
A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

Tracing Reference Counting
Collection Style Batch Incremental
Cost Per Mutation None High
Throughput High Low
Pause Times Long Short
Real Time? No Yes
Collects Cycles? Yes No

Figure 1: Tracing vs. Reference Counting.

cost model for the various collectors, which allows their perfor-
mance characteristics to be compared directly (Section 7). We then
discuss some space-time trade-offs that can be made in the imple-
mentation of a collector (Section 8). Finally, we present our con-
clusions.

2. QUALITATIVE COMPARISON
We begin with a qualitative comparison of the differences be-

tween tracing and reference counting collectors, and discuss how
the algorithms become more similar as optimizations are applied.

2.1 Diametrical Opposites?
The na¨ıve implementations of tracing and reference counting are

quite different. The most commonly cited differences are shown in
Figure 1.

Reference counting is inherently incremental since it updates ref-
erence counts on each pointer write; tracing operates in “batch
mode” by scanning the entire heap at once. Tracing incurs no
penalty for pointer mutation, while reference counting incurs a high
cost — every pointer write (including those to stack frames) results
in reference count updates. Throughput for tracing collectors is
correspondingly higher.

On the other hand, reference counting collectors incur very short
pause times, which makes them naturally suitable for real-time ap-
plications.

Finally, tracing collects cyclic garbage while reference counting
does not. As a result, when reference counting is applied to heaps
that may contain cyclic garbage, cycles must either be collected us-
ing a backup tracing collector [43] or with a trial deletion algorithm
[6, 17, 32].

2.2 Convergence
Our investigation of the similarities between tracing and refer-

ence counting began when we noticed that as we optimized our
reference counting and tracing collectors, they began to take on
more and more of the each other’s characteristics.

The incremental nature of reference counting is generally con-
sidered to be its fundamental advantage. However, the cost of up-
dating reference counts every time a new pointer is loaded into a
register is typically much too high for high-performance applica-
tions. As a result, some form of deferred reference counting [20],
in which references from stack frames are accounted for separately,
is used in most high-performance implementations of reference
counting [3, 19].

However, this means that when an object’s reference count drops
to zero, it can not be reclaimed immediately, since there might be
a reference from the stack that is not accounted for. As a result,
collection is deferred until the periodic scanning of the stack refer-
ences. However, the result is delayed collection, floating garbage,
and longer application pauses — the typical characteristics of trac-
ing collectors!

Tracing Reference Counting
Starting Point Roots Anti-roots
Graph Traversal Fwd. from roots Fwd. from anti-roots
Objects Traversed Live Dead
Initial RC Low (0) High
RC Reconstruction Addition Subtraction
Extra Iteration Sweep Phase Trial Deletion

Figure 2: Tracing vs. Reference Counting, Revisited.

Now consider an implementation of a high-performance trac-
ing collector: two of its fundamental advantages are the lack of
per-mutation overhead and the natural collection of cyclic garbage.
However, a fundamental disadvantage of tracing is that freeing of
dead objects is delayed until the end of a collection cycle, resulting
in delayed reclamation of objects and long pause times.

One of the first optimizations that is typically applied to a tracing
collector is generational collection [41]. This reduces the average
pause time and the delay in reclaiming objects, but it also intro-
duces per-mutation overhead — thus it takes on both some of the
positive and the negative aspects of reference counting collection.

A further attempt to precisely limit the pause time is manifest in
the train algorithm [25], which breaks memory up into fixed-size
carswhich are grouped together intotrains. One car is collected at
a time, which yields deterministic pause times, except in the pres-
ence ofpopular objects. Furthermore, inter-car cycles can cause
pathological behavior. But problematic behavior in the presence of
cycles is a paradigmatic quality of reference counting!

3. THE ALGORITHMIC DUALS
Our first-hand experience of (and frustration with) the conver-

gence of optimized forms of reference counting and tracing collec-
tors led directly to a deeper study of the algorithms in the hope of
finding the fundamental similarities that seem to be appearing in
practice.

3.1 Matter vs. Anti-matter
In order to see the connection between the two algorithms it is

necessary to view them somewhat differently than usual. First of
all, we consider a version of reference counting in which the decre-
ment operations are batched and performed at “collection time”
instead of being performed immediately (this can be viewed as a
subsequent optimization). Second, we consider a version of tracing
in which the tracing process reconstructs the actual reference count
of each object instead of simply setting a mark bit (mark bits can be
viewed as a subsequent optimization in which the reference count
is turned into a one-bit “sticky” reference count).

Viewed in this light, the parallels between the two algorithms are
quite striking, and are summarized in Figure 2.

Tracing garbage collection traverses the object graph forward,
starting with the roots, to find the live data. Reference counting
traverses the object graph forward, starting with the anti-roots (the
set of objects whose reference counts were decremented to 0), to
find dead data.

Intuitively, one can think of tracing as operating on “matter” and
reference counting as operating on “anti-matter”. Formally, in the
absence of cycles, reference counting computes the graph comple-
ment of tracing.

Tracing initializes object reference counts to zero, and in the pro-
cess of graph traversal increments them until they reach the true ref-
erence count. Reference counting “initializes” the reference counts
to a value that is in excess of the true count, and in the process

51

Roots Heap

T

T

(a) Schematic

collect-by-tracing()
initialize-for-tracing(W)
scan-by-tracing(W)
sweep-for-tracing()

scan-by-tracing(W)
while W �= ∅

remove w from W
ρ(w)← ρ(w) + 1
if ρ(w) = 1

for each x ∈ [v : (w, v) ∈ E]
W ←W � [x]

sweep-for-tracing()
for each v ∈ V

if ρ(v) = 0
VF ← VF ∪ {v}

ρ(v) ← 0

new(x)
ρ(x)← 0

initialize-for-tracing(W)
W ← find-roots()

(b) Algorithm

Figure 3: Tracing Garbage Collection

graph traversal decrements them until they reach the true reference
count (ignoring the presence of cycles).

Reference counting must perform extra graph iterations in order
to complete collection of cyclic data. This is typically viewed as a
major drawback of reference counting.

But tracing must also perform an extra iteration, and over the en-
tire object space: the sweep phase, which collects those objects
whose reference count is 0 (mark bit clear). While semi-space
copying collectors avoid this time cost by copying only live data,
this is in fact a simple linear space-time trade-off: a linear traversal
is saved at the expense of a linear cost in space.

3.2 Fix-point Formulation
We begin by describing the algorithm for garbage collection ab-

stractly. We will then refine this into the tracing and reference
counting duals.

Throughout this paper, we assume that all memory consists of
fixed-size objects, and therefore ignore fragmentation [4].

We use the notation[a, a, b] to denote the multiset containing
two a’s and oneb, [a, b] � [a] = [a, a, b] to denote multiset union,
and[a, a, b]� = {a, b} to denote the projection of a multiset onto
a set.

We characterize the memory of the system formally as:

• V is the set of vertices in the object graph.V is the universe
of all objects, and includes both garbage as well as objects in
the “free list”.V does not comprise all of memory, since the
collector must also maintain meta-data to support collection.

Roots Heap

C

C

(a) Schematic

collect-by-counting(W)

scan-by-counting(W)
sweep-for-counting()

scan-by-counting(W)
while W �= ∅

remove w from W
ρ(w)← ρ(w) − 1
if ρ(w) = 0

for each x ∈ [v : (w, v) ∈ E]
W ← W � [x]

sweep-for-counting()
for each v ∈ V

if ρ(v) = 0
VF ← VF ∪ {v}

new(x)
ρ(x)← 0

dec(x)
W ←W � [x]

inc(x)
ρ(x)← ρ(x) + 1

assign(a, p)
l← [a]
[a]← p
dec(l)
inc(p)

(b) Algorithm

Figure 4: Reference Counting Garbage Collection. Note the
exact correspondence of the scan and collect methods with the
Tracing Algorithm in the figure to the left.

• E is the multiset of edges in the graph (a node can have more
than one pointer to the same node).

• R whereR� ⊆ V is the multiset of roots of the graph (in
stack frames and global variables).

• VF ⊆ V is the “free list”, the set of vertices known to be
available for allocation.

• VL = R� is the set of live vertices in the object graph: the
set of vertices reachable from the roots.

• EL = {(x, y) : x ∈ VL} is the set of live edges in the object
graph.

• VD = V − VL is the set of dead vertices. In generalVF ⊆
VD, but throughout this paper we assume that collection is
only triggered whenVF = ∅.

52

• VC ⊆ VD is the set of vertices that are cyclic garbage; that
is, they are not inVL but they all have in-edges in the graph.

• ρ(v), wherev ∈ V , is the reference count of vertexv, as
computed by the collector.

The object graph is the tripleG =< V,E,R >.
Garbage collection can be expressed as a fix-point computation.

A fix-point is computed for the assignment of reference countsρ(v)
to verticesv ∈ V . Reference counts include contributions from the
root setR and incoming edges from vertices with non-zero refer-
ence counts:

ρ(x) =
∣∣[x : x ∈ R]

∣∣ +
∣∣[(w, x) : (w, x) ∈ E ∧ ρ(w) > 0]

∣∣ (1)

Once reference counts have been assigned, vertices with a refer-
ence count of 0 are reclaimed:

VF = [v ∈ V : ρ(v) = 0] (2)

In general, there may be many such fix-points for a given ob-
ject graph. For example, consider the case whereV = {a, b},
R = ∅ andE = {(a, b), (b, a)}. Thenρ(a) = ρ(b) = 0 and
ρ(a) = ρ(b) = 1 are the two possible fix-points of the equation.
The former is the least fix-point and the latter is the greatest fix-
point. Clearly, we wish to collect the garbage identified by the least
fix-point.

The fix-point formulation is not in itself an algorithm. We now
consider the solutions arrived at by garbage collection algorithms.

3.3 Tracing Garbage Collection
The real algorithms operate on the object graphG defined above.

In addition they maintain

• W , the work-list of objects to be processed by the algorithm.
WhenW is empty the algorithm terminates.

The tracing garbage collection algorithm is shown in Figure 3(b).
Initially, the reference counts of all vertices are zero, either because
they were created that way bynew() or because their reference
count was reset to zero during the previoussweep-for-tracing(). The
initialize-for-tracing() function initializes the work-list to be the root
setR.

The heart of algorithm is the functionscan-by-tracing(), which re-
constructs the reference count of each vertex. It scans forward from
each element of the work-list, incrementing the reference counts of
vertices that it encounters. When it encounters a vertexw for the
first time (ρ(w) = 1), it recurses through all of the out-edges of
that vertex by adding them to the work-listW .

