
Decoding the representation of code in the brain:
An fMRI study of code review and expertise

Benjamin Floyd
University of Virginia
bef2cj@virginia.edu

Tyler Santander
University of Virginia

ts7ar@virginia.edu

Westley Weimer
University of Virginia
weimer@virginia.edu

Abstract—Subjective judgments in software engineering tasks
are of critical importance but can be difficult to study with con-
ventional means. Medical imaging techniques hold the promise
of relating cognition to physical activities and brain structures.
In a controlled experiment involving 29 participants, we exam-
ine code comprehension, code review and prose review using
functional magnetic resonance imaging. We find that the neural
representations of programming languages vs. natural languages
are distinct. We can classify which task a participant is under-
taking based solely on brain activity (balanced accuracy 79%,
p < 0.001). Further, we find that the same set of brain regions
distinguish between code and prose (near-perfect correlation,
r = 0.99, p < 0.001). Finally, we find that task distinctions
are modulated by expertise, such that greater skill predicts a
less differentiated neural representation (r = −0.44, p = 0.016)
indicating that more skilled participants treat code and prose
more similarly at a neural activation level.

Keywords-medical imaging; code comprehension; prose review

I. INTRODUCTION

Subjective human judgments are found in all stages of the
software engineering lifecycle. Indeed, even when automated
tools are available, humans must still choose to employ them.
Because of their importance, many models and analyses have
been proposed for such human judgments (e.g., of software
readability [9], maintainability [26], or debugging tool out-
put [55], etc.). The number of user evaluations and human
studies at top venues has grown 500% since the year 2000 [10,
Fig. 4]. Despite this, we have almost no understanding of
how the human brain processes software engineering tasks.
We propose to use medical imaging techniques to understand
code comprehension and review.

Functional magnetic resonance imaging (fMRI) is a non-
invasive technique for probing the neurobiological substrates
of various cognitive functions in vivo. Technically, fMRI pro-
vides indirect estimates of brain activity, measuring metabolic
changes in blood flow and oxygen consumption as a result
of increased underlying neural activity. This signal is termed
the blood-oxygen level dependent (BOLD) response [54]; it is
formally defined as the ratio of deoxygenated to oxygenated
hemoglobin, each of which have markedly different magnetic
properties that can be detected by the MR-scanner (following
excitation by a radio frequency pulse). This quantifies differ-
ences in activity under various conditions, both task-related
and at rest. Functional MRI was first prototyped on humans
in 1992, and has since enjoyed a meteoric rise in popularity

among both clinical and psychological researchers. Unlike
other cognitive neuroscience methods (e.g., EEG or PET),
fMRI allows for rapid sampling of neural signal across the
whole brain (1–2 seconds) and offers high spatial resolution
(scale of millimeters) with regard to localizing signal sources.
Thus, fMRI arguably provides the best available measure of
online neural activity in the living, working human brain.

We present an fMRI study of software engineering activities.
We focus on understanding code review, its relationship to
natural language, and expertise. We note that the use of
fMRI in software engineering is still exploratory; to the
best of our knowledge this is only the second paper to do
so [70], and is the first to consider code review and expertise.
We explore these tasks because developers spend more time
understanding code than any other activity [18], [29], [59],
[62]. A NASA survey, for example, ranked understanding
as more important than functional correctness when making
use of software [53]. Similarly, with companies such as
Facebook [77] and Google [36] mandating code review for
new check-ins, code review has found an even greater practical
and research prominence [85].

In our experiment, participants are presented with three
types of visual stimuli, each with an associated judgment
task. In the code comprehension task, participants are shown
a snippet of code and asked a software maintenance question
about it [71]. In the code review task, participants are shown
a GitHub pull request (i.e., code, a patch to that code, and a
comment) and asked whether they would accept it or not. In
the prose review task, participants are shown English prose
with simple editing markups and asked whether they would
accept the proposed edits or not.

We designed our experiment in this manner because fMRI
analyses are typically based on contrasts — comparisons
between at least two task conditions. Through our exper-
imental controls, we can isolate one feature of the tasks
and observe differences in brain activation. For example, the
primary difference between the prose review and code review
tasks is whether the subject is English prose or a computer
program; any difference in observed brain activity corresponds
to a task difference. Similarly, a simple model might posit
that code review is code comprehension followed by a code
judgment (i.e., understanding what the patch will do and then
deciding if it is acceptable); contrasting code review to code
comprehension focuses on the judgment aspect, since code
understanding is present in both. Mathematically, the analyses

we employed involved generalized linear models and Gaussian
Process classification.

Ultimately, we find that the neural representations of pro-
gramming and natural languages are distinct. We can construct
classifiers that distinguish between these tasks based solely on
brain activity. We observe that the same set of brain locations
is relevant to distinguishing all three tasks. In addition, ex-
pertise matters: greater skill accompanies a less-differentiated
neural representation.

The contributions of this paper are as follows:
1) We find that the neural representations of programming

languages and natural languages are distinct. This claim
is supported by a model that classifies participant tasks
based on brain activity in a statistically significant man-
ner (e.g., code comprehension vs. prose review at 79%
balanced accuracy with p < 0.001).

2) We find that the same set of brain locations distinguish
between all of these tasks. This claim is supported by
regional importance maps (e.g., code vs. prose yields
near-perfect correlation: r = 0.99, p < 0.001).

3) We find that the neural representations of program-
ming languages and natural languages are modulated
by expertise. Greater skill predicts less-differentiated
representation. That is, expert brains treat code and prose
tasks more similarly. This claim is supported by an
analysis revealing a statistically significant correlation
(r = −0.44, p = 0.016).

4) We make available our study materials and de-identified
dataset of raw participant brain scans from 29 partici-
pants and discuss the barriers in conducting such a study.

II. BACKGROUND AND MOTIVATION

In this section we present some relevant background on
the software engineering tasks considered, as well as results
related to expertise and imaging.

A. Code Review

Static program analysis methods aim to find defects in
software and often focus on discovering those defects very
early in the code’s lifecyle. Code review is one of the most
commonly deployed forms of static analysis in use today [73];
well-known companies such as Microsoft, Facebook, and
Google employ code review on a regular basis [36], [77]. At its
core, code review is the process of developers reviewing and
evaluating source code. Typically, the reviewers are someone
other than author of the code under inspection. Code review is
often employed before newly-written code can be committed
to a larger code base. Reviewers may be tasked to check for
style and maintainability deficiencies as well as defects.

Numerous studies have affirmed that code review is one of
the most effective quality assurance techniques in software
development [1], [21], [25], [32]. While it is a relatively
expensive practice due to high developer input, it is successful
at identifying defects early in the development process. This
benefit is valuable because the cost to fix a defect often
increases with the time it goes unnoticed [79], [81], [84].

B. Code Comprehension

Much research, both recent and established, has argued
that reading and comprehending code play a large role in
software maintenance [30]. A well-known example is Knuth,
who viewed this as essential to his notion of Literate Program-
ming [39]. He argued that a program should be viewed as “a
piece of literature, addressed to human beings” and that a read-
able program is “more robust, more portable, [and] more easily
maintained.” Knight and Myers argued that a source-level
check for readability improves portability, maintainability and
reusability and should thus be a first-class phase of software
inspection [38]. Basili et al. showed that inspections guided
by reading techniques are better at revealing defects [69]. An
entire development phase aimed at improving readability was
proposed by Elshoff and Marcotty, who observed that many
commercial programs were unnecessarily difficult to read [24].
More recently, a 2012 survey of over 50 managers at Microsoft
found that 90% of responders desire “understandability of
code” as a software analytic feature, placing it among the top
three in their survey [11, Fig. 4].

