about removing master
instance will be identified and notified (known as horizontal | 4o "2c 4 single point of failure in §7.

partitioning in data management) based on the primary key

RouterDB

RouterDB

Config ~ Status
Tables — Tables

Routerl Router2

of the entry, which has the physical router ID encoded. 5.2 RouterDB
The controller on the master node has three components: e '
Query processor The query processor first parses the : i
declarative rules and rewrites them in expressions of re- A ;c::;‘:r XML -+ NETESNF @
lational algebra (set-based operations and relationat- ope i;"st;;u‘s‘,;gl‘e;“l CoutorDB

ators such as join, selection and projection). We imple- omomooooo TR !

mented a library in Python, with a usage pattern similar to)])

Language INtegrated Query (LINQ) in the Microsoft .NET Figure 8: RouterDB implementation

framework [2], to express and evaluate those relational ex- RouterDB provides a 2PC-compliant transactional
pressions. The library is capable of integrating queriesifr database management interface for a single router device.
Python objects, tables in PostgreSQL, and XML data. We Our current prototype works for Juniper routers, but can be
implemented the algorithm described in 84.1 for query eval- easily extended to other router vendors. RouterDB utilizes
uation and view maintenance and an updatable view solverthe programmable APIs standardized by the Network Con-
described in §4.2. figuration Protocol (NETCONF) [3] to install, manipulate,
Meta-data manager Meta-data, such as the definitions of and delete the configuration of network devices over XML.
all tables, views and constraints, are managed in the format When a RouterDB instance starts, it uses a given creden-
of tables as well. In particular, the controller manages the tial to initiate a NETCONF session ovesh with the corre-
meta-data by keeping track of the dependencies between thesponding router, and fetches the currently running configu-
views, which is used by the view maintenance algorithm ration in XML format. Then a schema mapper is used to
(84.1) for caching and incremental updates, and updatableconvert configurations from the tree-structured XML format
view operations (84.2). into relational config tables.

Transaction APIs: To update config tables, a transaction they do notshow upin query results, until the physical route
must be started by calling thegintxn RouterDB API. It comes back online. Operators cannot change configuration
saves a snapshot of the current configuration in XML, and or check status on the router during the offline time.
returns a transaction context ID. Further data manipuiatio

P 6. EVALUATION

operations, such assert, update, del ete to the config ta-
bles, must use the ID to indicate their transaction affoiasi ~ We evaluated several key aspectzobLaio to show that
it effectively reduces human workload and prevents miscon-

Once a manipulation call is received, the schema mapper:: : : = X
converts it back to an XML manipulation snippet, and uses figurations in realistic management tasks, at the same time

theedi t - confi g NETCONF API to change the configuration scales to large networks. We used Juniper M7i routers run-

on the router. Note that this change is made to a candidate™nd JUNOS VO.5. The Linux servers, which host master

target, which is separate from the running configuration of Ndes and RouterDB instances, were equipped with Intel
the router. Then, the updated configuration in the candidatePu@! Core 2.66GHz processors and 4GB RAM.
target is fetched, and the change is propagated to the configs.1 ~Automating configuration

tables via the schema mapper. We created the network topology of Internet-2 core net-

To be compliant with the two-phase commit protocol workwith 10 routers and 13 links on top of the ShadowNet
used by the master node, RouterDB implementsithere, platform [10] for network experimentation. The actual
comit, androlIback APIs. When executingrepare(), the router instances are distributed across Texas, lllino an

configuration in the candidate target is validated by the California. Besides the links in the topology, each routes h
router. An invalidated configuration will raise an exceptio another interface connecting a local virtual machine, simu
so that the transaction will be aborted. Duringnit(), the lating a customer site. We run one RouterDB for each router
configurationin the candidate target is first made effedtive and a single master node in lllinois. All routers in this ex-
issuing acormi t NETCONF call, and then the saved snap- periment started with minimum configurations that only de-
shots are freed. Duringl I back(), the candidate target is scribe interface-level physical connectivity.

