

Question 1. Word Bank
Matching (1 point each, 14 points total)

For each statement below, input the letter of the term that
is best described or the concept that is most
related.
Note that you
can click each word (cell) to mark it off. Each word
is used at most once.

A. — Creational Design Pattern B. — Delta Debugging C. — Elicitation D. — Fault Localization

E. — Informal Goal F. — Maintainability G. — Medical Imaging H. — Priority

I. — Productivity J. — Profiling K. — Program Synthesis L. — Quantum Computing

M. — Requirements N. — Risk O. — Stakeholder P. — Static Analysis

Q. — Structural Design Pattern R. — Validation S. — Watchpoint T. — Weak Conflict

Q1.1: M

You are called in by metamorphic rock shop company AllSlate to create a website for them. They tell you

the things that the website needs: a feature to search through their rock catalog, a feature to add rocks
to a user's cart, and the ability to purchase the rocks in their cart securely.

Q1.2: N

This includes both the odds of an event
happening and also the consequences of that event happening.

Q1.3: H

Internally, developers find a defect related to the security of customer records
that could have significant

consequences if exploited. However, CreditCo
management is worried about market reactions and
decides not to
publicly pursue creating and deploying a patch in the short
term.

Q1.4: R

Miyamoto uses a series of interviews, walkthroughs and
checklists to ensure that the requirements are

complete and
consistent.

Q1.5: P

Maya is facing a looming deadline and is tasked with identifying
methods that are likely to be slow.
Rather than running the program
and recording execution times, she writes a script to count the
number

of loops in each method's source code and uses that to
estimate how long it will take that method to run.

Q1.6: I

Decades ago, software engineering work was mistakenly believed to be
partitionable. In practice, adding
more people to a late project
tends to make it later, informing our ability to plan with respect
to this
concept.

Q1.7: T

ToSoftware is working on a difficult game. Developers are
instructed to be sure that "no one can
complete the game in under
5 hours" but also that "speedrunners can complete the game in times
that

can make high-revenue YouTube videos".

Q1.8: Q

Gabriel is writing a program that has access to video files and
he wants to use an analysis library that
operates on sets of
images. He writes a wrapper extracts the frames from the videos
as individual images

and invokes the library on those individual images.

Q1.9: S

Yang is responsible for maintaining a circularly-linked list.
Unfortunately, on some long runs the
outgoing pointer from the
first element is replaced with an incorrect value. Yang runs the
program and

arranges for execution to pause when that pointer value
is changed.

Q1.10: E

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

Golda is writing software for a microphone company. The
company's market research suggests that

customers want the audio to "not sound too breathy". This information, without elaboration,
is provided
to Golda to help guide software development.

Q1.11: K

In an approach conceptually similar to machine learning, Pedro carries out a task manually and then

uses a formal grammar to
automatically create code that does that same task.

Q1.12: A

Li Bai structures his class so that the normal constructor
cannot be called and another method must be
called instead. This
allows him to hide type information.

Q1.13: O

The University of Michigan is considering revamping Wolverine
Access. Lawyers, representatives from

human resources, professors,
and students are all gathered to provide input.

Q1.14: L

Wei's manager mistakenly believes that this technology will
definitely allow the hardest problems in
computing to be solved in
polynomial time.

Question 2. Delta Debugging (20 points)

We want to design a new fault localization algorithm, Tetra Debugging, which functions very similar to delta debugging but
hopefully converges on an answer more quickly. Rather than splitting the test set in half, Tetra Debugging partitions the test

set into fourths and tests if each subset is interesting. A brief implementation of parts of the tetra algorithm is provided
below.

(a) (4 points) Pick the code snippet that, when put in place of lines 24-28, makes tetra
yield a correct minimal subset. If there
are multiple correct answers, pick any
one of them. (Assume there are no syntax errors or similar concerns: this
is a question

about algorithm logic, not Python details.)

def split(lst):
 pivot = math.ceil(len(lst) / 4)

 return lst[:pivot], lst[pivot:pivot*2], lst[pivot*2:pivot*3], lst[pivot*3:]
​

def minimize_lt_four(lst):
 # Returns a list of the minimal interesting subset of `lst`

