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Abstract

Most existing text summarization datasets are
compiled from the news domain, where sum-
maries have a flattened discourse structure.
In such datasets, summary-worthy content of-
ten appears in the beginning of input arti-
cles. Moreover, large segments from input ar-
ticles are present verbatim in their respective
summaries. These issues impede the learn-
ing and evaluation of systems that can under-
stand an article’s global content structure as
well as produce abstractive summaries with
high compression ratio. In this work, we
present a novel dataset, BIGPATENT, consist-
ing of 1.3 million records of U.S. patent doc-
uments along with human written abstractive
summaries. Compared to existing summa-
rization datasets, BIGPATENT has the follow-
ing properties: i) summaries contain a richer
discourse structure with more recurring enti-
ties, ii) salient content is evenly distributed in
the input, and iii) lesser and shorter extractive
fragments are present in the summaries. Fi-
nally, we train and evaluate baselines and pop-
ular learning models on BIGPATENT to shed
light on new challenges and motivate future di-
rections for summarization research.

1 Introduction

There has been a growing interest in building
neural abstractive summarization systems (See
et al., 2017; Paulus et al., 2017; Gehrmann et al.,
2018a), which requires large-scale datasets with
high quality summaries. A number of summariza-
tion datasets have been explored so far (Sandhaus,
2008; Napoles et al., 2012; Hermann et al., 2015;
Grusky et al., 2018). However, as most of them
are acquired from news articles, they share spe-
cific characteristics that limit current state-of-the-
art models by making them more extractive rather
than allowing them to understand input content
and generate well-formed informative summaries.

Sample CNN/Daily Mail News Summary
An explosion rocks a chemical plant in China’s south-
eastern Fujian province for the second time in two
years. Six were injured after the explosion and are be-
ing hospitalized. The explosion was triggered by an
oil leak, though local media has not reported any toxic
chemical spills.

Sample BIGPATENT Summary
A shoelace cover incorporating an interchangeable
fashion panel for covering the shoelaces of a gym shoe.
The shoelace cover is secured to the shoe by a number
of straps threaded through slots in the shoelace cover.
These straps secured to each side of the gym shoe in-
clude a loop and hook material such that the straps
can be disengaged and the shoelace cover can be drawn
back to expose the shoelaces. . .

Figure 1: Sample summaries from CNN/Daily Mail
and BIGPATENT. Extractive fragments reused from
input are underlined. Repeated entities indicating dis-
course structure are highlighted in respective colors.

Specifically, in these datasets, the summaries are
flattened narratives with a simpler discourse struc-
ture, e.g., entities are rarely repeated as illustrated
by the news summary in Fig. 1. Moreover, these
summaries usually contain long fragments of text
directly extracted from the input. Finally, the
summary-worthy salient content is mostly present
in the beginning of the input articles.

We introduce BIGPATENT1, a new large-scale
summarization dataset consisting of 1.3 million
patent documents with human-written abstractive
summaries. BIGPATENT addresses the afore-
mentioned issues, thus guiding summarization re-
search to better understand the input’s global
structure and generate summaries with a more
complex and coherent discourse structure. The
key features of BIGPATENT are: i) summaries ex-
hibit a richer discourse structure with entities re-

1BIGPATENT dataset is available to download online at
evasharma.github.io/bigpatent.

https://evasharma.github.io/bigpatent/


curring in multiple subsequent sentences as shown
in Fig. 1, ii) salient content is evenly distributed in
the document, and iii) summaries are considerably
more abstractive while reusing fewer and shorter
phrases from the input.

To further illustrate the challenges in text sum-
marization, we benchmark BIGPATENT with base-
lines and popular summarization models, and
compare with the results on existing large-scale
news datasets. We find that many models yield
noticeably lower ROUGE scores on BIGPATENT

than on the news datasets, suggesting a need for
developing more advanced models to address the
new challenges presented by BIGPATENT. More-
over, while existing neural abstractive models pro-
duce more abstractive summaries on BIGPATENT,
they tend to repeat irrelevant discourse entities ex-
cessively, and often fabricate information.

These observations demonstrate the importance
of BIGPATENT in steering future research in text
summarization towards global content modeling,
semantic understanding of entities and relations,
and discourse-aware text planning to build ab-
stractive and coherent summarization systems.