discarded on the router. Our goal is to configure a VPLS service connecting two
Placement:We chose to host a RouterDB close to the corre- customer-facing interfaces on two different routers. Tiis
sponding routere.g.,on the same LAN, reliably connecting a heavily involved procedure as operators need to deal with
to the dedicated management interface. The placement isallocating interface IPs, configuring OSPF or IS-IS routing
advantageous over hosting RouterDB on the physical routeriBGP sessions, building a MPLS network with RSVP sig-
itself because: (i) Data processing on RouterDB is isolated naling, establishing LSPs and finally the VPLS instances.
from other tasks on the router, and it is guaranteed not to |f an operator were to manually perform the task entirely,
compete for router resources.§.,CPU and memory); (i) she must start with executing at least 25 lines of config-
When RouterDB is separated from the router, it is much yration commands on average on all routers, and 9 addi-
more likely to differentiate failures between RouterDB and tjonal lines on the two customer-facing routers, in tota 26
the physical router from the master node, and treat them|ines. For larger networks with more routers and links, this
differently; (iii) Only selected high-end commercial retd number should increase linearly. The lines of configuration
provide enough programmability to build RouterDB [21]. changes is measured kyw configuration | display set on

On the other hand, by placing RouterDB close to the router JUNOS, which displays the current configuration with mini-
instead of the master node, we have the opportunity to re-mum number of commands. In reality, the actually executed
duce the amount of data transferred from RouterDB to the commands are usually more. Besides, this number does not
master node, by pushing some database operators, such agflect the manual reasoning effort to realize this VPLS ser-
filters, into RouterDB. vice, which commonly requires multiple iterations of trial
Handling failures: Following the Write-Ahead-Log proto- and-test and accessing low-level CLIs.

col [28], RouterDB records every operation in a log file on In cooLap, enabling such a complicated service re-
persistent storage. When recovering from a previous crash,quires a single operation by the operator, calling
RouterDB locates all ongoing transactions at the time of activevpLSConnection.insert(int1id,int2.d). This stays the

crash, rolls back the ones that are not committed, and re-same no matter how large the network is. Also, the operator
commits those transactions that the master node has issuedoes not have to deal with any of the dependencies.

commit commands. . .
During the downtime of a RouterDB instance, the master 6.2 Handling netwqu dynamics)
In contrast to the previous setup, we started with a well-

node still has the configuration data in its cache so that it is _)
readable. However, any write requests will be denied. The configured 9-router subset of the Abilene network topol-
ogy on ShadowNet. The intention is to study howoLAID

data in corresponding status tables become unavailahle too X X
Physical router failures detected by RouterDB are re- enforces ngtwork propertles v_vh_en new, barely configured

ported to the master node, which temporarily marks the re- routers are introduced in an gX|st|ng network. When the reg-

lated entries in the regular table caches as “offline” so that ular tables were updated to include the 10th router and the

associated links, several network properties that were-spe

ified as constraints were immediately flagged as violated. Table 2 shows the running time for each case. We ob-
For exampleLoopbackAddr essConst rai nt showed that the new serve that (i) Case 3 was much faster, because the solver
router did not have an loopback interface configured with a was able to leverage existing configurations; (ii) Case 1 and
proper IP address amdrrul | MeshConst rai nt reportedthatthe Case 2 took about the same amount of time, because the
new router had no iBGP sessions to other routetsLAID OSPF setup dominated. The OSPF setup in Case 1 is slow
checks constraints for property enforcement wheneveether because it starts with a network without configuration and
is a network change, and automatically tries to resolveithe v requires multiple levels of recursion to solve this view in-
olations. In this case, the customized view solver was usedsertion. While 14 seconds is not short, in practice, one only
to produce 26 lines of config changes on the new router, andneeds to configure OSPF for a network once, and most of
9 lines on the existing routers for iBGP sessions, such thatthe common tasks, including configuring a new router to run
specified network properties are enforced automatically. OSPF, are incremental to existing configurations, thus can

6.3 Performance be done quickly, like in Case 3. _ _
. . i . o We also evaluated the same tasks using the rules with cus-
In this section we isolate the DB processing capability

. omized resolution routines. In this case, view update-oper
from device access overhead to evaluate the performance of X
. : ations are achieved by calling a chain of hard-coded resolu-
the view query processor and the view update solver.

tion routines, thus the reasoning overhead is zero.