 # Assumes that lst is interesting and len(lst) < 4
 # Makes exactly one call to Interesting() for each element of `lst`

 # The code is not shown, but you can assume it works correctly
​

def union(*lsts):
 # Returns the union of the lists passed in as arguments

 # The code is not shown, but you can assume it works correctly
​

def tetra(P, C):
 if len(C) < 4:

 return minimize_lt_four(C)
 p1, p2, p3, p4 = split(C)

 if (interesting(p1)): return tetra(P, p1)
 if (interesting(p2)): return tetra(P, p2)

 if (interesting(p3)): return tetra(P, p3)
 if (interesting(p4)): return tetra(P, p4)

 result = union(

 tetra(union(P, p2, p3, p4), p1),
 tetra(union(P, p1, p3, p4), p2),

 tetra(union(P, p1, p2, p4), p3),
 tetra(union(P, p1, p2, p3), p4))

 return result

​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

result = union(

 tetra(union(P, p1, p2, p3, p4), p1),
 tetra(union(P, p1, p2, p3, p4), p2),

 tetra(union(P, p1, p2, p3, p4), p3),
 tetra(union(P, p1, p2, p3, p4), p4)

)
​

result = union(
 tetra(union(P, p3, p4), union(p1, p2)),

 tetra(union(P, p1, p2), union(p3, p4))
)

​

result = union(

 tetra(union(P, p2, p4), p1),
 tetra(union(P, p2, p4), p3),

 tetra(union(P, p1, p3), p2),
 tetra(union(P, p1, p3), p4)

)
​

result = union(
 tetra(P, p1),

 tetra(P, p2),
 tetra(P, p3),

 tetra(P, p4)
)

​

result = union(

 tetra(union(P, p3, p4), p1),
 tetra(union(P, p3, p4), p2),

 tetra(union(P, p1, p2), p3),
 tetra(union(P, p1, p2), p4)

)
​

1

2
3

4
5

6
7

1
2

3
4

5

1

2
3

4
5

6
7

1
2

3
4

5
6

7

1

2
3

4
5

6
7

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

ANSWER:

This question tests the student's knowledge of how delta debugging handles interferference between the two halves of the test
set. In delta debugging, the algorithm finds the minimal subset of the first half that, when unioned with
P and the second half,

is interesting. It then finds the minimal subset of the
second half that, when unioned with P and the first half, is interesting.

In tetra debugging (and also an algorithm where we split the test set into three, five, or any other number of subsets), we want

to find the smallest subset of each of these smaller test sets that is interesting when unioned with
P and the other smaller test
sets. If one of the smaller test sets is interesting without
intereference, then you can rule out the other three smaller test sets.

Otherwise,
you must resolve interference between the smaller test sets. In the "interference resolution"
part of delta
debugging, which this questions tests, any recursive call that tetra(P, C)
makes to tetra(p, c) must satisfy the following:

union(p, c) == union(P, C) and len(intersection(p, c)) = 0.

As many students noticed, this problem was made more difficult by the fact that
the provided implementation of tetra has a

bug that would be fixed
if any call to interesting(x) were replaced with interesting(union(P, x)). Because of any
confusion that this bug
may have caused, we will be accepting for full credit any of the answers
that resolve interference in

some cases but may not in some edge cases. The
answers that do not resolve interference will be marked incorrect.

result = union(
tetra(union(P, p3, p4), union(p1, p2)), tetra(union(P, p1, p2), union(p3, p4))
)
is the

correct answer and will receive full points.

result = union(
tetra(union(P, p3, p4), p1), tetra(union(P, p3, p4), p2),
tetra(union(P, p1, p2),
p3),
tetra(union(P, p1, p2), p4)
)
resolves interference in many cases but
misses intereference between (p1, p2)
and also misses interference
between (p3, p4). It will receive full points.

result = union(
tetra(union(P, p2, p4), p1), tetra(union(P, p2, p4), p3),
tetra(union(P, p1, p3),
p2),
tetra(union(P, p1, p3), p4)
)
resolves interference in many cases but
misses intereference between (p1, p3)
and also misses interference
between (p2, p4). It will receive full points.

result = union(
tetra(union(P, p1, p2, p3, p4), p1), tetra(union(P, p1, p2, p3, p4), p2),
tetra(union(P, p1, p2, p3, p4), p3),
tetra(union(P, p1, p2, p3, p4), p4)
)
does not resolve interference in

any case, as
tetra(union(P, p1, p2, p3, p4), p1) will almost always return the
empty set. It will not receive points.

result = union(
tetra(P, p1), tetra(P, p2),
tetra(P, p3),
tetra(P, p4)
)
does not resolve interference in any

case, as
tetra(P, p1) will almost always return p1. It will not
receive points.