C. Expertise and Medical Imaging

As early as 1968, researchers began to measure productivity
differences in computer science. Sackman et al. reported
individual differences in programming performance (both in
terms of programming and debugging person-hours to write
the program and also in terms of the resulting CPU time
taken by the program) of about an order of magnitude on
average and up to 28:1 in some cases [63, Tab. 3]. While
hardware performance can play a role, as in Doherty and
Thadani’s influential study [20], it does not explain all ob-
served differences. More recent studies have explored the
relationship between personality and performance in technical
roles (e.g., [13]). While many studies report the impact of
expertise on performance in various software engineering tasks
(e.g., students with at most three years of experience are 18%
less accurate at fault localization than are those with at least
five [27, Tab. 2]), since medical imaging research is so new to
software engineering, to the best of our knowledge there are no
published results that attempt to relate performance differences
to physical patterns of brain activation or anatomy.

Other fields have seen more direct inquiry. For example,
Chi et al. examined the role of expertise in solving and clas-
sifying physics problems [15]. They report a 4:1 productivity
difference between experts and novices, but also summarize
methodological explanations: “both expert and novice proceed
to solution by evoking the appropriate physics equations and
then solving them. The expert often does this in one step,
however” and “another interesting aspect of novice problem
solving is not only that they commit more errors than experts
but that, even when they do solve a physics problem correctly,
their approach is quite different” [15]. They also describe a
study in which participants classify physics problems. While
experts categorize based on the underlying solution, novices
focused on surface similarity (e.g., a pulley problem about
force and a pulley problem about energy are similar to

novices). In their view, this suggests “that, with learning, there
is a gradual shift in organization of knowledge” [15].

If so, how is this shift in knowledge organization reified in
the brain? This question has been more thoroughly studied via
medical imaging in the context of motor skills, where differ-
ences in functional plasticity differentiate novices and experts.
Experts in a specialized motor skill show increased levels of
activation in regions of the brain that control fine-tuned motor
movements, suggesting that “progress from acquisition to
automatization stages of motor skill learning is characterized
by concomitant reduced demands on externally focused atten-
tion and executive function” [17]. Imaging studies have been
conducted on monkeys, humans playing golf [61], and even
humans juggling [65], finding similar physical explanations
(e.g., at the level of the functional organization of neural
networks during motor planning) of expertise. Maguire et al.
found via fMRI that the navigation demands of being a London
taxi driver stimulated brain development: drivers have larger-
than-average relevant memory centers in their brains and the
intensive training is responsible for that growth [46].

While psychology and neuroscience have made great strides
using fMRI to relate and explain expertise in terms of the
brain, no such investigation has been made for computing.

D. Computer Science and Medical Imaging

Siegmund et al. presented the first publication to use fMRI
to study a computer science task: code comprehension [70].
The focus of their work was more on the novelty of the
approach and the evaluation of code comprehension and not on
controlled experiments comparing code and prose reasoning.
Their analyses focused on standard generalized linear models
to implicate relevant brain regions; by contrast we carry out
a data-driven approach focusing on task classification and
expertise. Our work was directly inspired by theirs.

Some researchers have begun to investigate the use of func-
tional near-infrared spectroscopy (fNIRS) to measure program-
mer blood flow during code comprehension tasks. In smaller
studies involving eleven or fewer participants, Nakagawa et
al. found that programmers show higher cerebral blood flow
when analyzing obfuscated code [52] and Ikutani and Uwano
found higher blood flow when analyzing code that required
memorizing variables [33]. fNIRS is a low-cost, non-invasive
method to estimate regional brain activity, but it has relatively
weak spatial resolution (only signals near the cortical surface
can be measured); the information that can be gained from
it is thus limited compared to fMRI. These studies provide
additional evidence that medical imaging can be used to
understand software engineering tasks, but neither of them
consider code review or address expertise.

Understanding mental processing in computer science is
important for a number of reasons: although this paper focuses
on code comprehension, review and expertise, we briefly
highlight six general motivations for pursuing medical imaging
research related to computer science. First, to replace unreli-
able self-reporting. For example, in human studies of main-
tainability, three of the top four features humans self-report

as relevant to their performance are actually irrelevant [26,
Tab. 3]. The unreliability of self-reporting is not specific to
computer science, and has been widely studied in psychology
(e.g., [45], [56]). Medical imaging can give accurate, objective
explanations of subjective processes. Second, to inform ped-
agogy. Medical imaging has already shown patterns of brain
activation to predict learning rates [6] and memory tasks [60]
in other domains. Even something as simple as whether certain
activities are processed “like math” or “like language” by the
brain would help provide foundational justification for certain
introductory exercises. Third, to help retrain aging engineers.
Medical imaging studies have found different patterns of ac-
tivation across ages for other tasks. Older participants display
more diffuse activation, recruiting nearby brain regions to
help solve problems [12], [50]. Knowing whether or to what
degree this holds true for engineering could guide workforce
retraining or allocation, a growing issue (e.g., [82]). Fourth,
to guide technology transfer. Since the decision to use a tool
or not is made by a human, subjectivity matters (cf. [40]).
For example, many developers avoid using tools with high
false positive rates [35], but humans and tools may not agree
on what is a false positive [4], [8]. As a concrete example, a
number of fault localization approaches present their output as
ranked lists, a form that humans dislike in this context [55].
Better models of how and why humans make such judg-
ments would allow researchers to focus tool design (cf. [5,
Sec. 3.4]). Fifth, to help understand expertise. Psychology and
imaging studies have helped illuminate how brain structures
change with expertise for other tasks, including chess [3],
golf swings [61], and taxi driving [46]. Imaging may help us
understand the long-reported order-of-magnitude productivity
gap between experienced and novice programmers (e.g., [63]).
Finally, and unabashedly, to provide foundational, fundamental
understanding. For example, given that software is statistically
akin to natural language [31], one may wonder how and when
code is processed by the brain like language.

III. EXPERIMENTAL SETUP AND METHOD

In this section we describe our experimental protocol.

A. Participants

Thirty-five students at the University of Virginia were re-
cruited for this study. Solicitations were made via fliers in two
engineering buildings and brief presentations in a third-year
“Advanced Software Development Techniques” class and a
fourth-year “Language Design & Implementation“ class. Data
from six individuals were removed from the present analyses,
either due to technical difficulties at the imaging center (yield-
ing an incomplete dataset) or excessive head motion during
the fMRI task. Thus, the final sample was comprised of 29
individuals (18 men, 11 women). Additional objective (e.g.,
GPA) and subjective (e.g., self-reported computing experience)
information was gathered about each participant. Two of the
participants were computer science graduate students, nine
were undergraduates in the College of Arts and Sciences, and
18 were undergraduates in the College of Engineering. All

(a) Code Comprehension (b) Code Review (c) Prose Review

Fig. 1: Task stimuli. Code comprehension stimuli feature true and false claims in the style of Sillito et al. [71]. Code Review
stimuli include the code difference (in color and with symbols) as well as the Git pull request message. Prose review stimuli
are English paragraphs with proposed changes presented in a Microsoft Word “track changes” style.

participants were right-handed native English speakers, had
normal or corrected-to-normal vision, and reported no history
of neuropsychological disorder. They were also screened for
basic experience in the programming language of interest.
Prior to beginning the study, each individual provided written
informed consent for a protocol approved by the University of
Virginia Institutional Review Board (HSR #18240). Monetary
compensation and course extra credit were offered.

B. Materials and Design

The experiment consisted of three tasks with unique stim-
ulus sets: Code Review, Code Comprehension, and Prose
Review. All stimuli were presented as images on a screen
in the back of the MRI scanner, normalized to the native
resolution of the projector (1024 × 768). Items were viewed
through a mirror mounted atop the head coil.

