

Question 1. Word Bank
Matching (1 point each, 14 points total)

For each statement below, input the letter of the term that
is best described.
Note that you can click each word (cell) to mark it
off. Each word
is used at most once.

A. — A/B Testing B. — Agile
Development

C. — Alpha Testing D. — Beta Testing

E. — Competent Programmer
Hypothesis

F. — Confounding
Variable

G. — Dynamic Analysis H. — Formal Code
Inspection

I. — Fuzz Testing J. — Integration
Testing

K. — Milestone L. — Mocking

M. — Oracle N. — Pair
Programming

O. — Passaround Code
Review

P. — Perverse
Incentives

Q. — Race Condition R. — Regression
Testing

S. — Risk T. — Sampling Bias

U. — Software Metric V. — Static Analysis W. — Streetlight Effect X. — Triage

Y. — Unit Testing Z. — Waterfall Model

Q1.1: P

The company GlazeBook wants to reward programmers for their bakery social media website with a pay

raise for finding more bugs than other programmers. This leads to programmers intentionally creating
and reporting new bugs, rather than finding and resolving existing ones.

Q1.2: S

When writing any sort of innovative software, developers often use several processes to account for this

important source of uncertainty. Once considered, it is typically mitigated or reduced.

Q1.3: X

Startup winter social media company Sleddit just released their website and received over 1000 bug
reports in the span of a week. They only have 10 programmers so they have to prioritize some bugs over

others and decide which to address first.

Q1.4: G

Developers want to check how fast their program runs under a variety of conditions. They use execution
time profiling to run their instrumented code on a variety of test inputs.

Q1.5: B

Train company StationWide wants to be reactive to changing requirements as they create software that

shows users the trains they can ride from one place to another. They created a very early prototype of the
software during a two-week sprint to get feedback and fix problems the original code had during the next

sprint. Daily meetings are used to keep everyone on the same page.

Q1.6: Y

For each class Aidan writes, they include local test cases to ensure that class is working as intended.

Q1.7: I

Video conferencing company Nyoom wants to test their latest chat feature to include custom emojis. To
do so, they randomly generate 1000 valid and invalid emojis and use them in the chat feature to see

whether the program responds as it should.

Q1.8: T

To check how well-received their new yellow colored buttons are, video-sharing company BlueTube sends
out a survey to a group of people that only like the color green. Based on the survey results, BlueTube

mistakenly concludes that the new yellow colored buttons would be disliked by all users.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Q1.9: D

After implementing a more advanced internet structure to their old fighting game, the company Twister
sends a version of the game to a small number of end users to make sure it works before the feature

releases.

Q1.10: A

BlipPng is a program that generates special pngs that automatically delete themselves after a period of
time. They want to add a notification feature to tell users that the generated png has deleted itself. They

release this feature to half of users but not to the other half of users. They include a survey to see how
satisfied users are with the new feature.

Q1.11: E

After Mollie fixed a small mistake where they had a less-than (<) sign instead of a less-than-or-equal-to

(<=) sign, Mollie's grade went from 5% to 100% on the Autograder.

Q1.12: L

Bird adoption company Flapple uses inexpensive functions with pre-determined outputs while initially
testing their code base.

Q1.13: R

Daniel finds a bug in their code and fixes it. To prevent this same bug from recurring later, Daniel writes a

test case to detect the presence of that bug.

Q1.14: F

Conner is trying to find which methods take longer to run. A first analysis finds that methods with more
lines of code often have longer running times. However, this analysis does not account for the algorithmic

complexity (e.g., Big-Oh) of the code. Ignoring that aspect means the analysis is misleading: some
methods with fewer lines of code may still take a long time to run because they contain complex

algorithms.