2 Related Work

Recent advances in abstractive summarization
show promising results in generating fluent and
informative summaries (Rush et al., 2015; Nalla-
pati et al., 2016; Tan et al., 2017; Paulus et al.,
2017). However, these summaries often contain
fabricated and repeated content (Cao et al., 2018).
Fan et al. (2018) show that, for content selection,
existing models rely on positional information and
can be easily fooled by adversarial content present
in the input. This underpins the need for global
content modeling and semantic understanding of
the input, along with discourse-aware text plan-
ning to yield a well-formed summary (McKeown,
1985; Barzilay and Lapata, 2008).

Several datasets have been used to aid the de-
velopment of text summarization models. These
datasets are predominantly from the news domain
and have several drawbacks such as limited train-
ing data (Document Understanding Conference2),
shorter summaries (Gigaword (Napoles et al.,
2012), XSum (Narayan et al., 2018), and News-
room (Grusky et al., 2018)), and near-extractive
summaries (CNN / Daily Mail dataset (Hermann
et al., 2015)). Moreover, due to the nature of

2https://duc.nist.gov/

Dataset # Doc Comp. Dens. Summary Doc
ratio # word # sent # word

CNN/DM 312,085 13.0 3.8 55.6 3.8 789.9
NYT 654,788 12.0 2.4 44.9 2.0 795.9
NEWSROOM 1,212,726 43.0 9.5 30.4 1.4 750.9
XSUM 226,711 18.8 1.2 23.3 1.0 431.1
ARXIV 215,913 39.8 3.8 292.8 9.6 6,913.8
PUBMED 133,215 16.2 5.8 214.4 6.9 3,224.4
BIGPATENT 1,341,362 36.4 2.4 116.5 3.5 3,572.8

Table 1: Statistics of BIGPATENT and other summa-
rization datasets. # Doc: raw number of documents in
each dataset. For all other columns, mean values are
reported over all documents. BIGPATENT has a lower
extractive fragment density (Dens.) and a higher com-
pression ratio (Comp. ratio).

news reporting, summary-worthy content is non-
uniformly distributed within each article. ArXiv
and PubMed datasets (Cohan et al., 2018), which
are collected from scientific repositories, are lim-
ited in size and have longer yet extractive sum-
maries. Thus, existing datasets either lack cru-
cial structural properties or are limited in size for
learning robust deep learning methods. To ad-
dress these issues, we present a new dataset, BIG-
PATENT, which guides research towards build-
ing more abstractive summarization systems with
global content understanding.

3 BIGPATENT Dataset

We present BIGPATENT, a dataset consisting
of 1.3 million U.S. patent documents collected
from Google Patents Public Datasets using Big-
Query (Google, 2018)3. It contains patents filed
after 1971 across nine different technological ar-
eas. We use each patent’s abstract as the gold-
standard summary and its description as the in-
put.4 Additional details for the dataset, including
the preprocessing steps, are in Appendix A.1.

Table 1 lists statistics, including compression
ratio and extractive fragment density, for BIG-
PATENT and some commonly-used summarization
corpora. Compression ratio is the ratio of the
number of words in a document and its summary,
whereas density is the average length of the ex-

3Released and maintained by IFI CLAIMS Patent Ser-
vices and Google, and licensed under Creative Commons At-
tribution 4.0 International License.

4The summarization task studied using BIGPATENT is
notably different from traditional patent summarization task
where patent claims are summarized into a more readable for-
mat (Cinciruk, 2015).

https://duc.nist.gov/
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Figure 2: % of salient unigrams present in the N th seg-
ments of the input.

tractive fragment5 to which each word in the sum-
mary belongs (Grusky et al., 2018). Among ex-
isting datasets, CNN/DM (Hermann et al., 2015),
NYT (Napoles et al., 2012), NEWSROOM (re-
leased) (Grusky et al., 2018) and XSUM (Narayan
et al., 2018) are news datasets, while ARXIV and
PUBMED (Cohan et al., 2018) contain scientific
articles. Notably, BIGPATENT is significantly
larger with longer inputs and summaries.