C. Procedure

The full experimental protocol was completed over a single
session per participant. Participants first viewed an instruc-
tional video detailing task requirements and were given further
verbal instruction prior to entering the MRI scanner. Following
an initial anatomical scan, participants completed four 11-
minute runs of the code/prose task. In each run, stimuli
were presented in alternating blocks of Code Review, Code
Comprehension, and Prose Review; the blocks were ordered
quasi-randomly across runs. All stimuli were presented for
a fixed time (30 s for prose, 60 s for code) and required an
Accept or Reject response, made on an MR-compatible button
box held in the right hand. Participants were encouraged to
respond as quickly and accurately as possible within the time
allotted for each trial — neural responses were considered
from the start of the trial until a decision was made. Inter-
stimulus intervals ranged from 2–8 seconds and consisted of a
white fixation cross displayed in the center of the screen. After
completing the fMRI task, participants were given a chance
to review the final run outside of the scanner and offer any
verbal explanations for their responses.

D. Stimulus Type 1 — Code Comprehension

A code comprehension stimulus consists of a snippet of
code and a candidate assertion about it (Figure 1a). Judging
whether the assertion is true or not about the code requires
comprehending the code. For comparability with previous re-
search, we used the same code snippets as Fry et al. [26]. Some
samples were reduced slightly in size to fit the fMRI projection
screen and colors were inverted for readability. Nineteen total
stimuli were used. The candidate questions were also taken
from Fry et al., and as thus ultimately adapted from Sillito et
al.’s study of questions asked by actual programmers during
software evolution tasks [71]. For each snippet a question type
appropriate to the snippet was selected at random. Assertions
were inducted from questions by including the correct answer
or an incorrect answer (random coin flip). Assertions were
used because the fMRI installation only allowed yes-or-no
answers, not free-form responses.

E. Stimulus Type 2 — Code Review

A code review stimulus consists of an historical GitHub
pull request, including the code difference and the developer
comment (Figure 1b). Participants are asked to review the
change and indicate whether they would accept it or not. A
pool of candidate pull requests were selected by considering
the top 100 C repositories on GitHub as of March 2016 and
obtaining the 1,000 most recent pull requests from each. We
considered the pull requests in a random order and filtered to
consider only those with at most two edited files and at most
10 modified lines, as well as those with non-empty developer
comments; the first twenty valid requests were used. Code
was presented using the GitHub pull request web interface,
simplified, and inverted for readability.

F. Stimulus Type 3 — Prose Review

A prose review stimulus consists of a snippet of English
writing marked up with candidate edits (Figure 1c). Partici-
pants are asked to review the changes and indicate whether
they would accept them or not. We included two sources of
English writing. First, we selected random chapters from an

English writing textbook [22] that provides explicit correct and
incorrect versions of candidate sentences and created examples
based on grammar rules contained in those chapters. We
created 20 stimuli of this type. Second, we selected random ex-
ercises in “Paragraph Improvement” from the College Board’s
SAT study guide [76]. Each such exercise has a paragraph and
a series of questions about how to improve various parts of
it; we created 10 stimuli by applying or reversing all of those
changes. Prose review edits are shown via Microsoft Word
“track changes”.

IV. FMRI ANALYSIS APPROACH

In this section we describe fMRI data capture and the
mathematical analyses and modeling applied.

Since this sort of analysis is less common in software
domains, we describe all steps in significant detail. How-
ever, our key areas of novelty are the overall experimental
design, the use of binary Gaussian Process Classification to
distinguish between code and prose tasks (Section IV-D), and
our construction of interpretable weights for brain regions
(Section IV-I). By contrast, the majority of individual steps
taken (e.g., correcting for anatomy, denoising, cross-validation,
etc.) are all well-established best practices for fMRI. In
essence, this multi-step analysis is necessary because of the
high dimensionality of medical imaging data, the timeseries
nature of the tasks, the lag inherent in the BOLD signal, and
our desire to both classify tasks and implicate brain regions.

A. Data Acquisition

We employed state-of-the-art imaging techniques using pro-
tocols obtained from the Human Connectome Project (HCP):
a massive, multi-site effort to uncover the brain networks
underlying human cognition [42]. These enabled rapid, parallel
sampling of the BOLD signal across the whole brain, offering
higher temporal resolution than standard protocols. They are
also typically more robust to other artifacts that plague data
quality (e.g., small head movements). MR signals are acquired
in 3D voxels (volumetric pixels) that define a grid-like matrix
over the brain. However, a full fMRI dataset is truly four
dimensional (3D spatial + time).

All MR data were collected on a 3T Siemens Magnetom
Tim Trio MRI system using a 32-channel head coil. Our
functional MR scans employed a T2

∗-weighted multi-band
echo planar imaging (mbEPI) sequence sensitive to the BOLD
contrast (TR = 1 s; TE = 32 ms; FA = 90◦, acceleration factor =
4). Whole-brain coverage was collected in 40 interleaved slices
(3 mm slice thickness; 3× 3 mm in-plane resolution). A total
of 650 volumes were acquired for each of the four task runs.
As a result of this process, a single participant completing four
11-minute runs produces 399,344,400 floating point numbers
of data (153,594 voxels × 650 volumes × 4 runs). High-
resolution anatomical images (strictly 3D, by contrast) were
collected using a T1-weighted magnetization-prepared rapid
gradient-echo (MPRAGE) sequence (TR = 1.2 s; TE = 2.27
ms; FA = 9◦; 176 slices; 1 mm thickness).

B. Data Preprocessing

Prior to any statistical analysis, fMRI data must be exten-
sively preprocessed, which serves to correct systematic noise
in the data (e.g., due to head motion) and align brains to
a standard spatial template. This allows for straightforward
comparison across subjects. Here, preprocessing and initial
statistical modeling were performed using the Statistical Para-
metric Mapping 8 software [80] in Matlab. Standard prepro-
cessing procedures were employed. First, functional data were
realigned and unwarped to correct for participant head motion.
High-res anatomical images were coregistered to the functional
scans, all data were subsequently normalized to the Montreal
Neurological Institute (MNI) template (cf. [47]). No spatial
smoothing was applied to the functional data.

C. Generalized Linear Models

Following preprocessing, it is conventional to estimate
within-subject general linear models (GLMs) to determine
how the BOLD signal changes across various task-related
events/conditions. Typically all trials for a given condition are
collected in a single regressor, yielding an average BOLD re-
sponse. However, here we isolated unique neural responses by
estimating a single GLM per trial. This procedure, described
by Mumford et al. [51], was necessary to avoid confounds
related to hemodynamic lag when applying machine learning
models to trials in an fMRI timeseries. For each GLM, one
regressor modeled the BOLD response for the current trial
of interest (event duration was curtailed at the participant’s
response time), and a nuisance regressor modeled all other
trials within the run. The BOLD timeseries were high-pass
filtered (σ = 128 s) and convolved with the canonical
hemodynamic response function to estimate the unique neural
response to each stimulus. As an additional denoising step,
we estimated models using robust weighted least squares
(rWLS [19]): this approach optimizes our measurement of
trialwise BOLD responses by giving less weight to images
with large noise variance. The end result of this process is a
pseudo-timeseries of parameter estimate images (beta images),
where each voxel’s value describes the extent to which it is
“activated” on a given trial (accounting for hemodynamic lag).
These were subsequently used as training examples for within-
subject machine learning models. “Missed” trials (i.e., where
no response was given) were excluded.