When thewhile loop terminates, it will have discovered all of
the nodes inR� — that is, the set of all live nodesVL — and set
their reference counts to be the corresponding number of in-edges
in EL.

Finally, thesweep-for-tracing() function is invoked to return the
unused vertices to free storageVF and reset the reference counts to
zero in preparation for the next collection.

The only substantive difference between this algorithm and a
standard tracing collector is that we are maintaining a full reference
count instead of a boolean flag that tells whether or not a vertex has
already been visited. However, this does not change the complexity
of the algorithm (although it would affect its running time in prac-
tice). As we have already mentioned, the mark “bit” can be viewed
as a degenerate reference count that “sticks” at one.

Tracing garbage collection computes theleast fix-pointof the
equation in equation 1.

Throughout the paper, we will be using schematic diagrams to
show how collectors handle pointers between different regions of

memory. In Figure 3(a) we show the structure of the tracing collec-
tor, which traces references from the roots to the heap and within
the heap. These are shown with arrows labeled with “T”. This di-
agram is trivial, but as we discuss more and more complex collec-
tors, the diagrams provide a simple way to summarize the collector
architecture.

3.4 Reference Counting Garbage Collection
The reference counting garbage collection algorithm is shown in

Figure 4(b). The horizontal lines that match up with Figure 3(b) are
there to emphasize the similarity between the component functions
of the algorithm.

This formulation of the reference counting algorithm is some-
what unusual in that decrement operations are buffered, rather than
being performed immediately. We are not advocating this as an im-
plementation, but rather as a way of understanding the relationship
between the algorithms. Delaying the decrements shifts some of
the work in time, but does not affect the complexity of the algo-
rithm.

Therefore, thedec() function adds vertices to the work listW ,
instead of the vertices being added by theinitialize function.

During mutation when a pointer is stored into memory by calling
theassign function, which takes the pointerp to be stored and the
addressa at which to store it. The function loads the old referentl
at addressa and calls thedec(l) function which addsl to the work-
list W . The address is updated, and the reference count of the new
referentp is incremented callinginc(p).

When a collection is triggered, all increments have been per-
formed, but the decrements since the last collection have not; they
have been recorded inW . As a result, at the commencement of the
scan function, the reference counts are over-estimates of the true
counts.

As with tracing collection, the heart of the algorithm is the scan-
ning phase, performed by the functionscan-by-counting() at col-
lection time. The algorithm scans forward from each element of
the work-list, decrementing the reference counts of vertices that it
encounters. When it discovers a garbage vertexw (ρ(w) = 0),
it recurses through all of the edges of that vertex by adding them
to the work-listW . Finally, thesweep-for-counting() function is
invoked to return the unused vertices to free storage.

The relationship between the two algorithms becomes obvious
when one looks at Figures 3 and 4 side by side. Thescan functions
are identical except for the use of reference count increments in
tracing instead of reference count decrements in reference count-
ing, and the recursion condition which checks whether the refer-
ence count is 1 in tracing instead of 0 in reference counting. By
changing two characters in the heart of the algorithm, we have
changed from tracing to reference counting!

The other interesting difference between the collectors is that the
sweep-for-counting() function does not reset reference counts to 0.

The architecture of the simple reference counting collector is
shown in Figure 4(a). Arrows labeled with “C” represent refer-
ence counted pointers. Reference counting is performed both for
references from the roots to the heap and for intra-heap references.

By considering the tracing and reference counting algorithms in
this light we see that they share the same fundamental structure.
The only difference is that tracing begins with an underestimate of
the reference counts and converges toward the true value by incre-
menting the counts as it encounters vertices in its trace. On the
other hand, reference counting starts with an overestimate due to
the counted in-edges from objects that are in fact no longer live,
and by processing decrement operations it converges toward the
true reference count.

53

Roots Heap

T

C

(a) Schematic

collect-by-drc(W)
R← find-roots()
trace-roots(R)
scan-by-counting(W)
sweep-for-counting()
untrace-roots(R)

trace-roots(R)
for r ∈ R

ρ(r)← ρ(r) + 1

untrace-roots(R)
for r ∈ R

ρ(r)← ρ(r)− 1

drc-assign(a, p)
l← [a]
[a]← p
if ¬ RootPointer(a)

dec(l)
inc(p)

(b) Algorithm

Figure 5: Deferred Reference Counting

Viewed in another light, while tracing computes the least fix-
point to the equation in equation 1, reference counting computes the
greatest fix-point. The set difference between these two solutions
comprises the cyclic garbage.

4. TRACING/COUNTING HYBRIDS
Given the similarity in structure that we discovered between trac-

ing and reference counting, we began to re-examine various collec-
tor architectures to understand the interplay between these styles of
collection. We observed that all realistic garbage collectors are in
fact some form of hybrid of tracing and reference counting.

This explains why an optimized “tracing collector” and an opti-
mized “reference counting collector” become more and more simi-
lar: because they are in fact taking on characteristics of each other.

As we will see, the only fundamental differences between vari-
ous collectors are in the division of storage, and in the assignment
of responsibility for maintenance of reference counts in the differ-
ent divisions to either tracing or reference counting. After these
decisions have been made, the remaining choices are implementa-
tion details which amount to making various space-time trade-offs,
which we will discuss in detail in Section 8.

We broadly characterize collectors based on their division of
storage:unified heapcollectors have a single heap in which all data
resides;split heapcollectors divide memory into two regions, such
as in a generational collector; andmultiple heapcollectors have
more than two memory regions, as for instance distributed garbage
collectors or the Train algorithm [25].

Note that in this analysis we consider semi-spaces as a single
heap region, since only one semi-space is active at a time (we are
not considering concurrent collectors). The use of semi-spaces is
one of the time-space trade-offs considered in Section 8.

Roots Heap

C

T

(a) Schematic

collect-by-partial-tracing(R)

scan-by-tracing(R)
sweep-for-tracing()

pt-inc(x)

R← R � [x]

pt-dec(x)

R← R− [x]

pt-assign(a, p)
l← [a]
[a]← p
if RootPointer(a)

pt-dec(l)
pt-inc(p)

(b) Algorithm

Figure 6: Partial Tracing

4.1 Deferred Reference Counting
A Deferred Reference Counting (DRC) collector is a unified

heap collector. However, such collectors still have two regions of
storage, namely the heapV and the rootsR. The various combi-
nations of tracing and reference counting across these two regions
yield different algorithms.

Deferred reference counting is a hybrid in which reference count-
ing maintains the counts between heap objects. Objects with refer-
ence count 0 are maintained in azero count table(ZCT).

Root references are not counted. Instead, at collection time any
elements of the ZCT that are pointed to by roots are removed from
the ZCT and the remaining ZCT entries are collected.

Because the root mutation rate is almost always extremely high,
deferred reference counting moves the cost of considering the roots
from the application to the collector.

But the act of examining the root pointers and removing their ref-
erents from the ZCTis tracing: it is the act of following a pointer
forward and incrementing the reference count of the discovered ob-
jects.

The structure of deferred reference counting is shown in Fig-
ure 5(a). References from the stack to the heap are traced, while
references within the heap are reference counted.

The formulation of the deferred reference counting algorithm is
shown in Figure 5(b). The write barrier (assign function) has been
modified to filter out any pointers where the source is not a root.
Thus at collection time the increments for all intra-heap pointers
have been performed, and the decrements have been placed in the
work listW .

The collection operation itself finds the root set and increments
all of its targets. It then invokes the standard reference counting col-
lection operations (scan-by-counting andsweep-for-counting) which

54

compute reference counts and then collect objects with reference
count 0. Finally, the updates to reference counts from the roots are
undone byuntrace-roots.

The only difference between this algorithm and the classical DRC
algorithm is that we do not explicitly maintain the ZCT; by defer-
ring the decrements to the work list we discover garbage objects
when their reference counts drop to zero. But this is merely an
implementation choice. Some DRC collectors use this alternative
approach [3].

4.2 Partial Tracing
In a unified heap, one could also consider implementing the con-

verse of deferred reference counting, namely reference counting
the roots and tracing the heap, which we call apartial tracingalgo-
rithm. This is shown in Figure 6(a). It is simply deferred reference
counting with the role of the edges exchanged; it therefore has a du-
ality with deferred reference counting in a similar way that tracing
and reference counting are themselves duals.

The partial tracing algorithm has anassign function that has the
complementary filter on pointers: it only considers root pointers.
For those pointers, it invokes special increment and decrement op-
erations whose function is to dynamically maintain the root set. In
essence, this set can be thought of as a reference count maintained
only for roots (that is, different fromρ).

Once the root set has been maintained by the write barrier, col-
lection is simply a matter of invoking the standard tracing algo-
rithm. Instead of finding roots by searching (for example, scanning
stacks and global variables), it simply passes the root set it has been
maintaining.

The fundamental property of the hybridization is that when trac-
ing starts, reference counting has already caused some vertices to
have non-zero reference counts, by virtue of their being in the set
R. These “virtual reference counts” are then materialized by being
fed as work list inputs to thescan-by-tracing function.

Note that theassign function is always associated with the ref-
erence counting, rather than the tracing part of the hybrid collec-
tor. For DRC, the heap is reference counted and the barrier records
pointers from the heap. For partial tracing, the roots are reference
counted and the barrier records pointers from the stack. In gen-
eral, the presence of a write barrier is an indication of some sort of
reference count-like behavior in an algorithm.

We know of no implementation of partial tracing. For a lan-
guage run-time system, it would have singularly poor performance
properties. It manages to combine most of the worst aspects of
both tracing and reference counting: it has extremely high muta-
tion cost, as in pure reference counting, while gaining none of the
incrementality of reference counting.

However, in the implementation garbage-collected systems in
other environments, where the operations might be performed on
disks, networks, or expensive run-time structures, such an algo-
rithm might be worthwhile. For instance, if the cost of writing a
root pointer was already fairly high, and finding the roots by scan-
ning was very expensive, then reference counting the roots might
be the best solution.

4.3 Generational Garbage Collection
Deferred reference counting illustrates hybridization within a uni-

fied heap. We will now consider collectors which split the heap into
two regions: anurseryand amature space.

Split-heap collectors actually have three memory regions: the
roots, the nursery, and the heap. All split-heap collectors have the
property that they are some form of hybridization of tracing and
reference counting, as we will now show.

Roots Nursery

T
T

Mature Space

T T

C
M

(a) Nursery and Mature Space are Traced (Standard Generational
Collection)

Roots Nursery

T C

Mature Space

T T

C
M

(b) Nursery is Reference Counted and Mature Space is Traced

Roots Nursery

T
T

Mature Space

T
C

C
M

(c) Nursery is Traced and Mature Space is Reference Counted
(Ulterior Reference Counting)

Figure 7: Generational Collectors

A generational collector effectively attenuates the allocation rate
into the mature space by allocating objects into the nursery, and
only moving objects that survive nursery collection into the mature
space. Average pause times are substantially reduced and through-
put is often increased as well.