4 Dataset Characterization

4.1 Salient Content Distribution

Inferring the distribution of salient content in the
input is critical to content selection of summariza-
tion models. While prior work uses probabilistic
topic models (Barzilay and Lee, 2004; Haghighi
and Vanderwende, 2009) or relies on classifiers
trained with sophisticated features (Yang et al.,
2017), we focus on salient words and their occur-
rences in the input.

We consider all unigrams, except stopwords, in
a summary as salient words for the respective doc-
ument. We divide each document into four equal
segments and measure the percentage of unique
salient words in each segment. Formally, let U be
a function that returns all unique unigrams (except
stopwords) for a given text. Then, U(di) denotes
the unique unigrams in the ith segment of a docu-
ment d, and U(y) denotes the unique unigrams in
the corresponding summary y. The percentage of
salient unigrams in the ith segment of a document
is calculated as:

|(U(di) ∩ U(y))| × 100

|U(y)|
%

Fig. 2 shows that BIGPATENT has a fairly even
distribution of salient words in all segments of the

5Extractive fragments are the set of shared sequences of
tokens in the document and summary.
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Figure 3: % of novel n-grams in the summaries.

input. Only 6% more salient words are observed
in the 1st segment than in other segments. In con-
trast, for CNN/DM, NYT and Newsroom, approx-
imately 50% of the salient words are present in the
1st segment, and the proportion drops monotoni-
cally to 10% in the 4th segment. This indicates
that most salient content is present in the begin-
ning of news articles in these datasets. For XSum,
another news dataset, although the trend in the
first three segments is similar to BIGPATENT, the
percentage of novel unigrams in the last segment
drops by 5% compared to 0.2% for BIGPATENT.

For scientific articles (arXiv and PubMed),
where content is organized into sections, there is a
clear drop in the 2nd segment where related work
is often discussed, with most salient information
being present in the first (introduction) and last
(conclusion) sections. Whereas in BIGPATENT,
since each embodiment of a patent’s invention is
sequentially described in its document, it has a
more uniform distribution of salient content.

Next, we probe how far one needs to read from
the input’s start to cover the salient words (only
those present in input) from the summary. About
63% of the sentences from the input are required
to construct full summaries for CNN/DM, 57% for
XSum, 53% for NYT, and 29% for Newsroom.
Whereas in the case of BIGPATENT, 80% of the
input is required. The aforementioned observa-
tions signify the need of global content modeling
to achieve good performance on BIGPATENT.

4.2 Summary Abstractiveness and Coherence

Summary n-gram Novelty. Following prior
work (See et al., 2017; Chen and Bansal, 2018),
we compute abstractiveness as the fraction of
novel n-grams in the summaries that are absent
from the input. As shown in Fig. 3, XSum com-
prises of notably shorter but more abstractive sum-
maries. Besides that, BIGPATENT reports the sec-



t = 1 t = 2 t = 3 t ≥ 3

CNN/DM 95.7% 3.9% 0.4% 0.1%
NYT 97.6% 2.1% 0.3% 0.1%
NEWSROOM 98.9% 1.0% 0.1% 0.02%
ARXIV 89.5% 7.9% 1.7% 0.9%
PUBMED 86.1% 9.3% 2.7% 2.0%
BIGPATENT 75.9% 15.1% 5.1% 3.9%

Table 2: % of entities occurring t times in summaries.

Ent. Chain Length (In %) Ent. Recurrence at

Datasets l = 1 l = 2 l = 3 l > 3 t+ 1 t+ 2 ≥ t+ 3

CNN/DM 97.7 2.1 0.2 0.02 0.3 0.2 0.2
NYT 98.7 1.2 0.1 0.01 0.4 0.2 0.1
NEWSROOM 99.6 0.4 0.02 0.002 0.2 0.1 0.1
ARXIV 95.6 3.8 0.5 0.1 1.6 1.0 3.8
PUBMED 93.9 4.9 0.9 0.3 2.0 1.1 2.1
BIGPATENT 85.9 11.1 2.3 0.7 2.4 1.1 1.2

Table 3: Left: % of entities of chain length l. Right:
Avg. number of entities that appear at the tth summary
sentence and recur in a later sentence.

ond highest percentage of novel n-grams, for n ∈
{2, 3, 4}. Significantly higher novelty scores for
trigram and 4-gram indicate that BIGPATENT has
fewer and shorter extractive fragments, compared
to others (except for XSum, a smaller dataset).
This further corroborates the fact that BIGPATENT

has the lowest extractive fragment density (as
shown in Table 1) and contains longer summaries.