D. Multivariate Pattern Analyses

We used Gaussian Process Classification (GPC) to deter-
mine the extent to which code and prose tasks elicited similar
patterns of brain activity. If code and prose are processed
using highly-overlapping brain systems, classifier accuracy
would be low, reflecting entangled patterns of activity. These
so-called multivariate pattern analyses were implemented in
Matlab using the Gaussian Processes for Machine Learning
software, v3.5 [58]. Classification is performed in a two-step
procedure: the machine is first trained to identify patterns of
activity corresponding to two stimulus types (code or prose),

and learning performance is then tested using new images
without class labels.

E. Inputs and feature selection

The extremely large dimension of fMRI data is a major
obstacle for machine learning — we commonly have tens of
thousands of voxels but only a few dozen training examples.
This can be solved using a simple linear map (a kernel func-
tion) that reduces the dimensionality of the feature space [43],
[64], [68]. To begin, training inputs (features) were given as
a set of vectors {xn}Nn=1, with corresponding binary (+1/-1)
class labels, {yn}Nn=1 (where N is the number of beta images
for a given participant across both classes). Because any given
beta image is a 3D matrix of voxels, we can easily reshape it
into an input vector, xn.

The dimensionality of the feature vector is equal to the
number of voxels used for pattern identification: for these
analyses, we reduced the feature set to 47,187 voxels contained
across 90 regions of the cerebrum, defined by the Automated
Anatomical Labeling (AAL) atlas [78]. The AAL atlas allowed
us to probe whole brain patterns across the same voxels for
all participants. For additional feature reduction, we computed
a simple N × N linear kernel whose elements indicated the
degree of similarity between all pairs of input images.

F. Gaussian Process Classification

Gaussian Processes treat the classification problem as an
extension of the multivariate Gaussian, defined by a covari-
ance function that is used to make predictions for new data
(conditioned on a training set). We elected to use GPC over
other common methods (e.g., the support vector machine) for
several reasons: 1) predictions are made by integrating over
probability distributions (vs. hard linear decisions); 2) model
hyperparameters and regularization terms are learned directly
from the data (vs. costly nested cross-validation routines);
and 3) maximum likelihood is robust to potential imbalances
in class size, which otherwise bias linear classifiers toward
predicting the more common class. GPs have also been
successfully used in previous neuroimaging work to decode
distinct cognitive states (as we do here), to distinguish healthy
individuals from clinical populations, and even to predict
subjective experiences of pain [14], [48], [67].

The technical minutiae of GPC analysis have been described
in detail previously [41], [58]. Prior to training, a GP is defined
entirely by its mean vector, µ, and covariance function, K. The
covariance function is parameterized as:

K =
1
l2

XXT

where l2 is a learned scaling parameter and XXT gives
the linear kernel. The goal of GP-based machine learning is
then to identify optimal covariance parameters that allow for
accurate predictions of new data. However, because binary
classification is by nature non-Gaussian (all y ∈ {+1,−1}),
we adopt a function space view of GPs that models a latent
distribution over functions, f(x), given the data, D = {X,y}.

This distribution is used to estimate relationships between the
training data and make predictions for new examples.

To learn such a mapping, we employ a cumulative Gaussian
(or probit) likelihood and specify the posterior conditional over
f using Bayes’ rule:

p(f |D, θ) =
N (f |0,K)
p(D|θ)

N∏
n=1

φ(ynfn)

where N (f |0,K) is a zero-mean prior, φ(ynfn) is a factor-
ization of the likelihood over training examples, and p(D|θ)
gives the model evidence (or the marginal likelihood of the
data given a vector of hyperparameters, θ). Training therefore
involves finding the optimal form of K by scaling model
hyperparameters and maximizing the (log) model evidence.

G. Expectation Propagation
Class predictions for new images were made using expecta-

tion propagation (EP). This was necessary because the probit
likelihood and the posterior are both non-Gaussian, making
exact inference analytically intractable. EP algorithms allow
us to reformulate the posterior as a Gaussian and approximate
the distribution of the latent function at a new test point, x∗:

p(y∗ = +1|D, θ,x∗) =
∫
θ(f∗)q(f∗|D, θ,x∗)df∗

= φ

(
µ∗√

1 + σ2
∗

)
where q(f∗|D, θ,x∗) gives the EP approximation to a Gaus-
sian. Importantly, we still obtain a true probabilistic inference
by integrating over the latent posterior. The obtained class
probability is converted to a binary class label by inverting
the logarithm:

t∗ = ep

{
t∗ > 0.50, y∗ = +1
t∗ ≤ 0.50, y∗ = −1

The 0.50 threshold is non-arbitrary, owed to the symmetry
of the cumulative Gaussian.

H. Testing and Training
We mitigated overfitting via careful cross validation and

estimated unbiased measures of classification performance.
Together, these offered a robust means of testing the extent to
which GPC could distinguish between code and prose-related
patterns of activity. Ultimately three binary GPC models were
trained and tested for each participant: Code Review vs. Prose
Review, Code Comprehension vs. Prose Review, and Code
Review vs. Code Comprehension. Predictive performance was
assessed using a leave-one-run-out cross validation (LORO-
CV) procedure. For each fold of LORO-CV, the data from one
scanning run were removed from the kernel. The kernel was
then centered according to the remaining training examples,
the model was fit, and class predictions were made for the left-
out data. Given that all participants did not necessarily have
equal numbers of code/prose examples, average performance
across all CV folds was estimated as the balanced accuracy
(BAC), or the arithmetic mean of the two class accuracies.

(a) Code Comprehension vs. Prose Review (b) Code Review vs. Prose Review

Fig. 2: Average weight maps for task classifiers. When regions of the brain colored “hot” are active, the decision is pushed
toward Code. The left and right subfigures show a high degree of concordance (r = 0.75, p < .001), quantifying how both
code tasks are distinguished similarly compared to the prose task.

I. Regional Inference

We next sought to determine which regions of the brain
were most involved in discriminating between code and prose.
This involved projecting kernel weights back onto the 3D
brain — for display purposes, we present weight maps that
were averaged across CV folds and participants. It is worth
emphasizing, however, that such multivariate maps do not
lend themselves to simple regional inference: because the
final classification decision depends on information across
all voxels, it is incorrect to assume voxels with high weight
are the “most important.” Nevertheless, we may estimate a
posteriori the total contribution of each anatomical area in the
aforementioned AAL atlas [78]. In this procedure, the absolute
values of all voxel weights within a brain region were summed
and divided by the total number of voxels in the region.
Then, each region’s “contribution strength” was divided by the
sum of strengths for all regions, yielding a proportion that is
directly interpretable as regional importance — a larger value
indicates more total weight represented within a region [66].
These importance maps are also presented as a group average.

V. RESULTS AND ANALYSIS

In this section we present our experimental results, focusing
on the analysis of the raw participant data obtained from the
experimental protocol in Section III. We focus our analysis on
three research questions:
RQ1 Can we classify which task a participant is undertaking

based on patterns of brain activation?
RQ2 Can we relate tasks to brain regions?
RQ3 Can we relate expertise to classification accuracy?

A. RQ1 — Task Classification

We assess if our learned models can classify which task
a participant is performing based solely on patterns of brain
activity. We consider the three tasks (Code Review, Code
Comprehension and Prose Review) pairwise.

Since not all participants completed the same number of
trials (e.g., some participants completed more prose trials than
others), we first sought to ensure that this difference was
not biasing classifier accuracy. Median BAC was compared
for each of the three models using nonparametric Wilcoxon
rank-sum tests [2]. There were no significant differences in
classification performance for either Review vs. Prose models

(Z = 0.84, p = .400) or Comprehension vs. Prose models
(Z = 0.55, p = .579), suggesting that GPC’s ability to
discriminate between code and prose tasks was not driven by
the number of prose trials completed. This also held when
considering only Prose class accuracy in both Review vs.
Prose models (Z = −1.87, p = .061) and Comprehension vs.
Prose models (Z = −1.53, p = .127). A full set of summary
statistics for classifier performance are displayed in Table I.

