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Abstract
Generative models have demonstrated impres-
sive results on Aspect-based Sentiment Analy-
sis (ABSA) tasks, particularly for the emerging
task of extracting Aspect-Category-Opinion-
Sentiment (ACOS) quadruples. However, these
models struggle with implicit sentiment expres-
sions, which are commonly observed in opin-
ionated content such as online reviews. In this
work, we introduce GEN-SCL-NAT, which
consists of two techniques for improved struc-
tured generation for ACOS quadruple extrac-
tion. First, we propose GEN-SCL, a super-
vised contrastive learning objective that aids
quadruple prediction by encouraging the model
to produce input representations that are dis-
criminable across key input attributes, such as
sentiment polarity and the existence of implicit
opinions and aspects. Second, we introduce
GEN-NAT, a new structured generation for-
mat that better adapts pre-trained autoregres-
sive encoder-decoder models to extract quadru-
ples in a generative fashion.
Experimental results show that GEN-SCL-
NAT achieves top performance across three
ACOS datasets, averaging 1.48% F1 improve-
ment, with a maximum 1.73% increase on the
LAPTOP-L1 dataset. Additionally, we see sig-
nificant gains on implicit aspect and opinion
splits that have been shown as challenging for
existing ACOS approaches.

1 Introduction

Aspect-based sentiment analysis (ABSA) is the
task of extracting fine-grained sentiment informa-
tion from text. Applications of this task range from
social media opinion mining and empathetic dialog
assistants to product review analysis (Zhang et al.,
2022).

Common ABSA subtasks involve identifying
aspect term mentions and their corresponding as-
pect categories, associating them with supporting
opinion terms, and/or sentiment polarity that is im-
plicitly or explicitly expressed within the text.

While over 30% of sentiment expressions con-
tain implicit language (Cai et al., 2021), existing
methods struggle with these, performing signifi-
cantly worse on examples with implicit aspects
and/or opinions. These cases, such as “it took an
hour to be seated”, are more difficult for models
as they lack common indicative explicit aspect and
opinion terms, e.g., “the service” and “slow”.

In this work, we address the ACOS quadruple
extraction task, particularly for formulations sup-
porting implicit aspects and opinions. We build
off Zhang et al. (2021), a state-of-the-art T5-based
technique outputting parseable structured ACOS
quadruple predictions for a given text. We intro-
duce GEN-SCL-NAT1, consisting of two novel
modifications to this approach. First, we modify
the model training objective, adding GEN-SCL,
an auxiliary supervised contrastive learning objec-
tive that tasks the model to discriminably repre-
sent examples across key characteristics such as
the existence of implicit aspects and opinions, and
the expressed sentiment polarity. A supervised
contrastive loss is used to maximize the margin
between inconsistent examples and minimize it be-
tween consistent examples. Second, we introduce a
modified generation target format with GEN-NAT,
where we improve the naturalness of the target
format in three ways: by (1) replacing existing
aspect category labels with human-readable cat-
egory descriptions, (2) enforcing a reproducible
“scan-based” inter-quadruple ordering for multi-
quad cases, and (3) modifying the intra-quadruple
format to reflect a natural causal ordering of quadru-
ple components that aligns with auto-regressive de-
coding. Figure 1 outlines the ACOS task and our
GEN-SCL-NAT approach.

Leveraging these techniques, we show improved
performance on ACOS benchmarks, with respec-
tive ACOS F1 improvements of 1.64%, 1.08% and

1Code and models are made available at https://
github.com/jpeper/GEN_SCL_NAT.

https://github.com/jpeper/GEN_SCL_NAT
https://github.com/jpeper/GEN_SCL_NAT


Figure 1: Overview of the GEN-SCL-NAT ACOS approach. GEN-NAT uses natural category descriptions and
intuitive quadruple ordering to align the target output with the encoder-decoder’s pre-training and auto-regressive
nature. GEN-SCL trains the model to discriminably represent three sentiment characteristics during training: (1)
sentiment polarity, (2) aspect term type, and (3) opinion term type. For each characteristic, we project the summed
encoder final hidden states into a 1024-dimension characteristic representation via a simple fully-connected layer.

1.73% on the REST, LAPTOP, and LAPTOP-L1
datasets. We also see significant gains on exam-
ples with challenging implicit language, averaging
1.47% improvement on this subset. Finally, we
conduct an ablation study that shows the comple-
mentary behavior of GEN-NAT and GEN-SCL.