Question 2. Code Coverage (20 points)

You are given the following C functions. Assume that statement coverage applies only to statements marked STMT_#. In this
question, we consider the entire program. That is, even if program execution starts from one particular method, we consider

coverage with respect to the contents of all methods shown.

void Euphoria(str a, str b, int c, int d) {

 STMT_1;
 if (c < d) {

 medicine(b, a);
 }

 STMT_2;
 apple_juice(d, c);

}
​

void medicine(str a, str b) {
 STMT_3;

 if (a == 'rue') {
 STMT_4;

 }
 if (b == 'jules') {

 STMT_5;
 }

}
​

void apple_juice(int c, int d) {
 if (c == d) {

 STMT_6;
 return;

 }
 STMT_7;

 apple_juice(c, c);

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

(a) (6 points) Provide 1 input (i.e., all four arguments) to Euphoria(str a, str b, int c, int d) such that the statement
coverage will be 50%. (We only consider statements marked STMT_#.) Use a format such as ("hello", "goodbye", 123,
456) if possible.

Your answer here.

ANSWER: not possible

Different students were presented with different coverage targest. Some
example answers include:

37.5: ('hello', 'hello', 10, 10)

87.5: ('hello', 'rue', 9, 10) or ('jules', 'hello', 1, 2)
62.5: ('hello', 'hello', 10, 9)

75: ('hello', 'hello', 9, 10)
100: ('jules', 'rue', 9, 10)

A common mistake for students receiving 87.5% was missing the variable swap
of a and b when calling medicine. Answers
such as ('rue', 'hello', 1, 2) are not correct in that setting.

Some students were asked about 50% coverage, which is not obtainable in the
code above. The instructions do note if possible,
so 'not possible'
is a full-credit answer. (Most students who asked about this were given
relevant information on Piazza. A small

number of students may have been
given misleading information on Piazza when asking about this; such
students should file
regrade requests for this question.)

(b) (2 points) True / False: there exists a test suite of size > 0 such that the test suite obtains 100% statement coverage. (We

only consider statements marked STMT_#.)

ANSWER: True

True

False

(c) (2 points) True / False: your answer from Q2a provides the lowest possible path coverage for the given code snippet.

ANSWER: True

One input visits one path through a program. (This is a difference between
path and branch coverage.) Since Q2a asked for a
single input, it visits
a single path, which is the lowest possible path coverage. (Students
for whom the answer was 'not

possible' for Q2a answered this question as if
it were possible: the key concept here is the notion that one input
visits one path.
Alternatively, if you said Q2a was not possible and
interpreted that as zero inputs, that also provides the lowest possible
path

coverage if empty answers are considered. The result should be 'True'
in all cases.)

True

False

(d) (5 points) Give a minimum test suite to reach 100% branch coverage. Provide the test cases with their input in the form
Euphoria(str a, str b, int c, int d). For a and b, choose from only the values {'rue', 'jules'}. For c and d,

choose from only the values {1, 2}. Write each test input on a separate line, using a format such as ("hello", "goodbye",
123, 456) for each input if possible.

Your answer here.

ANSWER: 3 test cases are required. Example set of possible test cases: {('jules', 'rue', 1, 2), ('rue', 'jules', 2, 1), ('rue', 'jules', 1, 2)}

(e) (5 points) Describe a scenario in which a test suite that achieves 100% statement coverage might miss a bug in a program.

Then describe what other approach (testing, coverage, analysis, etc.) could find that bug. Use 4 sentences or fewer.

Your answer here.

 STMT_8;

}
​

27

28
29

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

ANSWER: Answers will vary. In the lecture, examples such as division by zero and SQL injection were given. In a division by zero

bug, you can visit the line with a non-zero denominator value and not see the bug. One way to find such an issue would be to
use a dataflow analysis that determines if values are zero. Another example might be a race condition: you might have 100%

statement coverage but not observe the right scheduler interleavings. A tool such as Eraser or CHESS could help find the race
condition in such a situation. Student responses should not exceed 4 sentences.

Question 3. Short Answer (5 points each, 25 points)

(a) (5 points) Consider the following two pairs of tools, techniques, or processes. For
each pair, give a class of defects or a
situation for which the
first element performs
better than the second (i.e., is more likely to succeed and reduce
software

engineering effort and/or improve software engineering
outcomes) and explain why.

a. integration testing better than maximizing branch coverage

b. spiral development better than waterfall model

Your answer here.