With regard to overall classifier performance, we employed
nonparametric Wilcoxon signed-rank tests to compare model
BAC against a null median accuracy of 50% (chance for a
binary classifier). For all models, GPC performance was highly
significant. The classifiers accurately discriminated between
Review vs. Prose trials (BAC = 70.83%; Z = 4.00, p <
.001), Comprehension vs. Prose trials (BAC = 79.17%; Z =
4.51, p < .001), and even Review vs. Comprehension trials
(BAC = 61.74%; Z = 3.45, p < .001).

These results suggest that Code Review, Code Compre-
hension, and Prose Review all have largely distinct neural
representations. Inspection of the average weight maps for
each Code vs. Prose model (Figure 2) revealed a similar
distribution of classifier weights across a number of brain
regions (here, “hot” voxels push the decision function towards
Code with greater activation, while “cool” voxels indicate the
reverse). Correlating the voxelwise values confirmed a high
degree of concordance (r = 0.75, p < .001), indicating that
(on average) similar patterns of activity distinguished between
code and prose regardless of which code task was being
performed. In addition to the average classifiers, our highest-
performing Code vs. Prose models also conserved the weight
distributions across tasks. For space reasons we only present
averages across all participants, showing the similarity in
weight distributions. This general similarity helps explain why
Code Review and Code Comprehension less separable than
Code vs. Prose (indicated by lower classification accuracy).

B. RQ2 — Regional Inference

We investigate the relationship between tasks and particular
brain regions. Compared to RQ1, which investigated whether
classification was possible, RQ2 looks at the brain areas most
involved in that classification and examines their traditional
roles and importance.

Class 1 Class 2 Overall
Model Accuracy Z p Accuracy Z p BAC Z p

Review vs. Prose 58.33% 1.85 0.064 87.50% 4.20 2.63E-05 70.83% 4.00 6.34E-05
Comprehension vs. Prose 72.73% 2.74 0.006 95.83% 4.61 3.94E-06 79.17% 4.51 6.38E-06
Review vs. Comprehension 66.67% 3.68 2.32E-04 58.33% 0.90 0.366 61.84% 3.45 5.70E-04

TABLE I: Summary statistics for classifier performance. Median accuracies are given across participants; test statistics and
probabilities are derived from nonparametric Wilcoxon signed-rank tests.

(a) Code Comprehension vs. Prose Review (b) Code Review vs. Prose Review

Fig. 3: Average regional importance maps for task classifiers. “Hot” colors indicate areas containing a greater proportion of the
total classification weight (over all 90 AAL-defined regions). These proportions are directly interpretable, such that extreme red
regions are twice as “important” as light green regions. The left and right subfigures show a near-perfect correlation r = 0.99,
p < .001, highlighting the same brain regions as important for both code tasks in general vs. the prose task.

Fig. 4: Negative relationship between classifier performance
(x-axis) and expertise (GPA), shaded 95% confidence interval.

As with the average multivariate weight maps, average
regional importance maps for both Code vs. Prose classifiers
demonstrated remarkable overlap (Figure 3). A correlation be-
tween importance maps yielded a near-perfect correspondence:
r = 0.99, p < .001. For both classifiers, a wide swath of
prefrontal regions known to be involved in higher-order cog-
nition (executive control, decision-making, language, conflict
monitoring, etc.) were highly weighted, indicating that activity
in those areas strongly drove the distinction between code and
prose processing. We also observed fairly large contributions
from voxels near Wernicke’s area in temporoparietal cortex —
a region classically associated with language comprehension.
Together, these results suggest that language-sensitive areas of
the brain were differentially recruited when processing code
versus English prose. Thus, on average, programming and
natural languages exhibit unique neural representations.

C. RQ3 — Expertise
We examine the relationship between classifier accuracy and

participant expertise.
In light of the observed variability in classification per-

formance across individuals, coupled with stark differences
in multivariate weight maps between the highest and lowest
performing models (not shown), we tested whether BAC pre-
dicted one’s programming expertise. As a proxy for expertise,
we obtained undergraduate GPAs counting only courses from
the Computer Science department. These were corrected by
the total number of CS credits taken (a 4.0 GPA with 8
credits presumably does not indicate equal expertise to a 4.0
GPA with 32 credits): a simple linear regression was specified
predicting computer science GPA from completed credits,
and the residualized GPAs were extracted for subsequent
analysis. This allowed us to consider GPA as a skill indicator
independent of the number of credits completed.

We then computed the correlation between expertise and
classifier accuracy for both of the Code vs. Prose models. Dis-
criminability performance in Code Review vs. Prose models
was not related to expertise (r = −0.25, p = .184). However,
the extent to which classifiers distinguished between Code
Comprehension and Prose significantly predicted expertise
(r = −0.44, p = .016), see Figure 4. The inverse relationship
between accuracy and expertise suggests that, as one develops
more skill in coding, the neural representations of code and
prose are less differentiable. That is, programming languages
are treated more like natural languages with greater expertise.

D. Analysis Summary
We employed a data-driven machine learning approach to

decode the neural representations of code and prose from
multivariate patterns of brain activity. This technique is ad-
vantageous because it allows us to probe spatially-correlated

activations across the whole brain simultaneously. Binary
Gaussian Process classifiers significantly predicted when a
participant was performing code-related tasks relative to prose
review; it also distinguished between the two code tasks,
though to a lesser extent. This latter observation is consistent
with the remarkable spatial overlap, both qualitatively and
quantitatively, between multivariate classifier weights in Code
vs. Prose models, suggesting that the code tasks were largely
represented similarly on average. This was confirmed by
nearly identical a posteriori estimates of regional importance:
a number of prefrontal regions reliably distinguished between
the code and prose tasks, accounting for most of the weight
in the whole-brain classification models. Importantly, however,
the extent to which these tasks were separable depended on
one’s expertise in programming — in the brains of experienced
programmers, code and prose were nearly indistinguishable.

VI. THREATS TO VALIDITY

Although our analyses show that neural representations of
programming and natural languages are distinct (and this
distinction reduces with expertise), this may not generalize.

One threat to validity associated with generalizability is
that our code comprehension, code review, and prose review
stimuli may not be indicative. For example, all code stimuli
were in C and all prose stimuli were in English. While our
examples are not multi-language we approach generality by
choosing code changes at random from real-world projects
and using established standardized test questions.

Another potential threat relates to construct and content
validity: whether or not our tests measure what they claim to
be measuring (e.g., “code comprehension” or “code review”).
We mitigate this threat by posing types of questions known to
be asked by programmers during software evolution tasks [71]
and presenting code review as it would appear to a remote
GitHub user. However, there are aspects of these tasks not
covered by our current experiments (e.g., code review may
also contain a back-and-forth conversational component).

Our use of GPA as a proxy for expertise introduces an
additional threat to validity. Measuring participant expertise
is difficult, and the metrics used are often domain-specific.
For example, in specification mining the number of edits to
version control repositories has been used as a proxy for
expertise [44], while research related to Community Question
Answering sites may proxy of expertise based on counting
or profiling [83]. GPA has been shown to be a correlate of
learning and academic aptitude (e.g., [28], [72]).