2 ACOS Quadruple Extraction Task
Formulation

We follow Zhang et al. (2021) and Cai et al. (2021)
in formulating ABSA as a joint quadruple extrac-
tion task, where the goal is to extract an unordered
set of ACOS quadruples Q1, Q2, ...Qn in text T ,
where Qi = (ai, ci, oi, si) contains a corresponding
aspect term, aspect category, opinion term, and sen-
timent polarity. Quadruples can lack clear support-
ing aspect and/or opinion spans, and these cases
are marked as implicit. Figure 1 displays the ACOS
task and quadruple components.

3 Methodology

In this section we (1) introduce GEN-SCL, a task-
specific supervised contrastive learning (SCL) ob-
jective, and (2) propose GEN-NAT, an enhanced
ACOS quadruple generation target format that ad-
dresses weaknesses in existing methods.

3.1 GEN-SCL Supervised Contrastive Loss
We propose GEN-SCL, an auxiliary SCL objec-
tive that encourages the encoder-decoder model to
discriminably represent several key characteristics
of the input while concurrently fine-tuning for the
downstream generation task of ACOS quadruple
extraction. We task the model with learning rep-
resentations of example-level Sentiment, Aspect
and Opinion characteristics. Figure 1 indicates the
label sets for each characteristic.

Representation Generation Process Similar to
Li et al. (2021), we generate representations for
example xi by feeding the sum-pooled encoder rep-
resentation Mean(Encode(xi)) through a single
unique fully-connected layer FCc for each char-
acteristic c ∈ {Sentiment,Aspect,Opinion}.
This generates representation hci. In our experi-
ments the dimensionality of the input and outputs
to the fully-connected layers are both 1024.

SCL Formulation Supervised contrastive learn-
ing encourages the model to maximize the repre-
sentation similarity between same-label examples,
and to minimize it for different-label examples. We
follow Sedghamiz et al. (2021) in their general SCL
formulation, where for characteristic c and training
example xi in training mini-batch M , the loss is:

Lc
i =

−1

|P (i)|
∑

p∈P (i)

log
esim(hci,hcp)/τ∑

b∈B(i) e
sim(hci,hcb)/τ

(1)

To ensure each example xi ∈ M has at least one
same-label example for comparison, we first extend
M with one dropout-altered view per mini-batch el-
ement, perturbing each example representation hci

with dropout probability p = 0.1 while maintain-
ing the original label. This becomes M∗. B(i) ≡
M∗ \ xi is all other examples in the extended mini-
batch, and P (i) ≡ {p ∈ B(i) : ycp = yci} is the
subset with a matching label.

Final training objective We add to the exist-
ing decoder cross-entropy loss LCE our three
characteristic-specific losses:

(2)Ltotal = LCE + α1LSCL_sentiment

+α2LSCL_aspect+α3LSCL_opinion



In our experiments we set α1 = α2 = α3 = α,
tuning α and the SCL temperature τ on the dev set,
with values reported in Table 5.

3.2 GEN-NAT Structured Generation Format
Existing Structured Generation Formulation
We build off Zhang et al. (2021) who define
the generation target as a linearization of Qi =
(ai, ci, oi, si) to an output format P :

Pc(ci) is Ps(si) becausePa(ai) is Po(oi) (3)

Pc(ci) = ci and Ps(si) is the mapping of si options
[positive, neutral, negative] to [“great”, “okay”,

“bad”]. Pa(ai) = ai and Po(oi) = oi for explicit
cases, but are respectively “it” and “null” for im-
plicit cases. Quadruples are concatenated with a
separator token to form the final output:

P (Q1) [SSEP ] ... [SSEP ] P (Qn) (4)

GEN-NAT Structured Generation Modifications
We implement three modifications to the existing
paraphrase generation format to aid in decoding.
(1) We revise Pc(ci), now defining it as a mapping
of the raw ci (e.g. “Laptop#Usability”) to a natural
category description (e.g. “the laptop usability”).
Note: we also change the sentiment linearization
Ps(si), simply using [“positive”, “neutral”, “neg-
ative”], as we observe “okay” can often imply
negative sentiment within review text (e.g “The
food was just okay. I wouldn’t return.”). (2) For
multi-output cases, per Meng et al. (2020), a con-
sistent ordering is useful in training even when
predicting unordered sets; following them, we use
a “scan-based” ordering, outputting quadruples by
their last-occurring explicit aspect or opinion term.
Quadruples with only implicit aspect and opinion
spans are generated last in random order. (3) We re-
vise the quadruple linearization format, following
Mao et al. (2022) in outputting the quadruple ele-
ments in a natural top-down causal ordering: (c, a,
o, s). Now, sentiment prediction is conditioned on
aspect and opinion outputs. We also partition some
quadruple components with “|” to reduce parsing
ambiguity when mapping the predictions back to
ACOS format.