4.3.1 Tracing Generational Collection
The most common split-heap collector architecture is a genera-

tional collector [41].
In order to collect the nursery independently (without having to

trace the entire mature space) a generational collector maintains a
remembered setof objects in the nursery that are pointed to by ob-
jects in the mature space. The remembered set may be implemented
with a bitmap, card marking, or a sequential store buffer (SSB).

The remembered set is maintained by awrite barrier which is
executed at every heap pointer update. The write barrier checks
whether the pointer crosses from mature space to the nursery, and
if so adds it to the remembered set.

By now, the analogy with previous collectors should be some-
what obvious: the write barrier is theassign function, which we
have observed is correlated to the reference counting portion of a
collector.

The remembered set is in fact a set representation of non-zero
reference counts – the complement of the zero count table (ZCT)
used in deferred reference counting, except that its range is limited
to the nursery. As we have seen, starting with non-zero reference
counts is a fundamental feature of reference counting.

55

gen-collect-nursery()
gen-nursery-initialize()
gen-nursery-scan()
nursery-sweep()

gen-nursery-initialize()
R← find-roots()
RN ← [r : r ∈ R ∧ r ∈ VN]
for each r ∈ RN

W ← W � [r]

gen-nursery-scan()
while W �= ∅

remove w from W
ρ(w)← ρ(w) + 1
if ρ(w) = 1

for each x ∈ [v : (w, v) ∈ E]
if x ∈ VN

W ←W � [x]

gen-assign(a, p)
l← [a]
[a]← p
if InMatureSpace(a)

gen-dec(l)
gen-inc(p)

gen-inc(x)
if x ∈ VN

W ← W � [x]

gen-dec(x)
if x ∈ VN

ρ(x)← ρ(x)− 1

gen-collect-heap()
gen-collect-nursery()
collect-by-tracing()

nursery-sweep()
for each v ∈ VN

if ρ(v) = 0
VNF ← VNF ∪ {v}

else
VN ← VN \ {v}
VH ← VH ∪ {v}
ρ(v)← 0

Figure 8: Generational Garbage Collection Algorithm

A generational collection algorithm (for collecting the nursery)
using our formalism is shown in Figure 8. Theassign function only
considers pointers from the mature space into the nursery. Decre-
ments are performed immediately and increments are deferred by
placing them into a work list. While this may seem slightly coun-
terintuitive, recall that in our formulations all collectors compute
reference counts, rather than just mark bits. If we only needed
mark bits, we could omit performing the decrements. The point of
recording the increments in a work list is that they form a set of
roots from which the tracing of the nursery proceeds (in addition to
stack roots).

Thegen-nursery-initialize function takes the work list created by
the generational write barrier, and adds the roots that point into
the nursery. Then it performs the tracing or the nursery with the
gen-nursery-scan function. This function is the same as thescan-
by-tracing function of the basic tracing algorithm (Figure 3), except
that nodes are only added toW if they are in the nurseryVN .

The sweep function moves nodes with non-zero reference counts

rcn-collect-nursery()
rcn-trace-roots()
rcn-nursery-scan()
nursery-sweep()

rcn-trace-roots()
R← find-roots()
RN ← [r : r ∈ R ∧ r ∈ VN]
for each r ∈ RN

ρ(r)← ρ(r) + 1

rcn-nursery-scan()
while W �= ∅

remove w from W
ρ(w)← ρ(w) − 1
if ρ(w) = 0

for each x ∈ [v : (w, v) ∈ E]
if x ∈ VN

W ←W � [x]

rcn-assign(a, p)
l← [a]
[a]← p

rcn-dec(l)
rcn-inc(p)

rcn-dec(x)
if x ∈ VN

W ←W � [x]

rcn-inc(x)
if x ∈ VN

ρ(x)← ρ(x) + 1

rcn-collect-heap()
rcn-collect-nursery()
collect-by-tracing()

Figure 9: Reference Counted Nursery Collection Algorithm

from the nursery into the mature-space, and sets their reference
count to zero. This maintains the invariant that between mature
space collections, all nodes in the mature space have reference
count 0 (tracing invariant).

To collect the whole heap (gen-collect-heap), the nursery is col-
lected and then the standard tracing collector is invoked. The nurs-
ery is known to be empty so only mature space objects are consid-
ered.

A schematic of the generational collector is shown in Figure 7(a).
References from the root set to both the nursery and the mature
space are traced. References within both the nursery and the ma-
ture space are traced. References from the mature space to the nurs-
ery are reference counted. Finally, there is amacro-edgefrom the
nursery to the mature space (designated by the arrow labeled with
“M”).

The macro edge can be thought of as a summary reference count.
Since we do not keep track of pointers from the nursery into the
mature space, the mature space can not be collected independently.
Their might be a reference from the nursery to any or all of the
objects in the mature space. Therefore, the only time when it is safe
to collect the mature space is when the nursery is empty, because
then the reference count from the nursery to the mature space is
known to be zero.

4.3.2 Generational with Reference Counted Nursery
We can now start exploring the design space for generational

56

collectors by considering the different combinations of tracing and
reference counting. We first consider the case where we apply the
dual approach (reference counting) to the nursery while applying
to the same approach (tracing) to the mature space. The result is
the algorithm in Figure 9.

This algorithm performs deferred reference counting for the nurs-
ery, and maintains reference counts from the mature space into the
nursery. The architecture is shown schematically in Figure 7(b).

To be more specific, we apply deferred reference counting to the
nursery (we do not reference count updates to root pointers into the
nursery). Instead, at the beginning ofrcn-collect-nursery, we ap-
ply the same operation that we apply at the beginning of DRC, but
restricted to the nursery: we trace from the roots into the nursery,
incrementing the reference counts of the target objects. Note that
this operation is also essentially doing the same thing as the cor-
responding operation for the generational traced nursery collector,
which adds the nursery roots to the work list for tracing.

The rcn-nursery-scan function is simply the reference counting
dual of thegen-nursery-scan function: it recursively decrements
reference counts instead of incrementing them, except that it does
not cross into the mature space.

Finally, the samenursery-sweep function is called as for the gen-
erational collector. Unlike the DRC collector, there is nountrace
operation that is performed inrcn-nursery-collect. The reason is
that nursery-sweep sets the reference count of objects moved into
the mature space to zero, undoing the incrementing performed by
rcn-trace-roots. Since the mature space will be traced, all reference
counts must start at zero and there is no need to accurately undo the
effect of tracing the roots and incrementing their reference counts.

The advantage of this collector is that cyclic garbage will even-
tually be collected because the mature space is traced; the disad-
vantage is that it reference counts exactly those objects which are
likely to have a high mutation rate (the young objects). Therefore,
the expensive write barrier operations will be performed for the
most frequent operations rather than the least frequent operations.

4.3.3 Generational with Reference Counted Heap
The problems with the previous algorithm suggest taking the op-

posite approach: tracing the nursery and reference counting the ma-
ture space. This has the advantage that mutations in the nursery are
not recorded by the write barrier, but the disadvantage that some
additional cycle collection mechanism is required for the mature
space. The algorithm is shown schematically in Figure 7(c).

This architecture was in fact implemented recently by Blackburn
and McKinley under the name “Ulterior Reference Counting” [12].
They used a trial deletion algorithm (see Section 5.3) to collect
cycles in the mature space.

As we begin to explore more exotic permutations of tracing and
reference counting, the power of the methodology becomes clear:
it allows us to easily explore the design space of possible collector
architectures, and to clearly classify them relative to each other.

Such an algorithm is shown in Figure 10. Itsscan method is the
same as for the standard generational collector (Figure 8), with the
addition that references from live objects in the nursery to the ma-
ture space must increment the reference counts of the mature space
objects prior to evacuation (to maintain the mature space invariant
that its objects contain their heap reference counts).

Thenursery-sweep function is also similar to that of the standard
generational collector, except that reference counts of objects being
moved from the nursery to the mature space must have the contri-
butions from the roots subtracted. This is because the mature space
is being collected by deferred reference counting, so once again we
must maintain the DRC heap invariant.

urc-collect-nursery()
urc-nursery-initialize()
urc-nursery-scan()
urc-nursery-sweep()

urc-nursery-initialize()
R← find-roots()
RN ← [r : r ∈ R ∧ r ∈ VN]
for each r ∈ RN

W ←W � [r]

urc-nursery-scan()
while W �= ∅

remove w from W
ρ(w)← ρ(w) + 1
if ρ(w) = 1

for each x ∈ [v : (w, v) ∈ E]
if x ∈ VN

W ←W � [x]
else

ρ(x)← ρ(x) + 1

urc-nursery-sweep()
for each v ∈ VN

if ρ(v) = 0
VNF ← VNF ∪ {v}

else
VN ← VN \ {v}
VH ← VH ∪ {v}

for each r ∈ RN

ρ(r)← ρ(r)− 1

urc-assign(a, p)
l← [a]
[a]← p
if InMatureSpace(a)

urc-dec(l)
urc-inc(p)

urc-dec(x)
if x ∈ VN

ρ(x)← ρ(x)− 1
else

WH ←WH � [x]

urc-inc(x)
if x ∈ VN

W ←W � [x]
else

ρ(x)← ρ(x) + 1

urc-collect-heap()
urc-collect-nursery()
collect-by-drc(WH)

Figure 10: Traced Nursery and Reference Counted Heap

57

Theassign function performs the same write barrier as the stan-
dard generational collector, except that pointers within the mature
space are also reference counted: increments are applied eagerly,
and decrements are placed in a separate work list for the mature
space.

A full collection first collects the nursery, after which the nursery
is empty and the mature space obeys the DRC invariant: the refer-
ence count of every object is the number of references from objects
in the heap. Then the DRC algorithm is invoked collect garbage in
the mature space.

5. CYCLE COLLECTION
One of the primary disadvantages of reference counting collec-

tors is that they do not find cyclic garbage. Therefore, an additional
mechanism is required.

So far our examination of reference counting has ignored cycles.
We now consider various ways of collecting cyclic garbage.

There are two fundamental methods: a backup tracing collector,
or a cycle collector. We first present these algorithms in the context
of a single-heap collector.

5.1 Backup Tracing Collection
The first and most commonly used is a reference counting collec-

tor that occasionally performs a tracing collection in order to free
cycles [43]. Reference counting is performed for both references
from the roots to the heap and intra-heap references, but occasion-
ally tracing is used over the whole heap, in which case it will collect
garbage cycles missed by reference counting.