Coherence Analysis via Entity Distribution. To
study the discourse structure of summaries, we
analyze the distribution of entities that are in-
dicative of coherence (Grosz et al., 1995; Strube
and Hahn, 1999). To identify these entities,
we extract non-recursive noun phrases (regex NP
→ ADJ∗[NN]+) using NLTK (Loper and Bird,
2002). Finally, we use the entity-grid representa-
tion by Barzilay and Lapata (2008) and their coref-
erence resolution rules to capture the entity distri-
bution across summary sentences. In this work,
we do not distinguish entities’ grammar roles, and
leave that for future study.

On average, there are 6.7, 10.9, 12.4 and 18.5
unique entities in the summaries for Newsroom,
NYT, CNN/DM and BIGPATENT, respectively6.
PUBMED and ARXIV reported higher number of
unique entities in summaries (39.0 and 48.1 re-
spectively) since their summaries are considerably
longer (Table 1). Table 2 shows that 24.1% of
entities recur in BIGPATENT summaries, which is
higher than that on other datasets, indicating more

6We exclude XSum as its summaries are all one-sentence.

complex discourse structures in its summaries.
To understand local coherence in summaries, we
measure the longest chain formed across sentences
by each entity, denoted as l. Table 3 shows that
11.1% of the entities in BIGPATENT appear in two
consecutive sentences, which is again higher than
that of any other dataset. The presence of longer
entity chains in the BIGPATENT summaries sug-
gests its higher sentence-to-sentence relatedness
than the news summaries.

Finally, we examine the entity recurrence pat-
tern which captures how many entities, first occur-
ring in the tth sentence, are repeated in subsequent
(t+ ith) sentences. Table 3 (right) shows that, on
average, 2.3 entities in BIGPATENT summaries re-
cur in later sentences (summing up the numbers
for t+2 and after). The corresponding recurring
frequency for news dataset such as CNN/DM is
only 0.4. Though PUBMED and ARXIV report
higher number of recurrence, their patterns are
different, i.e., entities often recur after three sen-
tences. These observations imply a good combina-
tion of local and global coherence in BIGPATENT.

5 Experiments and Analyses

We evaluate BIGPATENT with popular summa-
rization systems and compare with well-known
datasets such as CNN/DM and NYT. For base-
line, we use LEAD-3, which selects the first three
sentences from the input as the summary. We
consider two oracles: i) ORACLEFRAG builds
summary using all the longest fragments reused
from input in the gold-summary (Grusky et al.,
2018), and ii) ORACLEEXT selects globally opti-
mal combination of three sentences from the input
that gets the highest ROUGE-1 F1 score. Next,
we consider three unsupervised extractive sys-
tems: TEXTRANK (Mihalcea and Tarau, 2004),
LEXRANK (Erkan and Radev, 2004), and SUM-
BASIC (Nenkova and Vanderwende, 2005). We
also adopt RNN-EXT RL (Chen and Bansal,
2018), a SEQ2SEQ model that selects three salient
sentences to construct the summary using rein-
forcement learning. Finally, we train four abstrac-
tive systems: SEQ2SEQ with attention, Pointer-
Generator (POINTGEN) and a version with cov-
erage mechanism (POINTGEN + COV) (See et al.,
2017), and SENTREWRITING (Chen and Bansal,
2018). Experimental setups and model parameters
are described in Appendix A.2.