Our resultant NAT generation format is as fol-
lows:

Pc(ci) | the Pa(ai) is Po(oi) | Ps(si) (5)

4 Experiment Setup

We detail the experiment setup for evaluating our
techniques on the ACOS task.

REST LAPTOP LAPTOP-L1
#Categories 13 121 21
#Sentences 2286 4076 4076
#EAEO Quads 2429 (66.4%) 3269 (56.8%) 3269 (56.8%)
#IAEO Quads 530 (14.5%) 910 (15.8%) 910 (15.8%)
#EAIO Quads 350 (9.57%) 1237 (21.5%) 1237 (21.5%)
#IAIO Quads 349 (9.54%) 342 (5.94%) 342 (5.94%)
#Quads/Sent 1.60 1.42 1.42

Table 1: Dataset statistics. Over 33% of REST quadru-
ples contain implicit language, as do 43% in LAPTOP*.
E: explicit, I: implicit, A: aspect, O: opinion. E.g., IAEO
refers to “implicit aspect, explicit opinion”.

REST LAPTOP LAPTOP-L1
BERT Backbone
TAS-BERT-ACOS∗ 33.53 27.31 –
Extract-Classify-ACOS∗ 44.61 35.80 –
T5 Backbone
Seq2Path∗ 58.06 41.45 –
PARAPHRASE 60.97 44.08 60.73
GEN-NAT-SCL (ours) 62.62† 45.16† 62.46†

Table 2: Overall F1 performance of quadruple extrac-
tion techniques on the REST, LAPTOP and LAPTOP-
L1 datasets. Scores are averaged over 5 unique runs.
∗Results are from Cai et al. (2021) and Mao et al. (2022).
†: method is significantly better than PARAPHRASE
(one-tailed unpaired t-test, p < 0.05).

ACOS Datasets Table 1 reports dataset statistics.
The RESTaurant and LAPTOP datasets (Cai et al.,
2021) are drawn from restaurant and e-commerce
domains and are ACOS-labeled reviews including
implicit aspects and opinions. LAPTOP-L1 differs
from LAPTOP only by the category label granu-
larity, using only the 21 top-level categories of the
two-level category hierarchy in LAPTOP.
Model Comparisons We compare five ACOS
techniques, considering both implicit aspect and
implicit opinion cases as done in Cai et al. (2021).
• TAS-BERT-ACOS: Cai et al. (2021) devise

a two-step pipelined method, incorporating TAS-
BERT (Wan et al., 2020) for triplet extraction.
• Extract-Classify-ACOS: Cai et al. (2021)

leverage BERT (Devlin et al., 2018) to extract
aspect-opinion pairs then perform category and sen-
timent linking.
• Seq2Path: Mao et al. (2022) generate ACOS

quadruples as paths of a tree, supporting multiple
quadruples through multi-beam search and filtering
candidates via a learned discriminator token.
• PARAPHRASE: A generative T5 struc-

tured paraphrase generation model, producing a
parseable ACOS sequence prediction (Zhang et al.,
2021).
• GEN-SCL-NAT: Finally, our proposed

method, including the SCL and NAT components.



REST LAPTOP LAPTOP-L1
Method EAEO IAEO EAIO IAIO EAEO IAEO EAIO IAIO EAEO IAEO EAIO IAIO
TAS-BERT-ACOS 33.6 31.8 14.0 39.8 26.1 41.5 10.9 21.2 - - - -
Extract-Classify-ACOS 45.0 34.7 23.9 33.7 35.4 39.0 16.8 18.6 - - - -
PARAPHRASE 65.4 53.3 45.6 49.2 45.7 51.0 33.0 39.6 64.2 65.2 49.3 53.8
GEN-SCL-NAT (ours) 66.5 56.5† 46.2 50.7 45.8 54.0† 34.3 39.6 65.6 66.7 51.5† 53.7

Table 3: Breakdown of F1 performance per example split, with each split comprising reviews containing that
quadruple type. E: explicit, I: implicit, A: aspect, O: opinion. †: method is significantly better than PARAPHRASE
(one-tailed unpaired t-test, p < 0.05).