5.1.1 Reference Counting with Sticky Counts
A reference counting system with sticky counts is an extension

of reference counting with tracing backup. A value2ξ − 1 is cho-
sen at which the reference count “sticks”, and ceases to be further
incremented or decremented. This is typically done to reduce the
space that must be allocated in the object header to a few bits.

When tracing is performed, it recomputes all of the reference
counts. Live objects whose count was stuck but now have less than
2ξ − 1 references will have the correct count, and dead objects
(including those that were stuck and those that were part of garbage
cycles) will have count 0.

5.2 Fix-point Formulation
In equation 1 we presented garbage collection as an abstract fix-

point computation. Tracing computes the least fix-pointVL while
reference counting computes the greatest fix-point. Thus the set dif-
ference between these two solutions comprises the cyclic garbage
VC .

There may exist other fix-point solutions between the least (trac-
ing) and greatest (reference counting) fix-points. If there aren non-
trivial strongly connected components inVC then there will be be-
tweenn + 1 and2n solutions to the fix-point equation, depending
upon the topology of the graph.

The general method for finding the cyclic garbage is to find a
subset of nodes,S ⊆ V , such that

(S ∩R = ∅) ∧ {(x, y) ∈ E : y ∈ S ∧ x ∈ V − S} = ∅ (3)

In other words,S is a set which contains no roots and only internal
references. Therefore, there is a fix-point solution in which for
s ∈ S, ρ(s) = 0 andS is garbage.

The difficult question for cycle collection procedures is how to
choose the setS.

collect-by-counting-with-cc()
scan-by-counting()
collect-cycles()
sweep-for-counting()

collect-cycles()
S ← ∅
trial-deletion()
trial-restoration()
P ← ∅

trial-deletion()
for each r ∈ P

if ρ(r) = 0
P ← P \ {r}

else
try-deleting(r)

try-deleting(v)
if v �∈ S

S ← S ∪ {v}
for each w ∈ [x : (v, x) ∈ E]

ρ(w)← ρ(w)− 1
try-deleting(w)

trial-restoration()
for each r ∈ P

try-restoring(r)

try-restoring(v)
S ← S \ {v}
if v ∈ S

if ρ(v) > 0
restore(v)

else
for each w ∈ [x : (v, x) ∈ E]

try-restoring(w)

restore(v)
for each w ∈ [x : (v, x) ∈ E]

ρ(w)← ρ(w) + 1
if w ∈ S

restore(w)

assign-cc(a, p)
l← [a]
[a]← p
dec(l)
inc(p)

inc(x)
if x �= null

ρ(x)← ρ(x) + 1
P ← P \ {x}

dec(x)
if x �= null

W ←W � [x]
P ← P ∪ {x}

Figure 11: Algorithm for Reference Counting with Cycle Col-
lection by Trial Deletion.

58

5.3 Reference Counting with Trial Deletion
We now consider reference counting with cycle collection by

trial deletion rather than with a backup tracing collector.
In the trial deletion we start with a nodex, which we suspect to

be part of a garbage cycle, and consider the setS = x� the set of
all nodes reachable fromx. If x is part of a cycle, then all nodes of
the cycle are reachable fromx. Therefore, the cycle is a subset of
x�. We decrement the internal reference count to get the external
reference count of each node. If we find any node has an external
reference count greater than zero, we remove it from the set and
restore all the reference counts for its children, since this node is
now external to the set. We do this until no more nodes with non-
zero external reference count are left in the set. If the set is not null,
we have found a set of garbage nodes.

There remains the issue of how to choose the nodesx from which
we start the trial deletion procedure. For example, the algorithm of
Bacon and Rajan [6] produces a complete set of candidates (if trial
deletion is performed on all candidates then all cyclic garbage will
be found) while employing a number of heuristics to reduce the
number of candidates.

The algorithm is shown in Figure 11. During mutation, the al-
gorithm maintains a setP of “purple” vertices, those that are po-
tentially roots of cyclic garbage. A vertex becomes purple when
its reference count is decremented; it ceases to be purple when its
reference count is incremented. At collection time, purple vertices
with non-zero reference counts are considered as the potential roots
of cyclic garbage. Trial deletion is then performed, with the setS
representing those vertices that have been marked “gray”, or visited
by the algorithm. Finally, if trial deletion gives rise to a region of
vertices with reference count 0, those vertices will be reclaimed by
sweep(). Otherwise, the reference counts are restored.

Other algorithms in this family include those of Christopher [17]
and of Mart´ınez et al. [32].

6. MULTI-HEAP COLLECTORS
So far we have discussed whole-heap and generational garbage

collection systems. We now extend our analysis of garbage collec-
tion to multiple heaps, which may be treated asymmetrically (as in
generational systems) or symmetrically. Multi-heap garbage col-
lection was pioneered by Bishop [10] for the purpose of allowing
efficient collection of very large heaps that greatly exceeded the
size of physical memory.

Multi-heap systems generally partition the heap in order to col-
lect some regions independently of others. The benefits are reduced
pause times and increased collector efficiency by preferentially col-
lecting regions with few live objects.

Together, the duality of tracing and reference counting, its ex-
tension to multiple heaps, and the approaches to cycle collection
provide an intellectual framework in which we can understand the
inter-relation of fundamental design decisions and their algorithmic
properties.

6.1 Ubiquitous use of Reference Counting
As is well known, reference counting is fundamentally incre-

mental while tracing is not. However, we claim thatanyalgorithm
that collects some subset of objects independently is fundamentally
making use of reference counting.

Reference counting allows one to collect an objectx without
consulting other objects. Similarly, incremental collection algo-
rithms allow one to collect a set of objectsX without consulting
some other set of objectsY . (Here, we are referring to the class of
collectors that incrementally collects the heap by scavenges a well-
defined portion of the heap.) Thus the only issue is thegranularity

at which reference counting is performed. We use the generic term
macro-nodeto refer to a collection of objects that typically serves
as a unit of collection.

We have already seen that remembered sets are a reference count-
like abstraction. Thus generational collectors keep reference counts
for heap to nursery references. However, there is also a nursery-
to-heap reference count, although it is implicit. By considering the
nursery and the mature space as two macro-nodes, there is a macro-
node edge from the nursery to the mature space. In other words, the
mature space macro-node has at least a reference count of at least
one even if there are edges from the root set. This implies that the
mature space may not be collected independently from the nursery.
Instead, we must first collect the nursery and move all live objects
into the heap (at which point, the nursery macro-node disappears
and the mature space macro-node’s count drops to zero). Alter-
natively, we can perform a single, unified collection of the heap
and the nursery by temporarily considering them as a single macro-
node. Coalescing the macro-nodes eliminates the macro-node edge
and is sensible since their internal edge type are both of the tracing
flavor. A macro-node edge summarizes the fact that there may be
edges between the constituent objects of the two macro-nodes.

Fundamentally, there are two ways of collecting cycles: (1) move
all of the objects into a single heap and trace it, or (2) perform a trial
deletion algorithm in which cyclic garbage is (logically) moved into
a single region which is then entirely discarded. Moving partici-
pants of a cycle into a single heap does not imply that there must
only be one such heap. For instance, it may be possible to statically
or dynamically partition objects to avoid such references.

6.2 Object Relocation
Multi-heap collectors group objects into macro-nodes (variously

called windows, cars, trains, regions, increments, and belts). In
order to perform collection, these algorithms copy objects from one
macro-node to another.

However, though reference counts can be used to detect that an
object is live (or dead), direct pointers preclude object relocation
without traversing the entire heap. Indirect pointers allow reloca-
tion without the space cost of remembered sets but pay the run-time
cost of indirection and the space cost of both the indirection object
and the fragmentation it may create. Read-barrier techniques typi-
cally treat every object as its own indirection object, except when it
has actually been moved. This provides flexibility at the expense of
read-barrier execution, and still suffers from fragmentation induced
by indirection objects.

Remembered sets is the other approach to allowing relocation.
They avoid the run-time cost of a read barrier while allowing incre-
mental relocation and compaction, but the object relocation and the
update of the pointers from its remembered set must be performed
atomically, which limits the level of incrementality. In particular,
when there are many references to a single object, remembered
sets suffer from thepopular object problem. The space cost of the
remembered set is high because there are many incoming point-
ers, and the incrementality is poor because an arbitrary number of
pointers must be updated in a single atomic step.

6.3 The Train Algorithm
Hudson and Moss designed an algorithm for garbage collection

which later came to be know as the Train algorithm [25]. Selig-
mann and Garup found and fixed a small flaw in the algorithm and
implemented it [37].

The primary purpose of the Train algorithm is to reduce the pause
time associated with the collection of the Mature Object Space. It
is assumed the Train is a generational system: there is a nursery

59

Roots
Car 1 (Train 1)

T T

Car 1 (Train 2)

T
T

C

M
Car 2 (Train 1)

T

M

C

Car 1 (Train 3)

T T

C

M
C

C

C

Figure 12: Schematic of the Train Algorithm

which keeps the recently created objects and promotes the objects
found during its collection.

The train algorithm divides the Mature Object Space (MOS) into
cars of fixed size. During the collection of the MOS one car is
collected at a time – making the train algorithm incremental at the
level of a car. Thus the pause time requirements determine the size
of the cars. The cars are organized intotrainsof variable size. Both
the cars in a train and the trains themselves are ordered. When an
object is moved from the nursery to the MOS, it is generally moved
to the end of first train, or to the second train if the first train is in
the midst of being collected.

Collection is always done on the first train. If there are no ex-
ternal pointers to the first train (from roots or other trains), then all
the objects in the train are garbage and the whole train is collected.
If not, the first car of the first train is examined. If there are no
incoming pointers (in the remembered set), then the car can be col-
lected. If there are objects with pointers only from later cars in the
first train, then they are moved to the last car which points to them,
or, if there is not enough space in the last car, into any later car. If
necessary, a new car is created for the object.

If there are pointers from later trains, then the object is moved to
a later train. The best choice would be to move it to the last train
that has pointers to this object. If there is a pointer to the object
from outside the MOS (that is, from the nursery), then the object is
moved to a later train. After this is done with all the objects in the
current car with pointers from outside, there would be no pointers
from outside the car, and so any remaining objects are garbage and
the whole car can be collected. After this is done with all the cars
in the first train, all the external pointers to the train will be gone,
and the whole train can be collected.

For this to work, the algorithm maintains remembered sets of
pointers to objects in each car from later cars in the same train and
from objects in later trains, and from outside the MOS. The pointers
from earlier trains and earlier cars need not be remembered since
they will be collected before this car is collected.