(b) (2 points each, 6 points) Consider an Interesting function that returns true if a list
contains the elements 2 and 7. When
Tetra Debugging is run on the
following inputs, how many probes to Interesting are made to obtain
the minimal interesting

subset? (When answering, assume Tetra works
according to its specification, regardless of your answer above.) If the program
does not terminate, returns a
subset that is not interesting, or returns a subset that is not minimal, answer
"INVALID".

(i) (2 points) P = [], C = [2, 0, 4, 6, 3, 5, 1, 7]

Your answer here.

ANSWER: Because of the mistake in the implementation of tetra, we will
be accepting the answer for a correct
implementation of tetra
and the answer for the spec implementation of tetra.

correct implementation: 10

spec implementation: INVALID

(ii) (2 points) P = [], C = [1, 6, 3, 7, 2, 4, 5, 0]

Your answer here.

ANSWER: Because of the mistake in the implementation of tetra, we will
be accepting the answer for a correct
implementation of tetra
and the answer for the spec implementation of tetra.

correct implementation: 10

spec implementation: INVALID

(iii) (2 points) P = [], C = [2, 7, 6, 1, 5, 4, 0, 3]

Your answer here.

ANSWER: Because of the mistake in the implementation of tetra, we will
be accepting the answer for a correct
implementation of tetra
and the answer for the spec implementation of tetra.

correct implementation: 3

spec implementation: 3

(c) (2 points each, 4 points) Assuming constant time per Interesting() check:

(ci) (2 points) What is the worst-case Big-Oh asymptotic time complexity of Tetra with
respect to the size n of the initial input

changeset if a
single change induces the failure? (In other words: using Big-Oh
notation, how many calls does Tetra make to
Interesting() if
there is one single-element list that is interesting?)

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

ANSWER: Tetra debugging has the same asymptotic performance characteristics of Delta debugging,
but with slightly different

constant factors. If a single change induces the failure, both Delta and Tetra debugging are the same as binary search, which is
O(log n).

(cii) (2 points) What is the worst-case Big-Oh asymptotic time complexity of Tetra with
respect to the size n of the initial input
changeset?

Your answer here.

ANSWER: Tetra debugging has the same asymptotic performance characteristics of Delta debugging,
but with slightly different

constant factors. The worst case time complexity of
both Delta and Tetra debugging is O(n).

(d) (1 point each, 6 points) Consider the following situations. For each situation, indicate whether Delta Debugging will obtain a

minimal interesting subset and whether
Tetra Debugging will obtain a minimal interesting subset.

ANSWER: Because Tetra debugging has the same assumptions as Delta debugging (unambiguity, monotonicity, and

consistency), the situations in which Delta debugging and Tetra debugging are appropriate to invoke are the same.

Situation #1: The day before project 5 was due, your teammate committed 8 changes to your
project repository, collectively
causing your code to fail all of your
test cases. That night, they pushed 8 more changes, one of which fixed
the bug and made

the code pass all of the test cases. From the full set
of 16 changes your partner committed, you want to find the original
change that caused the test cases to fail.

ANSWER: This example is not an appropriate use of delta/tetra debugging because the
interesting function is not monotonic.
Consider a set of just the change that
introduces the bug which causes the test cases to fail; this set is interesting.
Now,

consider a set which consists of both the change that introduces the bug
and the change that fixes the bug. This set is not
interesting, even though it
is a superset of an interesting set.

Situation #2: We have an HTML tag <div class="widget" role="navigatino"
aria-lable="Outline" tabindex="0"
style="padding-right: 16px;">
that fails to parse with our HTML parser. We want to find which
tag attribute may be

causing the tag to fail to parse.

ANSWER: This is an appropriate use case for delta/tetra debugging. There is a single unique attribute which is causing the tag

to fail to parse, so unambiguity holds. Either the tag parses successfully or fails to parse, so consistency holds. If a single
attribute fails to parse then the whole tag
fails to parse, so monotonicity holds as well.

Situation #3: We are putting together a software development team, and among our whole
team, we need at least one
developer who knows each of the languages Python,
C++, and C#. We have the following list of candidates: { Aidan:
[Python,

C#], Cameron: [Python], Conner: [C#], Daniel: [C++], Holly: [C++,
C#], Jason: [Python, C++, C#]} and want to find the smallest
team we can
assemble that together knows all of the languages.