ANSWER:

a. Maximizing branch coverage may be more useful in the early
stages of software development, where test cases are
primarily
focusing on testing all possible routes the code may take and
testing as much as possible to ensure the base

of the code is
strong. Branch coverage is also useful for error-handling code. Integration testing may be more useful in
the later stages
of development, when there is already a working model and a new
feature is added that needs to be

tested in how it interacts and
performs with a previously-developed module, possibly using a testing framework to
simulate different scenarios.
Integration testing is also relevant when the output of one
module flows into another in a

meaningful way and the dependent
interactions between those modules must be tested.
b. Full credit answer will discuss how spiral relies on continuous
releases of prototypes to reduce risk. Waterfall is divided

into
discrete phases over the course of an entire project. Spiral
contains the aspects of waterfall, but Spiral is iterated
multiple times during a project. Spiral is typically better
because it reiterates stages and tests multiple times
throughout

the development cycle — waterfall is a simplified
model used mainly to explain software processes in a classroom.

(b) (5 points) Identify two risks associated with Netflix's adaptation and usage of
the Chaos Monkey dynamic analysis. Identify a
measurement
that could be used to guide decisions to reduce each risk.

Your answer here.

ANSWER:

Answers may vary, but possible risks could include incomplete
analysis, high performance overhead for reporting, analysis

inaccuracy,
transparency limitations of instrumentation, and high complexity.
Measurements could include measuring
execution time and the slowdown
caused, measuring the time taken to complete dynamic analysis, measuring the number of

modules that fail when a module they depend
on is made unavailable, measuring
the types of defects fixed this way versus the
previous method, etc.
Netflix's Chaos Monkey is a script that continuously runs in Netflix's
development environments to cause

the developers to face unexpected
outages at any time and resolve them to create more resilient software,
so any reasonable
answer here relating to dynamic analysis works.

(c) (5 points) Here are two examples of bugs that need to be triaged:

A conversion error causes integers to occasionally flip signs (e.g., 4 becomes -4 and -4 becomes 4).
A graphical error causes images to display 1.5x as large as expected, resulting in cropping.

For each bug, give an example of a situation where it would have high
severity and a situation where the bug would have low
severity and explain why.

Your answer here.

ANSWER:

There are many answers to this question, but some examples for each:

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

A conversion error causes integers to occasionally display as negative (e.g., 4 becomes -4).
High: Any situation
where the sign change could cause negative or dangerous effects. An example might be a trading bot
evaluating monetary decisions or a banking app's
balance UI.

Low: Any situation where the sign change wouldn't cause negative effects aside from mild confusion. Think a recipe website's
ingredient measurements, or a fitness app's distance shown. In such a case the user knows that "-2 eggs" is not possible, so

the impact is minimized.

A graphical error causes images to display 1.5x as large as expected causing cropping.
High: Any situation where the picture change would result in a significant loss of important displayed data. An example might
be a graphing application causing part of the plot to be lost, or a blueprint application causing measurement data to be cut

out.

Low: Any situation where the picture change wouldn't result in a significant loss of important displayed data. Think of a forum

profile picture being cropped wrong. While not desireable, the partial picture
(coupled with the name nearby) would reduce the
impact of
the cropping.

(d) (5 points) Give an example of a software situation where fuzzing would be a better testing method than unit testing in

terms of finding many bugs. Then give a situation where unit testing would be a better
testing method than fuzzing in terms of
the time or cost
required. What kinds of bugs are likely to be revealed by fuzzing?

Your answer here.

ANSWER:

Fuzzing is likely to reveal more defects than unit testing in
situations where data values flow across modules and random

values
are likely to reveal defects. For example, consider a log-reading module
that passes its output to a square-root module
that has a bug involving
negative numbers. Unit testing might overlook corner cases and miss
the square-root bug,
but fuzzing

random numbers would likely find it quickly, and
fuzzing random log strings would likely result in negative numbers
that are
passed to the square root function to reveal the bug in a
moderate time.