Finally, the high dimensionality of fMRI images and the
complex mathematical methods required to analyze them often
necessitate conservative corrections for false positives and/or
strong assumptions about the underlying data (that may or may
not be met by reality) [7]. For example, in standard GLM-
based analyses of fMRI data, tens of thousands of statistical
tests are run across the brain in a voxelwise fashion, requiring
careful correction for multiple comparisons. In a highly-
popularized article, Eklund et al. found that fMRI data often

fail to meet the assumptions required for a certain “cluster-
based” approach to multiple comparisons correction — this
method, offered by nearly all common software packages for
fMRI analysis, can therefore result in false-positive rates of up
to 70% [23]. A key advantage to our multivariate approach is
that all voxels are considered simultaneously, precluding the
need for voxelwise multiple comparisons correction. However,
this approach does preclude the sort of directed regional
inference of standard GLM-based tests (cf. [70]).

VII. COSTS AND REPRODUCIBLE RESEARCH

While we believe fMRI studies in software engineering are
quite important, they remain rare (i.e., to the best of our
knowledge this is only the second published instance [70]).
In this section we frankly discuss the actual costs of carrying
out this study in the hope that other researchers may carry out
similar studies in the future. We note that of the four most
common perceived barriers reported by software engineering
researchers against the use of human studies [10, Fig. 10],
fMRI experiments heavily involve all four: recruiting, experi-
ment time, phrasing research questions, and the IRB.

a) Recruiting: fMRI constrains recruiting. Most directly,
remote participation (such as via Amazon’s Mechanical Turk
crowdsourcing, cf. [26, Sec. 3.5]) is not possible. In addi-
tion, there are fMRI-specific filters, such as the exclusion
of pregnant women, nearsighted people with glasses but not
contacts, and the left-handed (because the location of language
processing in the brain strongly depends on handedness).
Despite this, we found recruiting to be quite easy. With brief
advertisements in two CS classes, $100 reimbursements, and
offering participants high-resolution scans of their brains (that
can possibly be 3D-printed), we found 35 participants.

b) Time and Cost: Experiment time and cost are sig-
nificant concerns for fMRI studies. One hour is about the
maximum time that a participant can comfortably remain in
the device. With pre- and post-screening, each participant thus
takes about 90 minutes, and each participant must be sepa-
rately supervised by one or two researchers (i.e., researchers
listening to the participant via the intercom cannot leave the
room during a scan). In addition, fMRI scan time is expensive
— about $500 per hour at our institution. While both the fMRI
costs and participant reimbursement can be paid for by an NSF
grant with the appropriate budget justification and program
manager permission, this is a significantly higher monetary
cost than the usual software engineering human study. The data
acquisition in this paper represents a participant and machine
cost of $21,000 and 52.5 hours of graduate student time.

In addition, while most fMRI setups include a projector-
and-mirror display, they may not be sufficient to show multiple
lines of code clearly. We purchased an additional lens ($2800)
to present indicative multi-line coding stimuli clearly.

c) Research Questions: The nature of the BOLD signal
measured by fMRI influences experiment design. Notably,
tasks in which participants are performing the same activ-
ities at the same time intervals are favored. Similarly, the
contrasting, subtractive nature of fMRI analysis forces certain

experimental controls. Informally, fMRI cannot illuminate X
directly: researcher must formulate tasks Y and Z such that X
is the difference between them. In addition, the limited range
of participant actions available restricts the range of tasks:
for example, without a keyboard, no new coding is possible
(but see Section VIII). In general, however, we found research
question design to be fairly direct given consultations with
psychology researchers who had fMRI experience.

d) IRB: An Institutional Review Board or Ethics Board
governs acceptable human study research at a university.
IRBs often distinguish between medical research and other
(e.g., social or behavioral) research; fMRI studies fall into
the heavily-regulated medical category. At the University of
Virginia, the non-medical IRB protocol form involves six
questions with 16 responses; those questions, plus potentially a
few others involving compensation, comprise what is normally
meant by (the burden of) IRB approval [9], [26], [27]. The
medical IRB paperwork necessary for this study involved 236
questions in the cover sheet alone, and the main protocol was
33 pages (compared to 13 for non-medical [26]). In addition,
since brain scans are HIPAA protected data, a four-page data
protection and privacy plan was required.

e) Reproducible Research: To mitigate these costs, we
have made our IRB protocol, experimental materials and raw,
de-identified scan data publicly available at http://dijkstra.cs.
virginia.edu/fmri/. This allows other researchers to conduct
alternate analyses or produce more refined models without the
expense of producing this raw data. There are instances of new
papers published from archived human study data (e.g., [57]
from [9]); we hope that the same will happen here.

f) Lessons Learned: One of the more difficult aspects of
our experimental design was balancing ecological validity (i.e.,
are the “code review” and “code comprehension” activities
undertaken by the subjects indicative of the real world) with
the constraints of fMRI scanning. The available button press
device precluded scrolling, requiring all stimuli to fit on
one screen. The scan duration and data analysis precluded
multi-minute tasks. We were also surprised by the number of
mechanical difficulties in the fMRI apparatus that resulted in
discarded participant runs (i.e., six out of 35). On a positive
note, we were surprised by the number of willing students
interested in obtaining a personal 3D-printed brain model.

VIII. FUTURE WORK

In this section we briefly describe three avenues for future
research, both to give a sense of possible extensions and also
to encourage collaboration from interested researchers.

First, one could adapt this protocol to study the impact of
social relationships and patch provenance on code review. We
propose to present patches as being written by, for example, a
long-time co-worker, an offshore subcontractor, an automated
tool, a recent hire, a deceptive adversary, or the experimenter
in the room. Results in psychology suggest that perception
of authority is enough to sway judgment in such cases [49].
Similarly, medical imaging research has shown that humans
use different brain circuitry for social processing and cheating

than for other types of reasoning [16], [75]. On the software
engineering side, there is significant interest in the judgment of
patch quality from various sources [26], [37], [74]. However,
the extent and mechanism of mental biases in code review are
not fully understood. This experiment also has the advantage
that portions of it can be conducted without medical imaging.

Second, we are interested in a more thorough study of exper-
tise. We envision collaboration with a research lab interested in
mirroring our current protocol: one set of participants would be
undergraduate and graduate university students, another would
be industrial researchers with years of experience. Such a study
might also explore code familiarity by drawing stimuli from
codebases the experts or students had worked on. The small
performance differences observed between students with two
additional years of experience [27, Tab. 2] do not equal the or-
der of magnitude reported in general [63, Tab. 3]. An imaging
experiment involving actual expert programmers would allow
us to determine in what way programming expertise changes
the brain (cf. [17], [46], [65]).

Finally, our current experiments involve only reading code.
This constraint is largely pragmatic: standard keyboards cannot
be deployed near fMRI magnets. However, with minor cable
modifications we were able to adapt a silicone-and-plastic
keyboard [34] and obtain approval for its use in our fMRI.
This would allow for the direct observation of patterns of
brain activation while participants are writing code, both from
scratch and to patch existing software.

IX. SUMMARY

This paper presents the result of a controlled experiment
in which code comprehension, code review, and prose review
tasks are contrasted against each other using functional mag-
netic resonance imaging. Siegmund et al. asked whether, fol-
lowing Dijkstra, good programmers need good native language
skills, and explored code but not language or expertise [70].
Hindle et al. found that most software admits the same
statistical properties and modeling as natural language [31].
The work presented here in some sense bridges that gap,
explicitly relating software, natural language and expertise.

We argue, at a high level, that medical imaging studies in
computer science have the potential to shed light on multiple
unresolved problems (e.g., unreliable self-reporting, pedagogy,
retraining aging developers, technology transfer, expertise,
and the relationship between software and natural language).
We acknowledge that the work presented here is still quite
exploratory: a full quantitative theory relating code, prose and
expertise remains distant. We also acknowledge the time and
material costs of such studies, and make our materials and
data available, inviting collaboration on future work.