(i) (1 points) True / False: Delta debugging can obtain a minimal interesting subset for situation #1.

ANSWER: False

True

False

(ii) (1 points) True / False: Tetra debugging can obtain a minimal interesting subset for situation #1.

ANSWER: False

True
False

(iii) (1 points) True / False: Delta debugging can obtain a minimal interesting subset for situation #2.

ANSWER: True

True
False

(iv) (1 points) True / False: Tetra debugging can obtain a minimal interesting subset for situation #2.

ANSWER: True

True

False

(v) (1 points) True / False: Delta debugging can obtain a minimal interesting subset for situation #3.

ANSWER: False

True

False

(vi) (1 points) True / False: Tetra debugging can obtain a minimal interesting subset for situation #3.

True
False

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

ANSWER: This is an inappropriate use case for delta/tetra debugging because it does
not satisfy the unambiguity assumption.

Consider the teams [Aidan, Daniel]
and [Cameron, Holly]. Both teams are interesting because at least one team member on
each team knows Python, C++, and C#. However, the intersection of
the two teams, [], is not interesting because it does not

have members that
know all of the languages.

ANSWER: False

Question 3. Short Answer (4 points each, 20 points)

(a) (4 points) Lizzy is making preparations to open her new hot air balloon resale shop
on State Street called Maize and Blue'ns.
Her store will
sell locally to Michigan but also online to Ohio. The local and
online sales have different taxes and policies. In 3

sentences or fewer, describe which
design pattern you would use and why, and one risk associated with that
design pattern.

Your answer here.

ANSWER: Multiple answers are possible. However, the question intentionally
favors the Template Method. The Strategy design

pattern is also a
decent fit, but is slightly harder to support. In class (e.g., slide 35 of the Design for Maintainability lecture) we
explicitly considered the situation of a store that sells in
different states with different tax policies. Students could argue
for

Strategy (which is extensible and separates the algorithm from
the client), but the Template Method is likely a better fit since
there are explicitly invariant parts (e.g., doing sales, tracking
stock, etc.) and changing parts (different states with different

policies). Students could lose points by confusing multiple methods
(e.g., saying Template Method but then listing features
associated
with Strategy) or by listing Strategy but not providing enough
support.

(b) (4 points) Cassie is adding a new feature to decrease wait times at her carnival
attraction Euphoric Carousel. Describe four
steps or activities
she might follow for effective requirement elicitation. Use 4
sentences or fewer.

Your answer here.

ANSWER: This question admits a significant amount of freedom. Students could
describe 'capturing and representing
knowledge', 'identifying stakeholders', 'understanding the domain', 'interviews',
and so on. Students could also list activities

that make a high-level
step effective, such as 'ask follow-up questions' or 'begin with
specific questions' for effective interviews.
Students could also list
conflict resolution activities such as 'build a glossary' or 'explore
tradeoffs'.

(c) (4 points) Describe 2 considerations Ray Buse mentioned during his lecture
regarding how Google automates the testing of
phone applications.
For each consideration, describe the problem and then describe the
impact or solution. Use a total of 4

sentences or fewer.

Your answer here.

ANSWER: This question required students to list something from the Buse
lecture in particular, so flexibility was limited. The

list below
is fairly exhaustive. In addition, the question focused on
how (and not why) Google automates application
testing.

1. Recognize that not all screens are equal, but not all are unequal

2. Recognize that all phones behave differently when interacting with the app — best to use physical devices vs. emulators
3. Identify target goals to determine which abstractions to take
(supervised learning)

4. Use unsupervised learning — data forms clusters and we can determine
from there which is important — still learning
how to get better
at this

5. Mitigate the problems associated with setting up a device lab (device
overheating, cleanup, radio/electromagnetic
frequency
interference, power supply issues)

6. Consider social responsibility — needs to protect users from malware, apps
must be accessible for those with
impairments or disabilities

7. Test new versions of Android's interactions by focusing on top apps

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

8. Find and deal with disruptive ads

9. Figure out how a new feature integrates with existing code and user flow

(d) (4 points) List two similarities between Program Synthesis and Pair
Programming. Then list two differences. Strong answers
should
include a focus on the inputs and outcomes of the two tools —
on when they can be used and what benefits they

provide. For
example, do not simply say that one involves a second human and the
other does not. Instead, compare and
contrast them in terms of their
potential use in a software development process. Use at most 4
sentences.