Network | Abilene | 3967 [1755 | 1221 | 6461 | 3257 | 1239 H
Router # 10 79 87 108 | 141 | 161 | 315 6.4 Transaction overhead
Link # 13 147 | 161 | 153 | 374 | 328 | 972
) Stepl| Step?2 Outcome
Time (ms) 0.3 20 24 28 3 116 | 592 w/o COOLAID | 8.4s 8.4s Disconnected network
Table 1: Query processing time forosPFRout e w/ COOLAID 8.4s | Rejected| Disruption avoided

formance, we chose the recursive viewf Route because it To study the device-related performance and transaction

?S one of the ;no;t el)l(peniivi queries, lllvhere t\?ve COmp:]ex'overhead, we use the following setup. First, we assume 3
ity grows gqua r:?mca y with the netvv_or size. Ve use e routersr1-r3 with pair-wise links, and all routers are config-
topologies of Abilene backbone and five other ASes inferred ured with OSPF. In step 1, we shut down the link betweien

bhy R0|<|:I§etfufel [33]. The (r:]onﬁg tabIesgvSeFr;elz;nlnatl)llz%d _Sufhd andr2 (by disabling one of its interfaces). Such operations
that all interiaces on each router are enabled, INCiUd-3re common for maintenance purpose and benign, because

N9 tEe I((;gr;)bFack mterfaceﬁ. Then v]ye quert:Bd Roulte to h the network is still connected. In step 2, we try to shut down
gett € . rﬁutesdon aT rtautelrs Ior e?c tolsooosgy. €the link betweerr1 andr3 to emulate a misconfiguration
query time is showed in Table 1. 1t only 100k 0.3MS 10 ot \youid cause a network partition.

complete the query for Abilene. For the largest topology \\a ~om ; .

. . . pare the experience of usiogoLAID to perform
on A51239. with 315 routers and 97.2 links, '.t took less ”_‘3” such operations with using a script that directly calls NET-
600ms. This suggests that processing queries has negligibl conE apis, and then show the result in Table 3. Without
overhead compared with device related operations, such 3% 5oLAD the,two steps took 8.4 seconds each, ending with
physically committing config to routers (on the order of tens a discoynnected network. The time is mostly ,spent by the

of seconds on the Juniper routers). router internally to validate and commit the new configura-
Case 1 OSPH Case 2 iBGP| Case 3 1BGP W/ OSPE tion. With cooLap, step 1 takes the same amount of time,
14.112s 14.287s 0.025s suggesting a negligible overhead in constraint checking or
any other extra overhead introduceddmpoLAip. Because we
specified a constraint that every router’s loopback IP mest b
Solving view updates: We tested our view update solver reachable to all other routers, step 2 is rejecteatdyLaip

in three cases with the Abilene topology. We picked a pair before it could take effect on the actual routers.
of routers (1 andr2) that are farthest from each other in the

topology. In Case 1, starting with the minimal configuration 7. DISCUSSION

we inserted two tuples intaspf Rout e, intending to have the Feasibility: Using the database abstraction and the declara-
loopback IPs of 1 andr2 reachable to each other via OSPF. tive rules represents a drastic but reasonable shift., IRiest

In Case 2, also starting with the minimum configuration, we work databases are commonly practiced in modern ISPs [7].
inserted a single tuple ikt i vel BgpSessi on, intending to cre- The emerging trend of XML-based configuration files fur-
ate an iBGP session betweehandr2. In Case 3, we started ther reduces the effort, since XML files can be directly
with a network with OSPF configured on all routers, and per- queried. Second, according to our experience, the time-
formed the same operation as in Case 2. As captured by theconsuming part of writing the rules is to derive the correct
rules, active iBGP sessions depend on IGP connectivity, sodependency by reading documentations and performing field
in Case 2 the solver automatically configured OSPF to con- tests. In reality, we found the amount of work manageable
nectr1 andr2 first and then configured BGP on both routers. for a single graduate student to decipher VPLS, despite the