REST LAPTOP LAPTOP-L1 Avg. ∆
PARAPHRASE 60.97 44.08 60.73 -1.49
GEN-SCL-NAT 62.62† 45.16† 62.46† -

(-Sentiment SCL) 62.36† 45.72† 62.03† -0.05
(-Aspect SCL) 61.78 45.14† 61.68† -0.55
(-Opinion SCL) 60.68 44.71 61.77† -1.03
(-All SCL) 62.18† 44.03 62.12† -0.64

(-Multi-quad Ordering) 59.92 44.63 61.00 -1.56
(-Natural Category Labels) 61.28 43.94 61.96† -1.02
(-Intra-quad Ordering) 61.39 45.43† 61.48† -0.65
(-All NAT) 59.89 43.86 61.36 -1.26

Table 4: Ablation analysis of the GEN-SCL-NAT model.
F1 scores are reported, averaged over 5 runs. We com-
pare to the baseline PARAPHRASE model. The best
result is bolded. †: method is significantly better than
PARAPHRASE (one-tailed unpaired t-test, p < 0.05).

Experiment Details We report scores averaged
over five runs each with different random seeds.
For our GEN-* models, we adopt the 770M param-
eter T5-large (Raffel et al., 2019) as our pre-trained
generative encoder-decoder model. We report fur-
ther experiment details and hyperparameter settings
in Appendix A.

5 Results

We evaluate on the task of exact quadruple extrac-
tion using the F1 metric, where a correct extraction
requires all components are correct.

Overall Performance Table 2 reports the over-
all performance on the ACOS task. We find that
GEN-SCL-NAT outperforms other approaches on
all three datasets. The BERT pipeline approaches
struggle heavily, likely due to error-accumulation
over several sub-tasks and limited pre-training
alignment. Among T5 methods, Seq2Path per-
forms worst by over 3% on the two reported
datasets, perhaps due to limitations in their beam-
search candidate pruning method; in contrast
PARAPHRASE and our approach generate all
quadruples in one output sequence.

Explicit vs Implicit Performance Breakdown
Table 3 reports the results on four implicit/explicit
aspect/opinion data splits. Notably, our method is
adept at the IAEO and EAIO subsets, with aver-
age 2.56% and 1.37% respective increases of F1

over PARAPHRASE. We see *IO splits are consis-
tently more challenging than *EO splits, as models
have no supervised signal with which to localize
implicit opinions in the text. However, we still see
consistent EAIO gains from our method, along with
IAIO gains of 1.5% for the REST dataset. These
results speak to the improved predictive power of
our techniques—we consistently outperform on the
difficult and sparse implicit subsets while still in-
creasing the average EAEO performance by 0.88%.

6 Additional Analyses

6.1 GEN-SCL-NAT Ablation Study

We ablate the GEN-SCL-NAT model by withhold-
ing various components of the technique, including
each of the NAT enhancements and SCL losses.
Table 4 reports ablation results.

SCL Ablation We ablate each of the three SCL
objectives. We withhold each component of the
SCL loss, finding the opinion loss most impactful
(average decrease of 1.03%), and also observe de-
creases from the aspect and sentiment ablations.
Notably, we see the losses considering implicit lan-
guage phenomena (Aspect SCL, Opinion SCL) are
the most impactful, indicating the benefits of mod-
eling these challenging examples. We additionally
withhold all SCL losses (All SCL), observing no-
ticeable consistent performance degradation on all
datasets with the SCL component removed.