Your answer here.

ANSWER: Program Synthesis and Pair Programming both involve one agent
producing code under the guidance of another
agent. Program Synthesis
and Pair Programming both have the potential to reduce overall
development effort. Pair

Programming favors communication,
brainstorming and the generation of ideas and example — Program
Synthesis often
requires examples or demonstrations to make progress.
Pair Programming and Program Synthesis can both be useful when

creating or prototyping new code.

However, Pair Programming is likely to be useful in debugging or
fault localization activities, but Program Synthesis is mostly
used
only in code creation. Pair Programming may take more time than
programming alone (even if it is a net advantage due

to, for example,
reduced defects), while Program Synthesis (when it can solve a
problem) is almost always faster than a single
programmer. Program
Synthesis typically produces code in a restricted domain-specific
language while Pair Programming can

produce code in any language both
participants are familiar with.

A full-credit answer should touch on the notion that the typical
benefits of Pair Programming may include smaller code, lower
defect
rates, and happier programmers ... but not necessarily reduced time.
By contrast, Program Synthesis focuses on

reducing programming time
(and one could make an argument that Program Synthesis requires many examples or
demonstrations to produce correct code, as in some
of the FlashFill examples).

(e) (4 points) Describe, in your own words, a project that might require multiple
languages. Then, provide one advantage and
one disadvantage of
multi-language projects. Use at most 4 sentences.

Your answer here.

ANSWER: Projects can vary from things like TensorFlow to personal projects.
1 point for vague answer (e.g., a project that
needs a fast C kernel),
2 points for a description of a project that involves multiple languages
but no cross-language

interaction, and full credit for a project that
describes in detail a project where multiple languages interact.

Advantages: Some processes can be more effectively coded or optimized in
an alternate language, provides more functionality
and flexibility for
projects, increasingly common, etc.

Disadvantages: Integrating data and control flow across languages can be
difficult, debugging can be harder, building
becomes more complicated,
developers must have expertise in more than one language.

Question 4. Fault Localization (10 points)

You are hired to write a program that generates random questions for a
midterm exam. For each input (the name of a user

taking the exam) the program
should generate slightly different exam text as its output. You write a
long Python program to
do this, but unfortunately the output of your program
is sometimes incorrect. In other words, for some inputs your
program

produces the correct output but for some other inputs your program
produces incorrect output.

1 def quality_question():

2 random.seed(int(username))
3 username = argv[2]

...
17 prompts = [alternate_1, alternate_2, alternate_3]

...
37 # Randomly sample two prompts

38 a_prompt, b_prompt = random.sample(prompts, 2)
...

89 c_prompt = generate_prompt()
90 # If the randomly generated prompt is already chosen, regenerate it

91 if c_prompt in [a_prompt, b_prompt]:
92 c_prompt = generate_prompt()

...

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

You decide to use fault localization to pin down where the issues in your code are.

(a) (4 points) You consider two automated approaches to fault localization: an
approach in which Delta Debugging is used to

find a minimal set of
suspicious lines, and an approach in which Tarantula is used to rank
suspicious lines. (The details of these
two potential approaches are
intentionally not provided. You must think of possibilities based on
course concepts.) Which fault

localization method would work better here: Delta Debugging or
Tarantula? Why? (Use at most four sentences.)

Your answer here.

ANSWER: Typically Tarantula. Tarantula is
explicitly designed to rank suspicious lines based on observed coverage
information.

In the problem setup, it suggests that you know some inputs
for which your program works correctly and some for which it
does not: this
is exactly the setup that Tarantula favors. By contrast, DD finds a minimal
interesting set. While it is tempting to

imagine a notion of Interesting
corresponding to 'is part of the fault', it's not clear how to do that. How
would Interesting tell if
lines are suspicious or not? A full-credit answer
would clarify not just that Tarantula is a good choice but that DD is a
poor one.

A partial credit answer might be given for DD. In class we discussed how
Tarantula-style algorithms often fail when fault

localization depends on
the value of a string (e.g., for Cross-Site Scripting or SQL Code
Injection) and this problem is set up so
that the input values (usernames)
are all strings. However, the strings are just used to initialize random
seeds, so this would be

a difficult argument to support fully.