6.3.1 The Train as Hybrid
We now consider the train algorithm from our perspective as

shown in Figure 12. Obviously it has a tracing component, since
tracing is performed within each car. However, there is also refer-
ence counting component since there are remembered sets to han-
dle inter-car references.

The train algorithm also has the interesting feature that some ref-
erence counts are encodedpositionally:pointers to subsequent cars
and cars from subsequent trains are not recorded in remembered
sets. Each car can be considered as a supernode aggregating ob-

Roots
Window 1

T T

M
Window 2

T

C

M
Window 3

T
C

Window 1

T T
M

Window 2

T
C

C

M
Copy
Region

Allocation
Region

C
C

CC C

Figure 13: Schematic of the Older-First Algorithm

jects and a train as a supernode of cars. The macro-node counts are
induced by the links from earlier to later cars of the same train and
from earlier to later trains.

As in the generational case, the macro-node edges are directly
reflected in the train algorithm. For example, the first train as a
whole can be collected because there are no root or remembered
set references after processing all the cars and because the macro-
node count of the first train is zero.

6.3.2 Cycle Collection in the Train Algorithm
The hybridization in the train algorithm is especially apparent

because it suffers from one of the fundamental problems of refer-
ence counting, namely cycle collection. The train algorithm works
well with intra-car cycles since cars are collected with tracing. But
inter-car and inter-train cycles can cause significant problems. But
this is unsurprising as these are exactly the cycles at the macro-node
level, which is reference counted rather than traced.

In the multi-heap collectors, such as the train algorithm, we use
the same procedure. For each node in a train, we keep a list of
pointers to it from nodes in the later trains (remembered sets). We
collect the first train in the sequence of trains. If there are no point-
ers in the list, and no pointers from the root, then the set of nodes
in this train satisfy the condition in equation 3 and therefore can be
collected. Thus we can view the set of nodes in a train asS in our
discussion in Section 5.2. The list of pointers from later trains can
be viewed as a measure of external reference counts toS.

If however, a nodex in train 1 is being pointed to by a nodey in
trainn, then we movex to trainn. This is equivalent to trial dele-
tion from the point of view of trainn, since the pointer fromy to
x is no longer part of any remembered set. At the same time, from
the point of view of train 1, it corresponds to the restoration step of
the trial deletion algorithm, since we have an external pointer tox,
and therefore we removed it from the set corresponding to train 1.

After we have removed all the externally referenced nodes from
train 1, the remaining nodes are garbage and are collected. In actual
practice we collect a car at a time, rather than the whole train. But
that is done only to limit the pause time, and does not essentially
change the logic of the algorithm.

If x andy are part of a garbage setS, and trainn is the highest
numbered train containing nodes that can reachx, then the setS
will be collected when trainn is collected.

Thus the train algorithm, and trial deletion algorithm are both
ways of finding the setS that satisfies the condition in equation 3.

6.4 The Older-First Algorithm
In [40], Stefanovič et al. advocated a collector which scavenges

older objects before the youngest ones so that the young objects are
more likely to die. In the extreme case, their oldest-only collector
will always collect some subset of the oldest objects. However, it
will copy old, live objects many times. Instead, they propose the
older-first collector (Figure 13) which sweeeps through the heap,
collecting groups of objects from the oldest to the youngest group.

60

Roots Node 1

T
T

Node 2

T T

C

Node 3

T

Node 4

T

Roots

T

T

C

C

C

C RootsRoots

Figure 14: Schematic of Lang’s Distributed GC Algorithm

Because of the sweep, recently allocated objects will be collected at
least once before the oldest objects are reconsidered. Because older
objects are collected first, the remembered sets in these collectors
record references from older regions to younger objects, unlike a
traditional generational collector.

Unlike the train collector, there are no macro-nodes other than
the windows. Because cyclic garbage can permanently span mul-
tiple macro-nodes and be permanently uncollected, this algorithm
is incomplete. In contrast, all cyclic garbage in a train algorithm
eventually is promoted to a train that is otherwise dead at which
point the entire train is collected en masse.

6.5 Distributed Garbage Collection
In [29], Lang et al. describe a garbage collector suitable for a dis-

tributed system as illustrated in Figure 14. Each node in the system
performs tracing which conservatively detects garbage. However,
cyclic garbage that spans more than one node will never be col-
lected. They solve this with the concept of groups of processors,
which correspond to our notion of macro-nodes. By using larger
groups, all garbage will be eventually collected. In practice, a node
may choose to not participate in a particular group collection. Re-
ducing the group dynamically does not compromise correctness as
long as the notion of exterior references is appropriately adjusted.

6.6 The Log-Structure Filesystem
It is instructive to consider how the implementation of a garbage

collector changes as the trade-offs between operations change. Log-
structured filesystems [35] implement a Unix filesystem by writing
updated filesystem data and metadata sequentially to the disk. The
Unix filesystem is a reference-counted directed acyclic graph (hard
links can create acyclic cross-edges).

As files are overwritten, data earlier in the log becomes dead.
To reclaim this data, “cleaning” (garbage collection) is performed.
Cleaning is performed on fixed-size increments called segments:
some number of segments are compacted at a time.

However, the performance of the system is critically dependent
on the quality of the cleaning algorithm. In order to achieve good
performance, a second level of reference counting is performed,
treating the segments as macro-nodes (this is called the “segment
usage table”). In addition, the age of each segment is recorded. The
collector then tries to clean old segments with low reference counts
– effectively dynamically selecting a nursery.

Such an approach is practical for filesystems because the over-
heads are large enough that the tradeoffs change. In log-structured
filesystems, all pointers (inode numbers) are followed indirectly in
order to allow the inodes themselves to move as their changed ver-
sions are appended to the log.

Therefore, there is no need to “fix” the pointers from other seg-
ments, and consequently there is no need for remembered sets. In
addition, the “write barrier” is executed for disk block operations,

so the additional overhead of maintaining a second reference count
is trivial.

Thus we see that “obviously bad” garbage collection algorithms
may work very well when garbage collection is applied to other
domains than language run-time systems.

6.7 Other Multiple Heap Collectors
There are other potential bases for splitting the heap.
Shuf et al. allocate objects of a prolific type (high allocation rate)

separately from those of a non-prolific type [38]. Optimizations
are used to reduce the overhead of the remembered set between the
two regions. It is like the distributed algorithm in that there are no
macro-node edges.

The connectivity-based algorithm uses static analysis to obviate
the write barriers so that no remembered sets are required [24].
Instead the macro-nodes and the macro-node edges are computed
online to form a macro-node DAG. Whenever a particular macro-
node needs to be collected, all its predecessors (transitively) must
be collected at the same time.

The Beltway collector by Blackburn et al. generalizes various
copying collectors including the tracing collector, generational trac-
ing collector, and older-first collectors [11]. Like the train algo-
rithm, there are two levels: belts (like trains) and increments (like
cars). However, the macro-node edges between increments of the
same belt follow the order found in the older-first collector. Be-
cause of this ordering, there is a potential problem with cyclic
garbage which is solved by stipulating that the oldest belt be com-
posed of a single (potentially large) increment. Additionally, aside
from the degenerate oldest belt, the belts are not macro-nodes be-
cause a belt is never discarded as a whole.

7. COST ANALYSIS
For each collector, we analyze the cost in a common framework.

This allows precise comparison of the strengths and weaknesses
of each algorithm with respect to a given combination of storage
availability and application characteristics. We analyze the cost
per collectionκ, the frequency of collectionφ, and the total cost
imposed by the garbage collectorτ , including both collection and
collector code inserted into the mutator (such as write barriers).

In general, we make steady state assumptions about the mutator:
in particular, that the allocation rate and fraction of the heap that is
garbage are constants. Naturally these are unrealistic assumptions,
but they allow us to quantify the collectors with a reasonable num-
ber of variables, and provide a solid foundation for comparing the
characteristics of the different collectors.

7.1 Cost Factors
We analyze the cost of each collector, including constant factors.

However, we will not specify the coefficients for each parameter,
since this would make the formulae unwieldy. The reader should
be aware that these are real costs with implicit coefficients, rather
than “big-Oh” notation.

The cost of a collectorX is characterized with the following five
quantities:

• κ(X) is the time required for a single garbage collection in
seconds;

• σ(X) is the space overhead in units ofm (defined below)
words for the collector meta-data;

• φ(X) is the frequency of collection in hertz;

• µ(X) is the mutation overhead as a fraction of the applica-
tion running time; and

61

• τ (X) is the total time overhead for collection. If a program
in isolation takes 1 second to execute, andτ (X) = 0.5, then
the same program running with collectorX takes 1.5 seconds
to execute. the program

Quantities that are not parameterized by the collector name, such
asµE or VL, are invariant across all collector types.

7.2 Collector-Independent Parameters
To analyze the performance of the collectors, we define the fol-

lowing additional terms:

• m is the (fixed) size of each object, in words.

• M is the size of memory, inm-word objects.M′ = mM
is the size of memory in words.

• ω is the object size in bits andω′ = ω/m is the word size
in bits. Because a word must be large enough to hold the
address of any word, we also haveω′ ≥ �log2 M′�.

• a is the allocation rate, in objects/second.

• ε is the pointer density, that is the average number of non-null
pointers per object;

• µR is the root mutation rate in writes/second.

• µE is the edge mutation rate in writes/second.

• ρ(v) is the reference count ofv.

For sets and multisets, we use script letters to denote cardinality.
For example,VL = |VL| is the number of live vertices.

Note that while the set of live verticesVL is always collector-
independent, the total number of verticesV and the number of dead
verticesVD are both collector-dependent. For collectorX,

V(X) = M− σ(X) (4)

and the free memory available after collection is

VD(X) = V(X) − VL (5)

also, since we are assuming a pointer density ofε it follows that
EL = εVL andED(X) = εVD(X).

7.3 Total Time
The total time cost of collection is generally

τ (X) = φ(X)κ(X) + µ(X). (6)

For each collector we will define the cost of the component terms,
and then present an equation for the total cost that is expressed in
terms of collector-independent parameters. This allows direct com-
parison of the different algorithms.

The actual cost of collection operations is dependent on the par-
ticular implementation and the hardware/software platform upon
which it runs.

Therefore, we convert the abstract component operations into
time via an n-ary linear function with implicit coefficients denoted
by L(...). For example, in a mark-sweep collector, there is a cost
for each root, mark cost for each live vertex, a mark-check cost for
each live edge, and a sweep-cost for all vertices. So the time cost
is L(R,VL, EL,V).