Table 2: Time to solve view updates

10

complex dependency involved. Furthermore, as we havevironments. A template program extracts parameters from
suggested, we envision an environment where, in addition provisioning databases and generates configuration $sippe
to providing the text documents, vendors can also provide optionally with some validation [35]. Unfortunately, the
libraries of rules. Such an approach greatly simplifies the dependencies among templates and between the generated
service creation by service providers. snippets and the existing configurations, still need to be re
Deployment: While cooLaiD is designed to take over man- solved manually. Sunegt al. built a query engine for evalu-
aging the whole network, we note that it is amenable to a va- ating Class of Service (CoS) configuration [34]. In contrast
riety of partial deployment scenarios. For examplsyLAID cooLAID advocates using declarative rules as a concise repre-
can initially work in a read-only mode to assist network rea- sentation of domain knowledge, which can be contributed by
soning. When operators are comfortable enough about usingooth vendors and service providers. The reasoning sugporti
the new database primitives, they can gradually enablewrit generic to all servicescooLaip further provides constraint
permission to config tables. Note that configuring certain checking with transactional semantics, not simply endttin
network features do not require touching all routers. configuration snippets to network devices. Relating to the
Availability: In the current centralized implementation, the 4D project [17],cooLap fulfills the functionalities of the
system is not available when the master node is offline. To decision and dissemination planes. KarDo [22] automates
remove this single point of failure, we can adopt the repli- generic operations on PCs, and the enabled automation does
cated state machine approach [32] where multiple copiesnot apply to complex network management tasks.
of the cooLalp controller are running simultaneously as pri- There are also many existing systems that apply rule-
mary node and backup nodes. Another alternative is to adoptbased approaches to general system management. On the
a fully decentralized architecture, where all query preees commercial side, IBM’s Tivoli management framework and
ing and transaction management is handled in a distributedHP’s OpenView allow event-driven rules to be expressed
fashion by RouterDB instances. There are sophisticated al-and automated for system management. These languages
gorithms and protocols, such as Paxos commit [16], that areare best suited for reacting to system condition changes by
designed for this scenario. How they compare with the cen- triggering pre-defined procedural code, but not suitabte fo
tralized architecture in performance and ease of maintman specifying domain knowledge of network protocol behav-
is an interesting direction for our future work. iors and dependencies. On the research side, InfoSpect [31]
Limitations: (i) Routing protocols are not transaction- Sophia[36] and Rhizoma [37] all proposed to use logic pro-
aware, as they require time to converge upon configurationgramming to manage nodes in large-scale distributed sys-
changes. The order and timing of such changes are impor-tems such as PlanetLab or cloud environments. Providing
tant in determining the consequencegy.,temporary rout- advanced support for and meeting the distinct requirements
ing loops and route oscillations. Therefore, transactaih r of network managementooLaip’s main techniques differ
back support for handling failures in such tasks is usually i drastically from those systems. For example, features like
adequate without creating case-specific handlers to déal wi distributed recursive query processing, view update tesol
failure exceptions. (ii) It is possible that some resoudres tion, and transactional semantics with constraint enforce
released during the transaction execution and cannot be rement, are all unique toooLaip. PoDIM [11] is a languange
acquired in the case of rollback. The problem could be ad- designed to express cross-machine constraints in an enter-
dressed through a locking mechanism to hold the resourcesrise environmentooLAiD captures more general and com-
until the transaction finishes. (iii) We assume the set of con plex dependencies and constraints in wide-area networks.
straints are complete to prevent inconsistent states; venwe In the enterprise network management space, Ethane [8]
this is difficult because new constraints can be introduced and NOX [18] focus on network flow access control manage-
and discovered over time. One potential solution is to roll- ment. Along the same line, Flow-based Management Lan-
back previous operations to a point where no constrairts, in guage [19] is based on the Datalog syntax to express policies
cluding the new ones, are violated, and then replay the-trans of flow control. These resemble most of the policy-based
actions, such as updateable view operations. ddgLAID network management work [1]. In contrast, the language
currently does not address the issues of protocol optimiza-proposed ircooLaip effectively captures domain knowledge
tion, e.g.,tweaking the OSPF link weights for traffic engi- in protocol behaviors and dependencies.
neering [14]; however, existing techniques can be invoked Declarative systems:Declarative programming in system
in the customized view solvers to integrate their resultbwi and networking domains has gained considerable attention
our data model. in recent years. The declarative networking project prepos

a distributed recursive query language to specify and imple
8. RELATED WORK ment traditional routing protocols at the control plane,[25