(b) (4 points) Consider the following table of program runs. Each row
corresponds to one test case execution. In other words,

each row reports
one run of your program in which it takes a username as input and produces output that is either
correct or
incorrect. Each row also includes the lines visited while your program executes on that input.

Test Input Passed? Lines visited

bakalm True [1, 2, 3, 17, 37, 38, 89, 90, 91, 150, 151]

weimerw True [1, 2, 3, 17, 37, 38, 89, 90, 91, 92, 150, 151]

hstauff False [1, 2, 3, 17, 37, 38, 89, 90, 91, 92, 150]

chein False [1, 17, 37, 38, 89, 90, 91, 92, 150]

haasea True [1, 2, 3, 17, 37, 38, 89, 90, 91, 150]

Compute the Tarantula suspiciousness score for each line in the program and provide the
suspiciousness scores for the top 3
most suspicious lines of code. Express the
final answer as a list of tuples of line numbers (ints) and scores (floats, 3
significant

figures), sorted by score descending and then by line number
ascending; if line 2 has a suspiciousness of 0.667, line 1 has a
suspiciousness
of 0.5, and line 5 has a suspiciousness of 0.5, your answer should be [(2,
0.667), (1, 0.500), (5,
0.500)].

Your answer here.

ANSWER: [(92, 0.75), (1, 0.5), (37, 0.5)]

(c) (2 points) Which line from your list do you think is causing the problem and why? (If you think your list does not contain a

relevant line, indicate that instead and explain why.)

Your answer here.

ANSWER: 92 is the most suspicious with a suspiciousness of 0.75. The
answer should be one of the most suspicious, but the

question is pretty
holistic. Credit will be given for any answer that provides a line that is
likely causing the failure.

Question 5. Profiling (7 points)

Consider the function call profile below. The main function is run
with an event-based profiler and the following hierarchical

profile is generated:

150 def name_scrambler():

...
​

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

In addition to the call graph above, the following non-cumulative,
per-one-single-call self time information is also generated:

Note, the call graph specifies how many times a function is called in its
individual context. For example, each time can is called,

head will run multiple times.

(a) (5 points) In this problem, the self-time of a function is the time the function's stack frame spends on
the top of the stack

for one single call to that function. (Equivalently,
the self-time of a function is the time taken by one single run of that
function
not including the time taken by any children or parent functions.)

main is run with a statistical profiler. Assuming that the
self-times remain constant across runs, write the names of each
function in
descending order of probability that a random probe of the profiler would
interrupt the program in that function. If

there is a tie, list the
function with the alphabetically-earlier name first (e.g., so if you believe "ant" and "bat" are equally likely
to be running
when the program is sampled, list "ant" before "bat"). Your answer must be a Python-formatted
list. For

example, if you believe that the order should be (most probable) A,
B, C, D (least probable), you should answer: ["A", "B",
"C", "D"]. Your list should contain 6 elements.

Your answer here.

ANSWER: ['kay', 'direction', 'ever', 'can', 'head', 'main']

{'kay': 1100, 'direction': 720, 'ever': 520, 'can': 500, 'head': 450, 'main': 100}

(b) (2 points) Support or refute the claim that a call-graph execution
profiler like gprof would produce actionable insights
(i.e.,
useful information) for a project that includes both Java and C
code. Use two pieces of evidence to support or refute the claim.

Use at
most 4 sentences.

Your answer here.

ANSWER: Likely refute. Execution profilers typically focus on a particular language
(such as C or Python or Java). The Multi-

Language Projects lecture
mentioned a number of challenges associated with using dynamic analysis
tools or profiles across
languages. In a standard setting, where Java code
is interpreted by a Java Virtual Machine, a profiler like gprof would not
be

able to see the names of the methods executing much less their call
graphs. gprof looks at the 'machine stack' (e.g., the value
of the program
counter), not the 'Java Virtual Machine stack'. A full-credit answer should
mention relevant evidence (e.g., what

sampling-based profiling needs to
work, what stack information a call-graph profiler needs to work, how a
multi-language
Java/C project works, etc.).

Question 6. Interviews (14 points)

1 * main()

 2 * can()
 2 * head()

 3 * kay()
 4 * ever()

 1 * direction()
 5 * head()

 5 * kay()
 5 * ever()

main() - 100ms

can() - 250ms
direction() - 720ms

head() - 50ms
kay() - 100ms

ever() - 40ms

1

2
3

4
5

6
7

8
9

10

1

2
3

4
5

6
7

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

As an interviewer, you give the following technical challenge to a potential
candidate: "Write isPalindrome(), a function that

returns true if
parameter x is a palindrome integer. Note that an integer,
like 12321, is a palindrome if it reads the same
forwards and backwards."