7.4 Unified Heap Collectors
We begin with a cost analysis of the simple tracing and reference

counting algorithms, and then examine the various unified-heap hy-
brid algorithms.

void mark(Object obj) {
do {

obj.mark();
Object cdr← null;

for (Object p: obj.referents())
if (p �= null && ¬ p.isMarked())

if (cdr = null)
cdr← p;

else
mark(p);

obj← cdr;

} while (obj �= null);
}

Figure 15: Optimization of traversal stack space during the
mark phase.

7.5 T: Tracing
We begin by discussing the space and time costs for the simple

tracing garbage collection algorithm; these formulae form the basis
of subsequent trace-based collector analyses.

7.5.1 Space Cost
There are two fundamental sources of space overhead in tracing

collection: the mark bits and the stack for the recursive traversal
of the object graph. While pointer reversal techniques [36] exist
that allow the elimination of the latter overhead, this is a significant
space-time trade-off since it means more writes and more traversal.
In this paper, to avoid an explosion of alternate cost models, we
will assume that pointer reversal is not used, while noting that it is
an option.

The space cost for the traversal stack is proportional to the depth
of the object graph. This is typically viewed as problematic given
the existence of long linked structures. However, we argue that with
a few simple optimizations which have the flavor of tail-recursion
elimination, the traversal depth can be greatly reduced at very little
cost.

Consider the code in Figure 15. Themark(obj) function has been
modified slightly so that its parameter is known to be non-null
and unmarked. The loop over the referents ofobj stores the first
non-null pointer to an unmarked object that it encounters in the
variablecdr. If more non-null unmarked referents are discovered,
themark(p) call recurses to process them, consuming another stack
frame.

However, if there is at most one non-null unmarked referent,
there is no recursion. The function either returns if there is no non-
null unmarked referent, or if there is exactly one it handles thecdr
pointer via tail-recursion elimination.

As a result, both singly- and doubly-linked lists will have a re-
cursion depth of 1: singly-linked lists because there is only one
referent, and doubly-linked lists because one of the two referents is
guaranteed to have been previously marked.

We therefore define

• D′ as thetraversal depthof the object graph at collection
time, that is the depth of the recursion stack required for
traversing the live object graph after the above optimizations
have been applied.

The space cost for the mark phase will then be proportional to
D′. In a system that works with interior pointers, the space is sim-

62

ply D′ pointers. In a system without interior pointers, a “cursor”
into the object being traversed must be separately maintained. The
space costD, measured in objects, of the traversal stack is therefore

D =
D′

m
(7)

or, in a system without interior pointers,

D =
D′

m
·
(

1 +
�log2 m�

ω

)
(8)

For programs whose data structures are tree-like, the traversal
depth will be logarithmic rather than linear in the number of ob-
jects. For more general graph structures, the depth is less pre-
dictable. SinceD is in general not predictable, and it is undesirable
to reserveV(T) words for the traversal stack, most collectors in
fact use a fixed-size pre-allocated traversal stack. When the stack
overflows, an alternative method is used. While pointer reversal is
asymptotically better, in practice it is often preferable to use a sim-
pleO(n2) algorithm in which the heap is simply rescanned when
the recursion stack overflows.

7.5.2 Generic Space Formula
We now present a generic formula for space overhead that can

be specialized to a number of collectors, including tracing.
We generically assume thatb bits are required for the “reference

count”. If b = 1, it is a mark bit; if b = ω′, it is a full-word
reference count; if1 < b < ω′, it represents a trade-off between
these extremes.

For some collectorX that usesb bits per object and has a traver-
sal stack of depthD, the space required is

σ(X) = D +
bV(X)

ω
V(X) = M− σ(X)

= M−D − bV(X)

ω

=
M−D
1 + b

ω

(9)

σ(X) =
D + b

ω
M

1 + b
ω

(10)

7.5.3 Space Cost of the Tracing Collector
For a tracing collector that is optimized to use a single mark bit

per object,b = 1 and the formula simplifies to

V(T) =
M−D
1 + 1

ω

(11)

σ(T) =
D + M

ω

1 + 1
ω

(12)

On a machine with a word sizeω′ = 32 and a fixed object size
m = 2 (such as Lisp cons cells),ω = 64 � 1, so we can approx-
imate the space required as one bit for every possible object (as
if there were no metadata at all), plus the space for the recursion
stack. Note that we implicitly also assume thatM � D.

V(T) � M−D (13)

σ(T) � M
ω

+ D (14)

7.5.4 Time Cost
The cost per collection is proportional to the size of the root

set, the number of vertices examined, and the number of edges tra-
versed for the trace (mark) phase, and the total number of vertices
for the sweep phase. So the total cost of a tracing collection is

κ(T) = LT (R,VL, EL,V(T)) (15)

A collection has to be performed after the reclaimed cells are
consumed, so the frequency of collection (in collections/second) is

φ(T) =
a

VD(T)

� a

M−D − VL
(16)

using the approximation from Equation 13.
Therefore the total cost of collection is

τ (T) = φ(T) · κ(T)

� a

M−D −VL
LT (R,VL, EL,V(T)) (17)

7.6 C: Reference Counting
We now develop space and time cost functions for reference

counting and its derivative collectors.

7.6.1 Space Cost
While reference counting does not perform tracing, it does per-

form recursive deletion when an object’s reference count drops to
zero. There is no difference in principle between the two, so it
would seem that the amount of space consumed by recursive traver-
sal is the same.

However, by using Weizenbaum’s method for non-recursive free-
ing [42], the space for the traversal stack can be eliminated, at the
expense of delaying freeing until the next allocation.

There is in fact a much simpler variant of “pointer threading”
that can be applied which allows efficient and immediate traversal
of a stack of dead objects without requiring any extra memory or
cache read/write operations. To our knowledge this technique has
not been published previously.

Recursive deletion implies that the object from which we are re-
cursing has aleady been identified as dead; therefore, we do not
need to preserve the data values it contains; we only need to pre-
serve the pointers which have not yet been traversed. The ability to
use the space in dead objects is the key to our technique.

When recursively traversing the object graph to decrement refer-
ence counts and free those withρ = 0, there are two fundamental
pieces of information in every stack frame: one points to the object
being collected; the other identifies which field was most recently
processed. When we recurse for the first time, there is obviously at
least one pointer in the object, and since we are traversing it, we no
longer need it. Therefore, we can store a pointer to the parent object
in that freed pointer cell. And since we already know the reference
count of the object (zero), we can over-write the reference count
with a field that indicates which pointer we are currently travers-
ing.

A reference count is necessarily large enough to count the total
number of pointers in an object, since they might all point to some
other (reference counted) object. Therefore, we can guarantee that
any object that might cause recursion will have sufficient space to
store the necessary “stack frame” of the recursive deletion.

Furthermore, this technique does not require the reading or writ-
ing of any additional cache lines – the first cache line of each object
has to be examined anyway to perform the storage reclamation.

63

However, unlike with tracing, the reference count field can not
be optimized down to a single bit: it occupies a full word (this
assumption can be relaxed with the use of sticky counts).

V(C) =
M

1 + 1
m

=
mM
m + 1

(18)

σ(C) =
M

m + 1
(19)

That is, the space overhead is one word per object, which increases
the effective object size by 1 word, which is precisely what we
obtain by substitutingb = ω′ andD = 0 into equations 9 and 10.

7.6.2 Time Cost
The cost per collection is simply

κ(C) = LC1(VD(C), ED(C)) (20)

in other words, the cost of identifying the dead vertices.
The frequency of collection is the same as with tracing, namely

φ(C) =
a

VD(C)
(21)

7.6.3 Mutation Cost
However, reference counting skips the initialization step per-

formed by tracing and instead inserts a write barrier into the code.
Therefore, the total cost must include the mutation rate, which for
naı̈ve reference counting is proportional toµR andµE , so

µ(C) = LC2(µR, µE) (22)

So the total cost of reference counting in the absence of cycles is

τ (C) = φ(C) · κ(C) + µ(C)

=
a

mM
m+1

− VL

LC1(VD(C), ED(C)) +

LC2(µR, µE) (23)

7.7 CT: Reference Counting, Tracing Backup
We now consider reference counting collectors which periodi-

cally use a tracing collector to collect cyclic garbage, as described
in Section 5.1.

7.7.1 Space Cost
In the CT algorithm, each object has a reference count, and space

is required for recursive traversal by the tracing portion of the col-
lector. Therefore, the space cost of CT is

V(CT) =
M−D
1 + 1

m

(24)

σ(CT) =
M + D
1 + 1

m

(25)

7.7.2 Time Cost
In order to evaluate the performance of cycle collection, we de-

fine

• c ≤ a, the rate of generation of cyclic garbage.

In order to compute the total cost of the collector we must com-
pute the costs due to both reference counting and tracing. We will
examine the cost from the point of view of the tracing collections,
since those happen on a regular (and less frequent) basis. This leads
to a simpler analysis; if one tries to evaluate the cost from the point
of view of the reference counting portion of the collector, the model

is complicated because each successive collection frees less mem-
ory, causing the frequency of collection to increase over time, until
a tracing collection is performed.

From the point of view of the tracing collector, one can think
of the reference counting collector as a “nursery” collector that
reduces the allocation rate into the “mature space” of the tracing
collector. In particular, while the application allocates data at rate
a, the system only creates data for the tracing collector at ratec,
since all garbage except cyclic garbage is collected by the refer-
ence counting collector. Therefore, the rate of tracing collection
is

φ(CT) =
c

VD(CT)
(26)

which is the same as the equation forφ(T) except thatc has re-
placeda. For the purposes of modelling the two collectors together,
we will assume that the reference counting collector has the same
frequency as the tracing collector.

The cost of the tracing collection itself is unchanged, so

κ(CTT) = κ(T) = LT (R, EL,VL,V(CT)) (27)

To analyze the cost of reference counting, we will now account
for the cost as though it were run in a continuous, incremental
fashion. There areVD

c
seconds between tracing collections, dur-

ing which VD
c
a cells are allocated. Of those,VD are not freed by

reference counting (because they are cyclic garbage). So the num-
ber of cells freed by reference counting between tracing collections
is

a
VD

c
− VD =

(a

c
− 1

)
VD

We assume that the pointer density is uniform, so that for each
vertexv we traverseED/VD pointers, orED pointers in all. There-
fore, the cost of reference counting for each “tracing period” is

κ(CTC) =
(a

c
− 1

)
· LC1(VD, ED) (28)

Combining these results we get the total cost of reference count-
ing with a tracing backup collector as

τ (CT) = LC2(µR, µE) + φ(CT) · (κ(CTT) + κ(CTC))

= LC2(µR, µE) +
a

VD
LC1(VD, ED) + (29)

c

VD
(LT (R,VL, EL,V(CT)) − LC1(VD, ED))

Of course, when there is no cyclic garbagec = 0 and the last
term of the equation drops out, so thatτ (CT) = τ (C).