Empirically, we find that the neural representations of
programming and natural languages are distinct. Our classifiers
can distinguish between these tasks based solely on brain
activity. We find that the same set of brain locations is relevant
to distinguishing all three tasks. Finally, we find that expertise
matters: greater skill accompanies a less-differentiated neural
representation.

ACKNOWLEDGMENTS

Aspects of this work were partially supported by NSF grant
CCF 1116289 and AFOSR grant FA8750-15-2-0075, as well as by
Microsoft. We thank Jonathan Dorn, Jeremy Lacomis, and Kevin
Angstadt for helpful suggestions on earlier drafts.

REFERENCES

[1] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. Software inspec-
tions: An effective verification process. IEEE Softw., 6(3):31–36, May
1989.

[2] A. Arcuri and L. Briand. A Hitchhiker’s Guide to Statistical Tests for
Assessing Randomized Algorithms in Software Engineering. Software
Testing, Verification and Reliability (STVR), 24(3):219–250, 2014.

[3] M. Atherton, J. Zhuang, W. M. Bart, X. Hu, and S. He. A functional
MRI study of high-level cognition. I. the game of chess. Cognitive Brain
Research, 16(1):26–31, 2003.

[4] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou.
Evaluating static analysis defect warnings on production software. In
Program Analysis for Software Tools and Engineering, pages 1–8, 2007.

[5] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static
driver verifier: Technology transfer of formal methods inside microsoft.
In Integrated Formal Methods, pages 1–20, 2004.

[6] D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson,
and S. T. Grafton. Dynamic reconfiguration of human brain networks
during learning. Proceedings of the National Academy of Sciences,
108(18):7641–7646, 2011.

[7] C. M. Bennett, M. Miller, and G. L. Wolford. Neural correlates of
interspecies perspective taking in the post-mortem atlantic salmon: An
argument for proper multiple comparisons correction. NeuroImage, 47,
July 2009.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. R. Engler. A few billion lines
of code later: Using static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, 2010.

[9] R. P. Buse and W. Weimer. Learning a metric for code readability. IEEE
Trans. Software Eng., Nov. 2009.

[10] R. P. L. Buse, C. Sadowski, and W. Weimer. Benefits and barriers of
user evaluation in software engineering research. In Object-Oriented
Programming, Systems, Languages and Applications, pages 643–656,
2011.

[11] R. P. L. Buse and T. Zimmermann. Information needs for software devel-
opment analytics. In International Conference on Software Engineering,
pages 987–996, 2012.

[12] R. Cabeza, S. M. Daselaar, F. Dolcos, S. E. Prince, M. Budde, and
L. Nyberg. Task-independent and task-specific age effects on brain
activity during working memory, visual attention and episodic retrieval.
Cerebral Cortex, 14(4):364–375, 2004.

[13] L. F. Capretz, D. Varona, and A. Raza. Influence of personality types
in software tasks choices. Computers in Human Behavior, 52:373–378,
2015.

[14] E. Challis, P. Hurley, L. Serra, M. Bozzali, S. Oliver, and M. Cercignani.
Gaussian process classification of Alzheimer’s disease and mild cogni-
tive impairment from resting-state fMRI. Neuroimage, 122:232–243,
2015.

[15] M. T. H. Chi, R. Glaser, and E. Rees. Expertise in problem solving.
Advances in the psychology of human intelligence, 1:7–76, 1982.

[16] L. Cosmides and J. Tooby. Can a general deontic logic capture the facts
of human moral reasoning? How the mind interprets social exchange
rules and detects cheaters. Moral psychology, pages 53–119, 2008.

[17] U. Debarnot, M. Sperduti, F. Di Rienzo, and A. Guillot. Experts
bodies, experts minds: How physical and mental training shape the brain.
Frontiers in Human Neuroscience, 8:280, 2014.

[18] L. E. Deimel Jr. The uses of program reading. SIGCSE Bulletin, 17(2):5–
14, 1985.

[19] J. Diedrichsen and R. Shadmehr. Detecting and adjusting for artifacts
in fmri time series data. NeuroImage, 27(3):624–634, 2005.

[20] W. J. Doherty and A. J. Thadani. The economic value of rapid response
time. In IBM Systems Journal, Nov. 1982.

[21] A. Dunsmore, M. Roper, and M. Wood. Practical code inspection
techniques for object-oriented systems: An experimental comparison.
IEEE Softw., 20(4):21–29, July 2003.

[22] L. Dupre. BUGS in Writing: A Guide to Debugging your Prose.
Addison-Wesley Professional, second edition, 1998.

[23] A. Eklund, T. E. Nichols, and H. Knutsson. Cluster failure: Why
fmri inferences for spatial extent have inflated false-positive rates.
Proceedings of the National Academy of Sciences, 113(28):7900–7905,
2016.

[24] J. L. Elshoff and M. Marcotty. Improving computer program readability
to aid modification. Commun. ACM, 25(8):512–521, 1982.

[25] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Syst. J., 38(2-3):258–287, June 1999.

[26] Z. P. Fry, B. Landau, and W. Weimer. A human study of patch
maintainability. In International Symposium on Software Testing and
Analysis, pages 177–187, 2012.

[27] Z. P. Fry and W. Weimer. A human study of fault localization accuracy.
In International Conference on Software Maintenance, pages 1–10,
2010.

[28] W. A. Grove, T. Wasserman, and A. Grodner. Choosing a proxy for
academic aptitude. Journal of Economic Education, pages 131–147,
2006.

[29] P. Hallam. What do programmers really do anyway? Technical report,
Microsoft Developer Network, 2016.

[30] N. J. Haneef. Software documentation and readability: a proposed
process improvement. SIGSOFT Softw. Eng. Notes, 23(3):75–77, 1998.

[31] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the
naturalness of software. In International Conference on Software
Engineering, pages 837–847, 2012.

[32] D. Huizinga and A. Kolawa. Automated Defect Prevention: Best
Practices in Software Management. Wiley, first edition, 2007.

[33] Y. Ikutani and H. Uwano. Brain activity measurement during program
comprehension with NIRS. In International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, pages 1–6, 2014.

[34] G. A. James, G. He, and Y. Liu. A full-size MRI-compatible keyboard
response system. Neuroimage, 25(1):328–31, Mar. 2005.

[35] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In Inter-
national Conference on Software Engineering (ICSE), pages 672–681.
IEEE, 2013.

[36] N. Kennedy. Google Mondrian: web-based code review and stor-
age. In http://www.niallkennedy.com/blog/2006/11/google-mondrian.
html, Nov. 2006.

[37] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In International Conference on
Sofware Engineering, 2013.

[38] J. C. Knight and E. A. Myers. An improved inspection technique.
Commun. ACM, 36(11):51–61, Nov. 1993.

[39] D. E. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984.
[40] M. V. Kosti, R. Feldt, and L. Angelis. Archetypal personalities of

software engineers and their work preferences: a new perspective for
empirical studies. Empirical Software Engineering, 21(4):1509–1532,
2016.

[41] M. Kuss and C. E. Rasmussen. Assessing approximate inference for
binary Gaussian process classification. Journal of Machine Learning
Research, 6:1679–1704, 2005.

[42] Laboratory of Neuro Imaging. Human connectome project. In http:
//www.humanconnectomeproject.org/ , Martinos Center for Biomedical
Imaging at Massachusetts General Hospital, Aug. 2016.

[43] S. LaConte, S. Strother, V. Cherkassky, and X. Hu. Support vector ma-
chines for temporal classification of block design fmri data. Neuroimage,
26:317–329, 2005.