The candidate's implementation of isPalindrome() is below along with
two questions the candidate asked you:

(a) (2 points) Identify two test cases where the provided isPalindrome() would return false.

Your answer here.

ANSWER: Answers will vary. Student solutions must not be a palindrome. {{123}}, {{10}} are potential answers that
return
false.

(b) (4 points) Identify four things that the candidate did well.
(In other words,
identify four properties that a company might
desire in a software
engineer that could potentially be shown by a candidate taking
the interview and that were shown by this

particular candidate.) Use at
most 4 sentences.

Your answer here.

ANSWER: Answers will vary. Potential solutions include the following:

1. The candidate provided inline comments explaining some of their code.
2. The candidate asked relevant questions regarding code functionality.

3. The candidate has consistent indentation.
4. The candidate used a descriptive variable name.

(c) (4 points) Support or refute the claim that the candidate's implementation of
isPalindrome() is functionally correct. Use

at most 4
sentences.

Your answer here.

ANSWER: Refute. The candidate's implementation of isPalindrome() is not
functionally correct. The candidate missed a base

case regarding
x being a negative number. Negative integers would not count
as a palindrome. {-313} reversed is {313-}.

// Q: Can integer x be in range [0-9]? A: Yes.

// Q: Should I account for integer overflow? A: Yes.
​

bool isPalindrome(int x) {
 // a single digit is a palindrome

 if (x < 10) {
 return true;

 }
​

 // if x's last digit is 0, then its first digit must be 0 in order
 // to be a palindrome. In this case, only 0 can be a palindrome.

 if (x % 10 == 0 && x != 0) {
 return false;

 }
​

 // revert the last half of x for comparison against first half
 int revertedNumber = 0;

 while(x > revertedNumber) {
 revertedNumber = revertedNumber * 10 + x % 10;

 x /= 10;
 }

​
 return x == revertedNumber || x == revertedNumber / 10;

}
​

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

(d) (2 points) Describe a hypothetical defect in isPalindrome() that Automated Program
Repair would likely be able to fix and

explain why. Then describe a
hypothetical defect in isPalindrome() that APR would be unlikely to fix
and explain why. Use at
most 4 sentences.

Your answer here.

ANSWER: Automated Program Repair works best in situations where fault
localization can narrow down the bug to a few lines,
where mutation
operators can fix the bug, and where test cases can reveal that the bug
is fixed.

An example of a hypothetical bug that would likely be easy to fix would be mistakenly writing return false; on line 7

(instead of returning true). That line would be quickly implicated by
fault localization, mutation operators can easily flip false to
true,
and tests will reveal that the fix is correct.

An example of a hypothetical bug that APR would be unlikely to find
would be mistakenly writing return false; on line 23

(instead of the complicated return logic). The line would be tricky to locate (e.g., it is visited on the same runs that visit the
while
loop, etc.), but more importantly, mutation operators are unlikely to
create that complicated logical "from scratch", even

if two or three
mutations are allowed.

(e) (2 points) Support or refute the claim that programmer productivity is essentially
fixed (i.e., individual performance

differences are predominantly due to
inborn talents rather than learned skills). Reference
at least two results from scientific
literature (e.g., from Computer
Science or Psychology, etc.) as evidence as you support or refute the claim.
Use at most 4

sentences.

Your answer here.

ANSWER: Refute. Especially given the word "predominantly" and the software
engineering context, the scientific evidence

strongly supports learned
skill as more impactful than inborn talent.

The most direct choice is Experts bodies, experts minds: How physical and mental training shape
the brain which, in the

title, reminds the reader that
training (i.e., learned skill) shapes the brain as an explanation for
productivity.
Decoding the representation of code in the brain shows that
expert brains (as assessed by courses taken, i.e., learned

skill) treat
programming languages differently.
Expertise in Problem Solving shows that experts (again
assessed in terms of school standing, i.e., learned skill) make

fewer
mistakes, apply rules in a single step ("semantic chunking"), and "cluster" problems differently than do novices.
A Human Study of Fault Localization Accuracy shows fault
localization accuracy going up directly with years in a CS

major (i.e.,
learned skill).
Talent in the taxi: a model system for exploring expertise
(or "The London Taxi Cab / Bus Driver Study") shows a very

direct
relationship between time on the job (i.e., learned skill) and changes to
the brain (although it does not address
productivity directly).