7.8 CD: Deferred Reference Counting
Deferred reference counting (Section 4.1) moves the cost of con-

sidering the roots from the application to the collector. Therefore,
the cost of collection becomes

κ(CD) = LCD(R) + LC1(VD, ED) (30)

The frequency of collection is the same as with tracing and ref-
erence counting, namely

φ(CD) = φ(C) =
a

VD
(31)

so the total cost of collection is

τ (CD) = φ(CD) · κ(CD) + LC2(0, µE)

=
a

VD
(LCD(R) + LC1(VD, ED)) +

LC2(0, µE) (32)

64

7.8.1 Space Cost
The space cost of deferred reference counting is the cost of keep-

ing the reference costs plus the space consumed by the zero count
table (ZCT). In general the number of entries in the ZCT can equal
the total number of live and dead objects in the system. Therefore,
robust implementations use a bit in each object to indicate whether
it is the ZCT. So the total cost is the space for the reference counts
plus the space for the ZCT “presence bits”:

σ(CD) =
V
ω

+
V�log2 V�

ω

=
V
ω

· (1 + �log2 V�) (33)

7.9 CC: Reference Counting, Trial Deletion
We now consider reference counting with cycle collection by

trial deletion (Section 5.3) rather than with a backup tracing col-
lector.

The cost of this algorithm is the cost of the basic reference count-
ing algorithm plus the additional work performed by the trial dele-
tion of cycles. However, trial deletion will also be applied to some
portion of the live subgraph, and this cost must also be factored in.
We introduce the parameter

• λ, the fraction of live verticesVL that are examined by the
trial deletion algorithm (0 ≤ λ ≤ 1).

To compute the cost of collection, we use the same methodology
as with the CT algorithm: the trial deletion phaseCCD is viewed
as “dominant” and collection is described in terms of the period of
that collection.

The trial deletion phase is invoked when all free memory is con-
sumed by cyclic garbage:

φ(CC) = φ(CT) =
c

VD
(34)

The cost of the trial deletion algorithm is two traversals over all of
the cyclic garbage (which is all ofVD in this case) plus the traver-
sals over the live subgraph:

κ(CCD) = LCCD (VD + λVL, ED + λEL) (35)

The time cost of the reference counting collection for non-cyclic
garbage is the same as for the CT algorithm:

κ(CCC) = κ(CTC) =
(a

c
− 1

)
· LC1(VD, ED) (36)

Thus the total cost of the CC collector is

τ (CC) = φ(CC) · (κ(CCD) + κ(CCC)) + LC2(µR, µE)

= LC2(µR, µE) +
a

VD
LC1(VD, ED) + (37)

c

VD
(LCCD (VD, λVL, ED, λEL) − LC1(VD, ED))

7.9.1 Space Cost
The space cost of reference counting with cycle collection is the

cost of reference counts plus the space consumed by the purple set
P plus the per-object color information, represented by the setY
in the abstract algorithm. Letπ be the fraction of nodes that are
purple, then the space cost is

σ(CC) = V(CC)

(�log2 V(CC)�
ω

+
1

ω
+

π

m

)
(38)

7.10 Split-Heap Collectors
We characterize split-heap collectors with the following quanti-

ties:

• N ⊂ V is the nursery.

• H = N is the mature space heap.

• VNL andENL are the set of live vertices and the set of live
edges in the nursery.

• VND andEND are the set of dead vertices and the set of
dead edges in the nursery.

• VHL, EHL, VHD, andEHD are the corresponding sets in
the mature space heap.

7.11 GT: Tracing Generational Collection
We now consider standard tracing generational collectors as de-

scribed in Section 4.3.1. We will assume a simple generational
collector in which the size of the nursery is fixed and objects are
evacuated into the mature space after surviving a single nursery
collection. We will use the term “heap” in this section as a syn-
onym for “mature space”.

To collect the nursery we trace forward within the nursery from
the rootsR and the rootsR′ from the mature space into the nursery.
Afterwards, the nursery is cleared. The cost is

κ(GTN) = LT (R + R′,VNL, ENL,N) (39)

The frequency of nursery collection is simply

φ(GTN) =
a

N (40)

The size of the mature root set can be as high asVH and is further
discussed below.

Collecting the mature heap is just like performing a simple trac-
ing collection. The cost is

κ(GTH) = LT (R,VHL, EHL,H) (41)

The allocation rate into the heap is attenuated by the use of the
nursery. The resulting heap allocation rate isaVNL

N . Therefore the
frequency of heap collection is

φ(GTH) =
aVNL

N
VHD

(42)

The total cost of generational collection is the sum of the costs of
the nursery collections, the heap collections, and the write barriers:

τ (GT) = φ(GTN) · κ(GTN) +

φ(GTH) · κ(GTH) + LGT (µE)

=
a

N · LT (R + R′,VNL, ENL,N) + (43)

aVNL
N

VHD
· LT (R,VHL, EHL,H) + LGT (µE)

7.11.1 Space Cost
Like its non-generational counterpart, there is a space cost for the

mark bits and the traversal depth. In addition, if the remembered
set is maintained as a sequential store buffer (i.e. a list of modified
objects), it can takeVH space if every object in the mature space
is modified between consecutive collection. The space overhead is
equal to that of the tracing collector plus the remembered set

σ(GT) = D + V/ω

65

7.12 GCH: Generational with Counted Heap
We now consider a generational collector with a traced nursery

and a reference counted heap (Section 4.3.3). For the nursery, the
cost and frequency is identical to the GT algorithm. The frequency
of heap collection is also the same. The cost of heap collection is
the cost of deferred reference counting applied to the heap.

κ(GCHN) = κ(GTN) (44)

φ(GCHN) = φ(GTN) =
a

N (45)

κ(GCHH) = LCD(R) +

LC1(VHD(GCH),EHD(GCH)) (46)

φ(GCHH) = φ(GTH) =
aVNL

N
VHD(GCH)

(47)

τ (GCH) = φ(GCHN) · κ(GCHN) + (48)

φ(GCHH) · κ(GCHH) + LGT (µEH)

8. SPACE-TIME TRADEOFFS
So far we have always considered a single, canonical implemen-

tation of each collector. Of course, there are many implementation
decisions that can be made that will cause the performance char-
acteristics to vary. However, almost all of these are some form of
space-time trade-off that can be applied to individual memory re-
gions once the basic collector design has been selected.

8.1 Copying Collectors
Copying collectors trade space for time by allocating an extra

semi-space and copying the live data into the new semi-space. Thus
they save the factor ofV iteration over the dead data required by
mark-and-sweep style collectors (thesweep-for-tracing() function
of Figure 3), but at an equivalent cost ofV/2 in space.

8.2 Remembered Set
Although the remembered set in a generational collector could

contain all objects in the mature space, this is very unlikely. Pre-
allocating space for this situation is excessive over-provisioning.
Instead, one can dynamically borrow space for the remembered set
from the mature space and nursery. It is preferable to borrow from
the mature space. If the mutation rate is low enough that the bor-
rowed space is not exhausted, the nursery collection frequency is
unaffected. Alternatively, borrowing space from the nursery will
definitely increase the frequency of minor collection to

φ(GTN) = a/(N − Ω) (49)

whereΩ is the amount of space allowed for the remembered set
in the nursery. This technique trades space for time by making the
usually true assumption that mutation rate is not that high.

Alternatively, one can consider a bitmap or card-marking ap-
proach where the overhead is greatly diminished by eitherw or k,
the size of the card. In the former case, there is no loss of precision
but the write barrier must perform bit updates. With card marking,
the write barrier code is shorter and faster though the loss in pre-
cision (one card corresponds many objects) will result in a longer
scanning time during garbage collection.

For slot-based bitmap, the space overhead is reduced to

σ(GT) = D + V/ω + VH/ω (50)

For card marking, the space overhead is even less:

σ(GT) = D + V/ω + VH/k (51)

wherek is the card size.

8.3 Traversal
For tracing collectors, the recursive traversal in thereconstruct

function requires stack spaceD. This can be eliminated entirely at
the cost of an extra pass over the live objectsVL by using pointer
reversal [36]. However, this is usually a poor trade-off because
the stack depth in practice is much smaller than the number of live
objects (D � VL).

A better strategy is to use a fixed-size recursion stack and then
use some technique to handle stack overflow. One can either fall
back on pointer reversal when the stack overflows, or one can dis-
card the stack and begin scanning the heap from left to right to
find unmarked objects. While this approach is simpler to imple-
ment and is a more natural implementation in a concurrent system,
it does have the distinct disadvantage that its complexity isn2.

9. CONCLUSIONS
We have shown that tracing and reference counting garbage col-

lection, which were previously thought to be very different, in fact
share the exact same structure and can be viewed as duals of each
other.

This in turn allowed us to demonstrate that all high-performance
garbage collectors are in fact hybrids of tracing and reference count-
ing techniques. This explains why highly optimized tracing and ref-
erence counting collectors have surprisingly similar performance
characteristics.

In the process we discovered some interesting things: a write
barrier is fundamentally a feature of reference counting; and the ex-
istence of cycles is what makes garbage collection inherently non-
incremental: cycle collection is “trace-like”.

We have also provided cost measures for the various types of
collectors in terms of collector-independent and -dependent quan-
tities. These cost measures do not “cheat” by for example ignoring
the space cost of collector metadata. They therefore allow direct
“head-to-head” comparisons.

Design of collectors can be made more methodical. When con-
structing a collector, there are three decisions to be made:

Partition. Divide memory (heap, stack, and global variables) into
a set of partitions, within which different strategies may be
applied;

Traversal. For each partition, decide whether the object graph will
be traversed by tracing or reference counting; and

Trade-offs. For each partition, choose space-time trade-offs such
as semi-space vs. sliding compaction, pointer reversal vs.
stack traversal, etc.

Our unified model of garbage collection allows one to system-
atically understand and explore the design space for garbage col-
lectors, and paves the way for a much more principled approach
to selecting a garbage collector to match the characteristics of the
associated application.

In the future, this methodology may help enable the dynamic
construction of garbage collection algorithms that are tuned to par-
ticular application characteristics.

Acknowledgements
Alex Aiken suggested the fix-point formulation of the garbage col-
lection algorithm. We gratefully thank Ras Bodik, Hans Boehm,
Richard Fateman, Matthew Fluet, Richard Jones, Greg Morrisett,
Chet Murthy, and George Necula, and the anonymous referees for
their helpful comments.