NAT Ablation Of the three NAT components,
we see that excluding scan-based multi-quad or-
dering (outputting quadruples in the order they
are mentioned in the text) has the largest impact
on overall performance. Notably, the impact is
largest on the REST dataset (62.62 → 59.92)
which contains more quadruples per example than
the Laptop datasets (average of 1.60 vs. 1.42).
This validates our intuition that proper output or-
dering is significant for multi-quadruple exam-
ples. Next, we see that natural category labels
are impactful, especially for the LAPTOP dataset
(45.16 → 43.94) containing a much larger cate-



Sentiment w/o GEN-SCL Aspect w/o GEN-SCL Opinion w/o GEN-SCL

Sentiment w/ GEN-SCL Aspect w/ GEN-SCL Opinion w/ GEN-SCL

Figure 2: T-SNE visualization of mean-pooled encoder final layer on the Restaurant dataset. Our GEN-SCL
objective encourages the encoder to produce with discriminable representations of three key input characteristics.

gory labelset (121 labels versus 13 and 21 for the
Restaurant and Laptop-L1 datasets). Finally, we
see GEN-SCL-NAT benefits from the intra-quad or-
dering, although not as noticeably as the other two
improvements. We see improvements on REST and
LAPTOP-L1, while performance was comparable
with and without for LAPTOP (45.16 → 45.43).
Overall, our full GEN-SCL-NAT method yields
consistently strong performance, with its compo-
nents working in unison to address challenging
properties that arise in the ACOS task (implicit
aspects and opinions, multi-quad examples, large
category labelsets).

6.2 GEN-SCL Representations

To better understand the behavior of the GEN-SCL
objective on the model hidden representations, we
generate t-SNE (Maaten and Hinton, 2008) visu-
alizations of the mean-pooled final encoder layer.
Figure 2 displays results on the Restaurant test set.
We see GEN-SCL enables the encoder to simulta-
neously represent sentiment, aspect, and opinion
information effectively.

7 Related Work
ACOS quadruple prediction is an emerging ABSA
task with structured generation techniques produc-
ing top results on the ACOS task (Zhang et al.,

2021; Mao et al., 2022; Zhang et al., 2022). Meng
et al. (2020) empirically demonstrate the impor-
tance of output ordering and formatting in gen-
erative unordered set prediction techniques for
keyphrase generation, motivating our exploration
of this direction. Supervised contrastive learning
(Khosla et al., 2020) is a popular technique for rep-
resentation learning and has proven useful for NLP
tasks (Sedghamiz et al., 2021). Li et al. (2021)
apply it to ABSA tasks during pre-training, but
only for representing positive vs negative senti-
ment. Our novel methods combine generation for-
mat improvements with a task-specific supervised
contrastive learning objective that learns to repre-
sent key ACOS characteristics.

8 Conclusion
In this work, we introduce GEN-NAT, a modi-
fied ACOS generation output format encompass-
ing three methods for improving the naturalness
of the decoded output sequences. We combine
this with GEN-SCL, our novel task-specific ap-
plication of supervised contrastive learning that
learns improved example representations leading
to downstream gains. Our proposed GEN-SCL-
NAT method demonstrates state-of-the-art results,
both overall and for challenging implicit-sentiment
splits.
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Limitations

While effective on concise sentence-level tasks, we
have not yet explored ACOS structured generation
for document-level and/or sentiment-dense inputs.
Approaches such as ours and Zhang et al. (2021)
generate the prediction as a single output, and we
may encounter issues such as output structure va-
lidity when handling longer examples with higher
quadruple frequency. Our evaluation of GEN-SCL
is also confined to generative sequence prediction
models. While it may generalize to other formula-
tions, we have not yet explored this direction.
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α τ

REST 0.05 0.25
LAPTOP 0.05 0.25
LAPTOP-L1 0.005 0.25

Table 5: We report the parameters used in the GEN-
SCL supervised contrastive learning objective. α is the
loss weighting factor, and τ is the temperature value
that determines how severely to punish hard negative
examples.

Dataset Raw Category Label GEN-NAT Category Label
REST LOCATION#GENERAL the location

FOOD#PRICES the food prices
FOOD#QUALITY the food quality

LAPTOP OS#GENERAL the operating system overall
OS#DESIGN_FEATURES the operating system features

HARD_DISC#PRICE the hard drive price

LAPTOP-L1 OS the operating system
HARD_DISC the hard drive

Table 6: Examples of the aspect categories used for the
ACOS task. Our GEN-NAT technique better leverages
T5 pre-training by using human-readable descriptive
category labels.

Prediction We use beam search to decode the
ACOS output sequence; we set beam size to 5.
Prediction on the RESTAURANT and LAPTOP
test sets takes 5 minutes with an evaluation batch
size of 32.

B GEN-NAT Category Mappings

One component of our GEN-NAT approach con-
sists of replacing existing raw aspect category la-
bels with human-readable natural category descrip-
tions. Table 6 provides examples of these reformat-
ted GEN-NAT category labels.