Possible mistakes include choosing resources like The Economic Value
of Rapid Response Time, which has implications for
computer latency
but does not address talent vs. skill, or Exploratory Experimental
Studies Comparing Online and Offline
Programming Performance, which
does show big differences, but doesn't talk about talent vs. skill, or The Mythical Man Month
which does not talk about the origins of
productivity differences in terms of people.

Question 7. Requirements Elicitation (15 points)

(a) (6 points) Suppose that the university is in the beginning stages of developing a streaming
service, specifically for students

to watch University of Michigan related
videos (sports, news segments, etc.) called BlueTV. BlueTV should have a
feature in
which it recommends new relevant or related videos to watchers. Name 3 quality
requirements that the team might have for

the video recommender aspect of
BlueTV, noting if each is verifiable or informal. Include at least one
verifiable requirement
and one informal requirement in your answer. Use 3-6
sentences if possible.

Your answer here.

ANSWER: Answers will vary. Students may discuss requirements related to confidentiality,
privacy, integrity, availability,
reliability, accuracy, or performance (as
discussed on slide 37 of the requirements lecture). Verifiable requirements must
be

able to be tested objectively. For example, a student may say that BlueTV
must provide a list of 30 recommended videos within
2 seconds, which would be a
verifiable requirement.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

(b) (6 points) Identify 2 different stakeholders for BlueTV, and describe two different
conflicts that might arise between the two

identified stakeholders
during the requirements elicitation process. For each conflict, include a formal keyword to describe the
conflict if possible (e.g., what
type or name of conflict is it?), and then describe the strength
of the conflict (if possible). Use at

most 6 sentences.

Your answer here.

ANSWER: Answers will vary. Example stakeholders include the University of Michigan
sports office, U of M communications, U

of M lawyers, and students using BlueTV. One example of a conflict is that the
students may want to see the average rating of
each video on BlueTV, but a UM
official may not want rating information to be displayed to users. This would be a
strong

conflict. Similarly, there might be a requirement in which "user" refers to students watching videos in one statement and
officials uploading
videos in another statement: this is a designation clash. Example: "users
must not be able to delete videos"

(meaning student users) vs. "videos
posted by users must be available for viewing within 30 minutes" (meaning
official users).
This would also be a strong conflict.

(c) (3 points) Choose one of the conflicts you identified previously. What would be the best way to resolve this conflict? Use at
most 3
sentences.

Your answer here.

ANSWER: Answers will vary. Refer to slides 30 - 31 of the Requirements Elicitation
lecture. One key word to look for is
negotiations. The student may also
mention some form of prototype, mockup, or storyboard. For example, based
on the

answer above, a student might suggest the team negotiate with both
stakeholders by presenting a prototype with a more
generalized “like
dislike” rating system. A terminology conflict might be resolved by building a glossary.

Question 8. Extra Credit (1 point each)

(Feedback) What was your favorite topic or activity during the course?

What is one thing you like about this class?

(Feedback) What do you think we should do more of next semester (or what is the thing you would most recommend
that we

change for future semesters)?

What is one thing you dislike about this class?

(Guest Lecture)
List one thing you learned from guest speaker Peter K. Shultz of Microsoft or otherwise convince us that you

paid
careful attention during that lecture. Your answer must be distinct from any references to the Shultz lecture you may
have made earlier in the exam.

Shultz guest lecture.

(Optional Reading 1) Identify a single optional reading that was assigned after Exam 1. Write two sentences
about it that
convince us you read it critically. (The most common student mistakes for these questions in Exam 1 were
choosing a required

reading instead of an optional reading or failing to "identify" or name the reading selected.)

Optional Reading 1

(Optional Reading / Piazza 2) Identify a different single optional reading that was assigned after Exam 1 or a
"long instructor
post" that was posted on Piazza after Exam 1. Write two sentences about it that convince us
you read it critically.

Optional Reading 2

(Guest Lecture) List one thing you learned from guest speaker Dr. Ray Buse of Google that was not listed on an
introductory

summary slide or otherwise convince us that you paid careful attention during that lecture. Your answer
must be distinct from
any references to the Buse lecture you may have made earlier in the exam.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

Buse guest lecture

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Question 7

Extra Credit