Unit testing is likely to be better than fuzzing in terms of
time taken or cost if only a small number of values are
relevant. In
HW2, many students saw that randomly-created tests for
HTML or XML functions were not very effective, since random

creation rarely produced well-formed strings with correct matching brackets and
syntax. Similarly, a division function with a
division-by-zero
error might be an example: a fuzzer that just generates random numbers
might take a very long time to

randomly generate zero. (Some
fuzzers are more likely to choose numbers such as 0, 1, -1, MAX_INT
and MIN_INT as a
heuristic for this reason.)

Example domains may vary, but generally any software that includes both user
input and sensitive data might be relevant.
Consider medical interfaces, bank websites, stockbrokers.

Fuzzing is good at catching bugs related to overruns, overflows, error handling, and
out-of-bounds accesses. Any mention of
code being broken by receiving
too much data should also get points.

(e) (5 points) You are a new team lead at Mozzarella and are in charge of leading a group of several developers. Your manager

asks you to begin collecting the following developer efficacy data:

Lines of code written per day

Pull requests accepted into the master branch per month
Peer ratings from an annual survey completed by coworkers

For each measurement, describe why it might not accurately represent a worker's efficacy and explain one way a malicious
worker might exploit it.

Your answer here.

ANSWER:

Lines of code per day
This metric can be an incorrect measure for a variety of reasons. Developers might be in a design-heavy period of development
or may code in a language that requires fewer lines. The developers may be focusing on software maintenance and thus

looking at or changing old code rather than creating new code. The LOC metric can be gamed with whitespace, comments, or
verbose syntax.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Pull requests accepted into the master branch per month

This metric can be inaccurate for a variety of reasons. Developers could be working on an experimental branch, could be
partner programming on a different machine, or could be working on intensive bug fixing which could result in fewer total pull

requests (but still many
bugs fixed). This can be gamed by doing multiple trivial, small separate
changes to inflate the number
of pull requests.

An annual survey done by coworkers

Depending on the work environment you're in, biases (e.g., race, gender, etc.)
can heavily negatively affect how others might

would view you in a
survey. As another example, someone who works asynchronously (and thus is not seen very often) might
receive a lower or more neutral score. If someone is seen as
competent or attractive, but in reality does little, their scores

would be inflated. This can be gamed by developers only helping
others and not working on their own tasks. Alternatively, two
developers might conspire to give each other perfect peer
review scores on each survey regardless of their actual work.

Question 4. Mutation Testing & Invariants (15 points)

Consider the code snippet below defining a function modest_liskov.

(a) (5 points) A postcondition is similar to an invariant, but is always true
just as or just after a function returns. (Informally, you
can think of it
as an assertion right at the end of the function.)

Consider the postcondition: baz >= 7.

The postcondition, baz >= 7, may be falsified by a first-order
mutant of the original modest_liskov function. Create that

mutant by making at most one edit to the below definition of modest_liskov.
(To phrase this another way, you should make a
single change to the program
so that on some input it does not satisfy the postcondition.) Create the mutant by clicking inside

the code window below and directly changing the initial code.

Mutant 1 (click inside to edit this directly):

(b) (10 points) Create two additional first-order mutants of modest_liskov by making
exactly one edit to each of the following
definitions of modest_liskov.
These two should target the same postcondition as your first mutant. (There is only one

postcondition: consider the same one each time.) Note that the mutants you create must be different from the original

def modest_liskov(x: int, y: int, z: int):
 baz = 7

 garply = 0
​

 if (z >= y) or (z > x):
 baz = baz + 5

 elif (z < y):
 baz = baz + 7

​
 if (x != y):

 baz = baz - 5

 if (z == y) and (z == x):
 garply = garply - 1

​

def modest_liskov(x: int, y: int, z: int):
 baz = 7

 garply = 0
​

 if (z >= y) or (z > x):
 baz = baz + 5

 elif (z < y):
 baz = baz + 7

​
 if (x != y):

 baz = baz - 5

 if (z == y) and (z == x):
 garply = garply - 1

​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Critical to answering this problem was the definition of the mutation
adequacy score, which is the fraction of mutants killed by

the test suite
(i.e., failing at least one test). Students were typically instructed
to produce scores such as 1/3 or 2/3. Consider
the 2/3 case. Since the
first mutant was required to "fail the test" (i.e., falsify the
invariant), this meant that the student would

have to make one more
mutant that would fail the invariant and one that would succeed it.