[44] C. Le Goues and W. Weimer. Measuring code quality to improve
specification mining. IEEE Transactions on Software Engineering,
38(1):175–190, 2012.

[45] P. Mabe and S. West. Validity of self-evaluation of ability: A review and
meta-analysis. Journal of Applied Psychology, 67(3):280–296, 6 1982.

[46] E. A. Maguire, K. Woollett, and H. J. Spiers. London taxi drivers and bus
drivers: A structural mri and neuropsychological analysis. Hippocampus,
16(12):1091–1101, 2006.

[47] J. B. A. Maintz and M. A. Viergever. A survey of medical image
registration. Medical Image Analysis, 2(1):1–36, 1998.

[48] A. Marquand, M. Howard, M. Brammer, C. Chu, S. Coen, and
J. Mourao-Miranda. Quantitative prediction of subjective pain intensity
from whole-brain fMRI data using Gaussian processes. Neuroimage,
49:2178–2189, 2010.

[49] S. Milgram. Behavioral study of obedience. Abnormal and Social
Psychology, 67(4):371–378, Oct. 1963.

[50] M. P. Milham, K. I. Erickson, M. T. Banich, A. F. Kramer, A. Webb,
T. Wszalek, and N. J. Cohen. Attentional control in the aging brain:
Insights from an fMRI study of the Stroop task. Brain and Cognition,
49(3):277–296, 2002.

[51] J. A. Mumford, B. O. Turner, F. G. Ashby, and R. A. Poldrack.
Deconvolving BOLD activation in event-related designs for multivoxel
pattern classification analyses. NeuroImage, 59(3):2636–2643, 2012.

[52] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, K. Matsumoto, and
D. M. German. Quantifying programmers’ mental workload during
program comprehension based on cerebral blood flow measurement:
A controlled experiment. In Companion Proceedings of the 36th
International Conference on Software Engineering, ICSE Companion
2014, pages 448–451, New York, NY, USA, 2014. ACM.

[53] NASA Software Reuse Working Group. Software reuse sur-
vey. In http://www.esdswg.com/softwarereuse/Resources/ library/
working group doc%uments/survey2005, 2005.

[54] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank. Brain magnetic
resonance imaging with contrast dependent on blood oxygenation.
Proceedings of the National Academy of Sciences, 87(24):9868–9872,
1990.

[55] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In International Symposium on Software Testing
and Analysis, pages 199–209, 2011.

[56] P. M. Podsakoff and D. W. Organ. Self-reports in organizational
research: Problems and prospects. Journal of Management, 12(4):531–
544, 1986.

[57] D. Posnett, A. Hindle, and P. T. Devanbu. A simpler model of software
readability. In Mining Software Repositories, pages 73–82, 2011.

[58] C. E. Rasmussen and C. Williams. Gaussian Processing for Machine
Learning. MIT Press, 2006.

[59] D. R. Raymond. Reading source code. In Conference of the Centre for
Advanced Studies on Collaborative Research, pages 3–16, 1991.

[60] M. Ritchey, A. P. Yonelinas, and C. Ranganath. Functional connectivity
relationships predict similarities in task activation and pattern informa-
tion during associative memory encoding. J. Cognitive Neuroscience,
26(5):1085–1099, May 2014.

[61] J. S. Ross, J. Tkach, P. M. Ruggieri, M. Lieber, and E. Lapresto. The
minds eye: Functional MR imaging evaluation of golf motor imagery.
American Journal of Neuroradiology, 24(6):1036–1044, 2003.

[62] S. Rugaber. The use of domain knowledge in program understanding.
Ann. Softw. Eng., 9(1-4):143–192, 2000.

[63] H. Sackman, W. J. Erikson, and E. E. Grant. Exploratory experimental
studies comparing online and offline programming performance. Com-
mun. ACM, 11(1):3–11, Jan. 1968.

[64] B. Schölkopf and A. J. Smola. Learning with kernels. The MIT Press,
2002.

[65] J. Scholz, M. C. Klein, T. E. J. Behrens, and H. Johansen-Berg. Training
induces changes in white-matter architecture. Nature Neuroscience,
12:1370–1371, 2009.

[66] J. Schrouff, J. Cremers, G. Garraux, L. Baldassarre, J. Mourao-Miranda,
and C. Phillips. Localizing and comparing weight maps generated from
linear kernel machine learning models. In International Workshop on
Pattern Recognition in Neuroimaging (PRNI), pages 124–127, 2013.

[67] J. Schrouff, C. Kusse, L. Wehenkel, P. Maquet, and C. Phillips. Decoding
semi constrained brain activity from fMRI using support vector machines
and Gaussian processes. PLOS One, 7(4):1–11, 2012.

[68] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge University Press, 2004.

[69] F. Shull, I. Rus, and V. Basili. Improving software inspections by
using reading techniques. In International Conference on Software
Engineering, pages 726–727, 2001.

[70] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann. Understanding understanding source
code with functional magnetic resonance imaging. In International
Conference on Software Engineering, pages 378–389, 2014.

[71] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask
during software evolution tasks. In Foundations of Software Engineering,
pages 23–34, 2006.

[72] A. Solimeno, M. E. Mebane, M. Tomai, and D. Francescato. The
influence of students and teachers characteristics on the efficacy of face-
to-face and computer supported collaborative learning. Computers &
Education, 51(1):109–128, 2008.

[73] I. Sommerville. Software Engineering. Pearson, ninth edition, 2010.
[74] M. Soto, F. Thung, C.-P. Wong, C. Le Goues, and D. Lo. A deeper

look into bug fixes: Patterns, replacements, deletions, and additions. In
Mining Software Repositories, pages 512–515, 2016.

[75] V. E. Stone, L. Cosmides, J. Tooby, N. Kroll, and R. T. Knight. Selective
impairment of reasoning about social exchange in a patient with bilateral
limbic system damage. Proceedings of the National Academy of Sciences
of the United States of America, 99(17):11531–6, 2002.

[76] The College Board. The Official SAT Study Guide (Redesigned SAT).
2016.

[77] A. Tsotsis. Meet Phabricator, the witty code review tool
built inside Facebook. In https:// techcrunch.com/2011/08/07/
oh-what-noble-scribe-hath-penned-thes%e-words/ , Aug. 2011.

[78] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello,
O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatomical
labeling of activations in SPM using a macroscopic anatomical parcella-
tion of the MNI MRI single-subject brain. NeuroImage, 15(1):273–289,
2002.

[79] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller. How long will
it take to fix this bug? In Workshop on Mining Software Repositories,
May 2007.

[80] Wellcome Trust Centre for Neuroimaging. Statistical parametric map-
ping. In http://www.fil.ion.ucl.ac.uk/spm/ , Aug. 2016.

[81] L. Williamson. IBM Rational software analyzer: Beyond source code.
In Rational Software Developer Conference, June 2008.

[82] J. Wright. In-demand and aging: A look at engineers and
engineering technicians in the workforce. Technical Report
http://www.economicmodeling.com/2014/09/12/in-demand-and-aging-
a-look-at-engineers-and-engineering-technicians-in-the-workforce/,
EMSI, 2014.

[83] R. Yeniterzi and J. Callan. Moving from static to dynamic modeling of
expertise for question routing in CQA sites. In International Conference
on Web and Social Media, pages 702–705, 2015.

[84] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairavasundaram.
How do fixes become bugs? In Foundations of Software Engineering,
pages 26–36, 2011.

[85] M. B. Zanjani, H. H. Kagdi, and C. Bird. Automatically recommending
peer reviewers in modern code review. IEEE Trans. Software Eng.,
42(6):530–543, 2016.