Ne.twork managemept:AacIean-s(::qte approach to CF’”ﬁ%‘_J'h 30]. The declarative approach has been explored by numer-
ration management is advocated in CONMan [4], in which ¢ 1 giectse g. to implement overlays [24], data and con-

protocols are abstracted as modules and network conﬂgura-trOI plane composition [26], and specify distributed stma

tion is done through piping the modules. _Template-_driven policies [5]. Compared to those studiesoLain focuses
approaches [15, 12] are commonly used in production en-

11

on re-factoring current network management and operations [4]
practices. Specifically, inooLap the declarative language

is used for describing domain knowledge, like dependencies
and restrictions among network components, as opposed to 6!
implementing protocols for execution or simulation. As a [7]
stand-alone management plarm®oLAiD orchestrates net-
work devices in a declarative fashion, while not requiring
the existing routers to be modified.

Databases:Database technologies are routinely utilized as
part of network management and operations. One class of[lo]
existing work, represented by NetDB [7], uses a relational
database to store router configuration snapshots, where oné!]
can write queries to audit and perform static analysis of ex- 12
isting configurations in an offline fashioa.g.,for BGP [13].

From a network operator’s perspective, the database is read|;3
only and is not necessarily consistent with live configura-
tions. In contrastcooLaip provides a unifying database ab-
straction that integrates router configurations, live rekw
status and provisioning data, provides transactionaéveit
erations to change network configurations, and enforces con [16]
straints to detect and prevent policy violations duringrape
tion, as opposed to a postmortem support tool.

To realize the database abstractioncobLaip, we take
advantage of many existing techniques and concepts in
the database literature, including recursive query ogtmi
tion [29], distributed transaction processing [28], ujadide:
materialized views [6]gtc. However, we note that while
some of these features are becoming available in commercial
database products, no existing database systems sugdport af*
of these features, or work with commodity routers as back- [22]
end storage. To our knowledgsgoLAip is the first system
that integrates these features with unique optimizatioss ¢
tomized for network management and operations.

9. CONCLUSION

We presenteatooLAD as a unifying data-centric frame-
work for network management and operations, where the do-[26]
main expertise of device vendors and service providers can,,
be systematically captured, and where protocol and network
dependencies can be automatically exposed to operationaizs]
tools. Built on a database abstractiaopLAD enables new [29]
network management primitives to reason and automate netyyy
work operations while maintaining transactional semantic
We described the design and implementation of the proto-
type system, and used case studies to show its generality and
feasibility. Our future plan is to improve the design and im- 2
plementation otooLaip by adding new management primi-
tives, increasing concurrency, and improve reliabilitynily/
cooLAID currently covers a variety of dominant network op-
erations that rely on configuration changes, we also plan to (35
explorecooLaip’s applicability in other management areas
such as fault diagnosis and performance management.

10. REFERENCES
[1] IETF Policy Framework Chartehttp://ietf.org.
[2] LINQ. http://msdn. m crosoft.con netframework/future/ling/.
[3] Network configuration (netconf).
http://ww.ietf.org/htnl.charters/netconf-charter.htni.

(5]

8]

E)

14]

[15

[17]

[18]

[19]

[23]

[24]

[25]

[31]

[33]

[34]

]
[36]

[37]

12

H. Ballani and P. Francis. CONMan: A Step Towards Netwgidnageability.
In Proceedings of SIGCOMMO007.

N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and R. GrinfPADS: A Policy
Architecture for building Distributed Storage systemsPhoc. of NSD) 2009.
A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relatioraldes: A Language
for Updateable Views. IProceedings of of PODR006.

D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G.dljntysson, and

J. Rexford. The cutting EDGE of IP router configurationPlroceedings of
HotNets Workshap2003.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeovnd, &. Shenker.
Ethane: taking control of the enterprise Rroceedings of SIGCOMMO007.
X. Chen, Z. M. Mao, and J. Van der Merwe. PACMAN: a Platfofon
Automated and Controlled network operations and configamat
MANagement. InProceedings of CONEXP2009.