Creating a mutant that fails the invariant varies by invariant, but note
that any first-order mutation operator (e.g., changing

one variable
reference, changing an expression, changing a statement, deleting a
statement, etc.) mentioned anywhere in
class (e.g., in the lecture, in
the reading, in HW3, etc.) was fine to use.

Creating a mutant that is syntactically different but that does not
falsify the invariant is often obtained by making "dead code".
For
example, inserting an x = x statement, or changing
p = q + r to be p = q + r + 0 work well.

modest_liskov,
the first mutant above, and from each other.

Below, you will then be asked to provide a single test input to modest_liskov such that the mutation adequacy score of your
suite of three mutants, when each is given that single input, is exactly
1/3. We consider a mutant that fails to satisfy a

postcondition as failing that test (i.e., such a mutant is
killed). You may use this requirement to guide how you create the
mutants.

Mutant 2:

Mutant 3:

What is a single test input to modest_liskov such that the
mutation adequacy score for the three mutants is 1/3?
All test
inputs must be integers. Express your answer as a list in the
form [x, y, z]. For example, if your inputs are x = 3, y = 4,
z = 5, then you would write [3, 4, 5].

Your answer here.

ANSWER: Answers may vary depending on the provided mutants.

Question 5: Dataflow Analysis (11 points total)

Consider a live variable dataflow analysis
for three variables, a, x, and
q used in the control-flow graph below. We associate

with each variable a separate
analysis fact: either the variable is possibly read on a later path
before it is overwritten (live) or it
is not (dead). We track the set of
live variables at each point: for example, if a and
x are alive but
q is not,
we write {a, x}. The

def modest_liskov(x: int, y: int, z: int):

 baz = 7
 garply = 0

​
 if (z >= y) or (z > x):

 baz = baz + 5
 elif (z < y):

 baz = baz + 7
​

 if (x != y):
 baz = baz - 5

 if (z == y) and (z == x):

 garply = garply - 1
​

def modest_liskov(x: int, y: int, z: int):

 baz = 7
 garply = 0

​
 if (z >= y) or (z > x):

 baz = baz + 5
 elif (z < y):

 baz = baz + 7
​

 if (x != y):
 baz = baz - 5

 if (z == y) and (z == x):

 garply = garply - 1
​

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

special statement return reads, but does not write,
its argument. In addition, if and while
read, but do not write, all of the

variables in their predicates.
(You must determine if this is a forward or backward
analysis.)

(1 point each) For each basic block B1 through B11, write down the
list of variables that are live right before the start of the

corresponding block in the control flow graph above. Please list only
the variable names in lowercase without commas or other
spacing (e.g.,
use either ab or ba to indicate that a and
b are alive before that block).

ANSWER: {'a', 'q',
'x'}

B1

ANSWER: {'a', 'q',
'x'}

B2

ANSWER: {'q', 'a',
'x'}

B3

ANSWER: {'q', 'a',
'x'}

B4

ANSWER: {'q', 'x'}

B5

ANSWER: {'x', 'a'}

B6

ANSWER: {'q', 'x'}

B7

ANSWER: {'x'}

B8

ANSWER: {'x'}

B9

ANSWER: {'q'}

B10

ANSWER: {'x'}

B11

Question 6. Dynamic Analysis (15 points)

We decide to write our own dynamic analysis tool, Checkers, to help
us deal with race conditions. Checkers works by following
a standard lockset
algorithm. For each shared variable, Checkers maintains a candidate set
of locks that might protect that

variable. The first time a shared variable is accessed by a thread, Checkers notes the
set locks that thread currently holds.
Every subsequent time that shared variable
is accessed by a thread, the candidate set of locks guarding that variable is

intersected with the currently-held locks of that thread. At the end, if a shared variable
is not protected by any locks, a race
condition is reported.