66

This work began with a “Five Minute Madness” presentation by
the first author at the 2004 Semantics, Program Analysis, and Com-
puting Environments for Memory Management (SPACE) Work-
shop in Venice, Italy. We thank the organizers of and participants in
the workshop for providing the stimulating atmosphere which gave
rise to this work.

10. REFERENCES
[1] A PPEL, A. W. Simple generational garbage collection and fast allo-

cation.Software – Practice and Experience 19, 2 (1989), 171–183.

[2] A PPEL, A. W., ELLIS, J. R.,AND LI , K. Real-time concurrent col-
lection on stock multiprocessors. InProceedings of the SIGPLAN’88
Conference on Programming Language Design and Implementation
(Atlanta, Georgia, June 1988).SIGPLAN Notices, 23, 7 (July), 11–20.

[3] BACON, D. F., ATTANASIO, C. R., LEE, H. B., RAJAN, V. T.,
AND SMITH , S. Java without the coffee breaks: A nonintrusive mul-
tiprocessor garbage collector. InProc. of the SIGPLAN Conference
on Programming Language Design and Implementation(Snowbird,
Utah, June 2001).SIGPLAN Notices, 36, 5 (May), 92–103.

[4] BACON, D. F., CHENG, P.,AND RAJAN, V. T. Controlling fragmen-
tation and space consumption in the Metronome, a real-time garbage
collector for Java. InProceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems(San Diego, California,
June 2003).SIGPLAN Notices, 38, 7, 81–92.

[5] BACON, D. F., CHENG, P.,AND RAJAN, V. T. A real-time garbage
collector with low overhead and consistent utilization. InProceedings
of the 30th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages(New Orleans, Louisiana, Jan. 2003).
SIGPLAN Notices, 38, 1, 285–298.

[6] BACON, D. F.,AND RAJAN, V. T. Concurrent cycle collection in ref-
erence counted systems. InEuropean Conference on Object-Oriented
Programming(Budapest, Hungary, June 2001), J. L. Knudsen, Ed.,
vol. 2072 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 207–235.

[7] BAKER, H. G. List processing in real-time on a serial computer.Com-
mun. ACM 21, 4 (Apr. 1978), 280–294.

[8] BAKER, H. G. The Treadmill, real-time garbage collection without
motion sickness.SIGPLAN Notices 27, 3 (Mar. 1992), 66–70.

[9] BARTH, J. M. Shifting garbage collection overhead to compile time.
Commun. ACM 20, 7 (July 1977), 513–518.

[10] BISHOP, P. B. Computer Systems with a Very Large Address
Space and Garbage Collection. PhD thesis, Laboratory for Com-
puter Science, Massachussets Institute of Technology, May 1977.
MIT/LCS/TR-178.

[11] BLACKBURN, S. M., JONES, R., MCKINLEY, K. S.,AND MOSS, J.
E. B. Beltway: getting around garbage collection gridlock. InProc.
of the SIGPLAN Conference on Programming Language Design and
Implementation(Berlin, Germany, June 2002).SIGPLAN Notices, 37,
5, 153–164.

[12] BLACKBURN, S. M., AND MCKINLEY, K. S. Ulterior reference
counting: Fast garbage collection without a long wait. InProceed-
ings of the Conference on Object-oriented Programing, Systems, Lan-
guages, and Applications(Anaheim, California, Oct. 2003).SIG-
PLAN Notices, 38, 11, 344–358.

[13] BROOKS, R. A. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. InConference
Record of the 1984 ACM Symposium on Lisp and Functional Pro-
gramming(Austin, Texas, Aug. 1984), G. L. Steele, Ed., pp. 256–262.

[14] CHEADLE, A. M., FIELD, A. J., MARLOW, S., PEYTON JONES,
S. L., AND WHILE, R. L. Non-stop Haskell. InProc. of the Fifth In-
ternational Conference on Functional Programming(Montreal, Que-
bec, Sept. 2000).SIGPLAN Notices, 35, 9, 257–267.

[15] CHENEY, C. J. A nonrecursive list compacting algorithm.Commun.
ACM 13, 11 (1970), 677–678.

[16] CHENG, P.,AND BLELLOCH, G. A parallel, real-time garbage collec-
tor. In Proc. of the SIGPLAN Conference on Programming Language
Design and Implementation(Snowbird, Utah, June 2001).SIGPLAN
Notices, 36, 5 (May), 125–136.

[17] CHRISTOPHER, T. W. Reference count garbage collection.Software
– Practice and Experience 14, 6 (June 1984), 503–507.

[18] COLLINS, G. E. A method for overlapping and erasure of lists.Com-
mun. ACM 3, 12 (Dec. 1960), 655–657.

[19] DETREVILLE, J. Experience with concurrent garbage collectors for
Modula-2+. Tech. Rep. 64, DEC Systems Research Center, Aug.
1990.

[20] DEUTSCH, L. P.,AND BOBROW, D. G. An efficient incremental au-
tomatic garbage collector.Commun. ACM 19, 7 (July 1976), 522–526.

[21] DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN,
C. S.,AND STEFFENS, E. F. M. On-the-fly garbage collection: An
exercise in cooperation. InHierarchies and Interfaces, F. L. Bauer
et al., Eds., vol. 46 ofLecture Notes in Computer Science. Springer-
Verlag, 1976, pp. 43–56.

[22] DOLIGEZ, D., AND LEROY, X. A concurrent generational garbage
collector for a multi-threaded implementation of ML. InConf. Record
of the Twentieth ACM Symposium on Principles of Programming Lan-
guages(Jan. 1993), pp. 113–123.

[23] HENRIKSSON, R. Scheduling Garbage Collection in Embedded Sys-
tems. PhD thesis, Lund Institute of Technology, July 1998.

[24] HIRZEL, M., DIWAN , A., AND HERTZ, M. Connectivity-based
garbage collection. InProceedings of the Conference on Object-
oriented Programing, Systems, Languages, and Applications(Ana-
heim, California, Oct. 2003).SIGPLAN Notices, 38, 11, 359–373.

[25] HUDSON, R. L., AND MOSS, J. E. B. Incremental collection of ma-
ture objects. InProc. of the International Workshop on Memory Man-
agement(St. Malo, France, Sept. 1992), Y. Bekkers and J. Cohen,
Eds., vol. 637 ofLecture Notes in Computer Science, pp. 388–403.

[26] JOHNSTONE, M. S. Non-Compacting Memory Allocation and Real-
Time Garbage Collection. PhD thesis, University of Texas at Austin,
Dec. 1997.

[27] KUNG, H. T., AND SONG, S. W. An efficient parallel garbage collec-
tion system and its correctness proof. InIEEE Symposium on Founda-
tions of Computer Science(1977), pp. 120–131.

[28] LAMPORT, L. Garbage collection with multiple processes: an exer-
cise in parallelism. InProc. of the 1976 International Conference on
Parallel Processing(1976), pp. 50–54.

[29] LANG, B., QUENNIAC, C., AND PIQUER, J. Garbage collecting the
world. In Conference Record of the Nineteenth Annual ACM Sym-
posium on Principles of Programming Languages(Jan. 1992), SIG-
PLAN Notices, pp. 39–50.

[30] LAROSE, M., AND FEELEY, M. A compacting incremental collector
and its performance in a production quality compiler. InProc. of the
First International Symposium on Memory Management(Vancouver,
B.C., Oct. 1998).SIGPLAN Notices, 34, 3 (Mar., 1999), 1–9.

[31] LEVANONI , Y., AND PETRANK, E. An on-the-fly reference counting
garbage collector for java. InProceedings of the 16th ACM SIGPLAN
conference on Object Oriented Programming, Systems, Languages,
and Applications(Tampa Bay, Florida, Oct. 2001), pp. 367–380.

[32] MARTÍNEZ, A. D., WACHENCHAUZER, R.,AND LINS, R. D. Cyclic
reference counting with local mark-scan.Inf. Process. Lett. 34, 1
(1990), 31–35.

[33] MCCARTHY, J. Recursive functions of symbolic expressions and their
computation by machine.Commun. ACM 3, 4 (1960), 184–195.

[34] NETTLES, S., AND O’TOOLE, J. Real-time garbage collection. In
Proc. of the SIGPLAN Conference on Programming Language Design
and Implementation(June 1993).SIGPLAN Notices, 28, 6, 217–226.

[35] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and imple-
mentation of a log-structured file system. InProc. of the Thirteenth

67

ACM symposium on Operating Systems Principles(Pacific Grove,
California, Oct. 1991).SIGOPS Operating Systems Review, 25, 5, 1–
15.

[36] SCHORR, H., AND WAITE, W. M. An efficient machine-independent
procedure for garbage collection in various list structures.Commun.
ACM 10, 8 (1967), 501–506.

[37] SELIGMANN , J.,AND GRARUP, S. Incremental mature garbage col-
lection using the Train algorithm. InNinth European Conference
on Object-Oriented Programming(Åarhus, Denmark, 1995), W. G.
Olthoff, Ed., vol. 952 ofLecture Notes in Computer Science, pp. 235–
252.

[38] SHUF, Y., GUPTA, M., BORDAWEKAR, R., AND SINGH, J. P. Ex-
ploiting prolific types for memory management and optimizations.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages(Portland, Oregon, Jan. 2002).
SIGPLAN Notices, 37, 1, 295–306.

[39] STEELE, G. L. Multiprocessing compactifying garbage collection.
Commun. ACM 18, 9 (Sept. 1975), 495–508.

[40] STEFANOVIČ, D., MCKINLEY, K. S., AND MOSS, J. E. B. Age-
based garbage collection. InProc. of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications(Den-
ver, Colorado, Oct. 1999).SIGPLAN Notices, 34, 10, 370–381.

[41] UNGAR, D. M. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. InProceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments(Pittsburgh, Pennsylvania,
1984), P. Henderson, Ed.SIGPLAN Notices, 19, 5, 157–167.

[42] WEIZENBAUM, J. Symmetric list processor.Commun. ACM 6, 9
(Sept. 1963), 524–536.

[43] WEIZENBAUM, J. Recovery of reentrant list structures in SLIP.Com-
mun. ACM 12, 7 (July 1969), 370–372.

[44] YUASA, T. Real-time garbage collection on general-purpose ma-
chines.Journal of Systems and Software 11, 3 (Mar. 1990), 181–198.

[45] ZEE, K., AND RINARD, M. Write barrier removal by static analysis.
In Proc. of the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications(Seattle, Washington, Oct. 2002),
ACM Press.SIGPLAN Notices, 37, 11 (Nov.), 191–210.

[46] ZORN, B. Barrier methods for garbage collection. Tech. Rep. CU-CS-
494-90, University of Colorado at Boulder, 1990.

68