X. Chen, Z. M. Mao, and J. Van der Merwe. ShadowNet: AfBlat for Rapid
and Safe Network Evolution. IRroceedings of USENIX ATQ009.

T. Delaet and W. Joosen. PoDIM: A language for high-leamfiguration
management. IRroceedings of LISA007.

W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, Ae@rerg, S. Rao, and
W. Aiello. Configuration management at massive scale: sysiesign and
experience. IfProceedings of USENIX ATQ007.

N. Feamster and H. Balakrishnan. Detecting BGP Conrditiom Faults with
Static Analysis. InProceedings of NSDR0O5.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, andekfBrd. NetScope:
Traffic engineering for IP networks. IEEE Network MagaziNarch/April
2000, pp. 11-19.

J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Awted Provisioning of
BGP CustomerdEEE NetworkVol. 17, 2003.

J. Gray and L. Lamport. Consensus on transaction cor#@i# Transactions
on Database Systen1(1):133-160, 2006.

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, Bx@ord, G. Xie,

H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach to Neé«&ontrol
and Management . IRroceedings of SIGCOMM CCRO005.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.Kdown, and

S. Shenker. NOX: towards an operating system for netwonkBrdceedings of
SIGCOMM CCR2008.

T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, &dShenker. Practical
declarative network management.Rroceedings of SIGCOMM WREN
Workshop2009.

C. R. Kalmanek, et al. Darkstar: Using Exploratory Disliming to Raise the
Bar on Network Reliability and Performance.Pnoceedings of DRCN2009.

1 J. Kelly, W. Araujo, and K. Banerjee. Rapid service ti@ausing the junos

sdk. InProceedings of SIGCOMM CGRO010.

N. Kushman and D. Katabi. Enabling Configuration-Ineleglent Automation
by Non-Expert Users. IRroceedings of OSDR010.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Halitein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and |I. Stoica. Declarative biéing: Language,
Execution and Optimization. IRroceedings of SIGMO[2006.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, To§toe, and I. Stoica.
Implementing Declarative Overlays. Rroceedings of SOSR005.

B. T. Loo, J. M. Hellerstein, |. Stoica, and R. Ramakriah. Declarative
Routing: Extensible Routing with Declarative QueriesPhoceedings of
SIGCOMM 2005.

Y. Mao, B. T. Loo, Z. G. Ives, and J. M. Smith. MOSAIC: Uritl Declarative
Platform for Dynamic Overlay Composition. @oNEXT 2008.

L. Peterson, S. Shenker, and J. Turner. Overcomingifeeriet Impasse
Through Virtualization. IrProceedings of HotNets Worksh@®904.

R. Ramakrishnan and J. Gehrkzatabase Management Systems
McGraw-Hill, third edition, 2002.

R. Ramakrishnan and J. D. Ullman. A Survey of Researcbeductive
Database Systemdournal of Logic Programming23(2):125-149, 1993.

T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jatgef®zedicate routing:
enabling controlled networking. IRroceedings of SIGCOMM CGR003.

T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. Inéx$pUsing a Logic
Language for System Health Monitoring in Distributed Sysgeln
Proceedings of the SIGOPS European WorksR2602.

F. Schneider. Implementing fault-tolerant serviceig the state machine
approach: A tutorialACM Computing Surveyg2(4), 1990.

N. Spring, R. Mahajan, D. Wetherall, and T. Anderson alglgring ISP
topologies with rocketfuel EEE/ACM Trans. Netw12(1):2—-16, 2004.

Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen. Modgand
understanding end-to-end class of service policies inaijgeral networks. In
Proceedings of SIGCOMM009.

L. Vanbever, G. Pardoen, and O. Bonaventure. Towardidated Network
Configurations with NCGuard. IRroceedings of INM Workshpg008.

M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: &rimation Plane for
networked systems. IRroceedings of SIGCOMM CGR004.

Q. Yin, A. Schuepbach, J. Cappos, A. Baumann, and T. &adthizoma: a
runtime for self-deploying, self-managing overlaysPioceedings of
Middlewarg 2009.