As part of its operation, Checkers instruments the program to
log variable reads, variable writes, lock acquisition,
and lock
release. All such operations are instrumented to write the name and
arguments of the operation, as well as a thread ID, to a

log file.

(Note: This lockset algorithm works just like the one discussed in
class. There are no hidden tricks or mistakes or changes in

the description
above, it is simply a summary for your convenience.)

(a) (2 points each, 4 points) We run Checkers on a series of programs and examine its output. For each of the programs below,

consider if Checkers would report a race condition (i.e., if the computed
lockset for a shared variable is empty) by examining
the contents of the Checkers log file.

Variables with names that include local are thread-local variables
that are not relevant for race conditions. Variables with
names that
include shared are shared variables that can
be involved in race conditions. Variables with names that include
mu
are locks (short for mutex or
mutual exclusion).

(ai) (2 points) Program:

int sharedA = 0;
mutex muA;

int sharedB = 0;
mutex muB;

1
2

3
4

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Checkers log file:

True/False: a race condition can be detected from the log file.

ANSWER: False

(aii) (2 points) Program:

Checkers log file:

True/False: a race condition can be detected from the log file.

ANSWER: False

True
False

True

False

​

void thread1() {
 muA.lock();

 muB.lock();
 sharedA = 10;

 sharedB = 20;
 muB.unlock();

 muA.unlock();
}

​
void thread2() {

 muB.lock();
 sharedB = 20;

 muA.lock();
 sharedA = 10;

 muA.unlock();
 muB.unlock();

}

thread 1: lock muA
thread 2: lock muB

thread 2: write sharedB
thread 1: lock muB

thread 2: lock muA

int shared = 0;

mutex mu;
​

void thread1() {
 mu.lock();

 shared += shared;
 mu.unlock();

}
​

void thread2() {
 int local;

 local = 12;
 mu.lock();

 shared -= 2;
 mu.unlock();

}

thread 2: write local

thread 1: lock mu
thread 1: read shared

thread 1: read shared
thread 1: write shared

thread 1: unlock mu
thread 2: lock mu

thread 2: read shared
thread 2: write shared

thread 2: unlock mu

5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22

1
2

3
4

5

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

1

2
3

4
5

6
7

8
9

10

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

This question assesses student understanding of the relationship between a
dynamic analysis and its test inputs and

instrumentation. In the lecture,
it was mentioned that not everything can be logged, and that the quality of
a dynamic analysis
(i.e., whether or not it produces a warning) can depend
on whether or not it is run on high-quality inputs and is able to record

relevant information.

With that in mind, we note that the question asks if a race condition
can be detected from the log file. In some instances,

students were
presented with source code that clearly had a race condition, but where
that could not be determined from the
(low-quality) log provided.
This highlights the difference between static and dynamic analyses:
students who focused on the

content of the code, effectively carrying out
code inspection (a static analysis), were answering a different question
(and
potentially missing the issue that dynamic analyses can be hindered by poor inputs or incomplete log information).

(b) (4 points) We view Checkers as an analysis for helping us to conclude that a program
has no race conditions. In this view,
Checkers is sound if and only if it reports all
such defects (i.e., has no false negatives). Is Checkers a sound analysis? Is it

complete? Explain your reasoning in at most four sentences.

Your answer here.

ANSWER:

Checkers is not sound because it may erroneously categorize a program that
contains a race condition as safe; that is, it may
have false negatives. One way in this may happen is if it is not given enough inputs or if the
log ends up not containing

relevant information. For
example, a program may immediately exit if its input is zero, rather than
spawning any threads. If
that is the only input/log available, Checkers will
not see any accesses to shared variables, so it will not report any errors.

However, the program may have race conditions on non-zero inputs.

Checkers is not complete because it may have false positives (false alarms). For example, a shared variable may be protected

by different locks
depending on different contexts. Lockset algorithms require that at least
one lock protect the shared variable
for the entire computation. See Slide
56 of the Dynamic Analysis lecture for an example.

While not required, students can find more information in the Eraser
optional reading, since Checkers is Eraser renamed. That
paper notes
directly that Eraser can miss errors (page 398) and that Eraser also has
false alarms (page 401).

1 point was given for Unsound, 1 point for Incomplete, and 1
point each for a valid justification. (Some students only responded
to
one half of the question.)

(c) (4 points) Support or refute the following statement: "A dynamic lockset algorithm
such as Checkers is better suited than a

static analysis tool would be for
race condition detection."

Your answer here.

ANSWER:

Refute is possible. Dynamic lockset algorithms can be very inefficient (the
Eraser algorithm reports 10x to 30x slowdowns).
They may not halt on
subject programs which run forever or deadlock. Some programs use
concurrency control approaches

other than locking. Dynamic analysis
instrumentation may cause race conditions to disappear in practice
("Heisenbugs"). In
addition, dynamic analyses require rich sets of test inputs. A student could
describe a static analysis tool that keeps track of

the set of locks held at each point, arguing that it fits in a static dataflow
analysis framework (e.g., the set of locks only ever
decreases, so the
dataflow analysis terminates).

Support is possible. Dynamic algorithms are used quite a bit in
practice for this task. The CHESS reading notes that there are
many
possible scheduler interleavings: enumerating and reasoning about them all
with a purely static technique is not likely

to be feasible (or will result
in too much "I don't know" or "Top" sorts of approximations). Because
the Checkers algorithm is
simply the Eraser lockset algorithm from the
lecture, students can bring in any evidence from the reading or lecture.

(d) (3 points) Suppose we want to test our dynamic analysis — that is, we want to
gain confidence that it correctly reports a

race condition if and only if
the subject program has a race condition. To do so, we need a suite of
subject programs for which
we know whether each subject program has
a race condition or not. Creating such a suite would be expensive. We decide to

use just one part of mutation from mutation analysis: start
with a single known-good program and randomly delete a call to
lock or
unlock to produce a new subject program that should now have a race
condition. Support or refute the claim that using

this simple part of mutation would be a good way to produce a test suite for Checkers. (Note that in this question a test input
to the Checkers analysis is,
itself, another program, which also has its own input. Note also that this
question is about using a

mutation operator, but is not about standard
mutation analysis.)

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

Your answer here.

ANSWER:

Both are possible, but refute is more likely. The mutation approach
does reduce the cost of developing new subject programs.
However, there are a number of concerns. First, the resulting subject programs are
not very diverse. For example, if the starter

"known-good" program does not
have any loops, none of the mutants will either, and so Checkers will never
be tested on
looping programs. In addition, the resulting test suite is
unbalanced: only the original known-good program has "no races" as

its
expected answer, all of the others have "race condition" as the expected
answer. Checkers could produce many false alarms
(i.e., Checkers could
basically always say "race condition") and that would not be
noticed, because almost every expected

answer is "race condition". Finally,
a dynamic analysis relies on the quality of the input to the subject
program. Nothing was
discussed about how inputs would be made to the
known-good subject program or the mutants.

A support answer would have to address some of the issues above for full
credit; merely indicating that it would save
development time would not
be sufficient.

Much like HW3 or the in-class discussion of instrumentation, this question
explicitly required students to think about notions of
"time" or the
"stages" of analysis. It also asked students to stretch and apply mutation
in a setting other than pure mutation

testing to assess test suite quality.

Extra Credit

Each question below is for 1 point of extra credit unless
noted otherwise. We are
strict about giving points for these answers.
No partial credit.

(1) What is your favorite part of the class so far?

Your answer here.

(2) What is your least favorite part of the class so
far?

Your answer here.

(3) If you read any optional reading, identify it and
demonstrate to us that you have read it. (2 points)

Your answer here.

(4) If you read any other optional reading, identify it and
demonstrate to us that you have read it. (2 points)

Your answer here.

(5) In your own words, identify and explain any of
the bonus psychology effects. (2 points)

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Question 6
Extra Credit