Table 4 reports F1 scores of ROUGE-1, 2,



CNN/DM NYT BIGPATENT

Models R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD-3 40.23 17.52 36.34 32.93 17.69 29.58 31.27 8.75 26.18
ORACLEFRAG (Grusky et al., 2018) 93.36 83.19 93.36 88.15 74.74 88.15 91.85 78.66 91.85
ORACLEEXT 49.35 27.96 46.24 42.62 26.39 39.50 43.56 16.91 36.52

TEXTRANK (Mihalcea and Tarau, 2004) 37.72 15.59 33.81 28.57 14.29 23.79 35.99 11.14 29.60
LEXRANK (Erkan and Radev, 2004) 33.96 11.79 30.17 27.32 11.93 23.75 35.57 10.47 29.03
SUMBASIC (Nenkova and Vanderwende, 2005) 31.72 9.60 28.58 23.16 7.18 20.06 27.44 7.08 23.66
RNN-EXT RL (Chen and Bansal, 2018) 41.47 18.72 37.76 39.15 22.60 34.99 34.63 10.62 29.43

SEQ2SEQ (Sutskever et al., 2014) 31.10 11.54 28.56 41.57 26.89 38.17 28.74 7.87 24.66
POINTGEN (See et al., 2017) 36.15 15.11 33.22 43.49 28.70 39.66 30.59 10.01 25.65
POINTGEN+COV (See et al., 2017) 39.23 17.09 36.03 45.13 30.13 39.67 33.14 11.63 28.55
SENTREWRITING (Chen and Bansal, 2018) 40.04 17.61 37.59 44.77 29.10 41.55 37.12 11.87 32.45

Table 4: ROUGE scores on three large datasets. The best results for non-baseline systems are in bold. Except for
SentRewriting on CNN/DM and NYT, for all abstractive models, we truncate input and summaries at 400 and 100.

% Novel n-grams % Entities Occurring m Times
Models n = 1 n = 2 m = 1 m = 2 m = 3 m > 3

GOLD 21.5% 57.7% 75.5% 15.2% 5.2% 4.0%

SEQ2SEQ 18.6% 52.0% 51.4% 19.4% 6.7% 22.6%
POINTGEN + COV 9.7% 33.9% 82.7% 13.8% 2.4% 1.2%
SENTREWRITING 11.5% 44.9% 69.5% 17.3% 6.6% 6.6%

Table 5: % of novel n-grams (highest % are high-
lighted), and % of entities occurring m times in gener-
ated summaries of BIGPATENT. POINTGEN+COV re-
peats entities less often than humans do.

and L (Lin and Hovy, 2003) for all models. For
BIGPATENT, almost all models outperform the
LEAD-3 baseline due to the more uniform distri-
bution of salient content in BIGPATENT’s input
articles. Among extractive models, TEXTRANK

and LEXRANK outperform RNN-EXT RL which
was trained on only the first 400 words of the in-
put, again suggesting the need for neural models
to efficiently handle longer input. Finally, SEN-
TREWRITING, a reinforcement learning model
with ROUGE as reward, achieves the best perfor-
mance on BIGPATENT.

Table 5 presents the percentage of novel n-
grams in the generated summaries. Although the
novel content in the generated summaries (for both
unigrams and bigrams) is comparable to that of
GOLD, we observe repeated instances of fabri-
cated or irrelevant information. For example, “the
upper portion is configured to receive the upper
portion of the sole portion”, part of SEQ2SEQ

generated summary has irrelevant repetitions com-
pared to the human summary as in Fig. 1. This
suggests the lack of semantic understanding and
control for generation in existing neural models.

Table 5 also shows the entity distribution (§4.2)
in the generated summaries for BIGPATENT. We
find that neural abstractive models (except POINT-
GEN+COV) tend to repeat entities more often than

humans do. For GOLD, only 5.2% and 4.0%
of entities are mentioned thrice or more, com-
pared to 6.7% and 22.6% for SEQ2SEQ. POINT-
GEN+COV, which employs coverage mechanism
to explicitly penalize repetition, generates signifi-
cantly fewer entity repetitions. These findings in-
dicate that current models failt to learn the entity
distribution pattern, suggesting a lack of under-
standing of entity roles (e.g., their importance) and
discourse-level text planning.

6 Conclusion

We present the BIGPATENT dataset with human-
written abstractive summaries containing fewer
and shorter extractive phrases, and a richer dis-
course structure compared to existing datasets.
Salient content from the BIGPATENT summaries is
more evenly distributed in the input. BIGPATENT

can enable future research to build robust systems
that generate abstractive and coherent summaries.
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A Appendices

A.1 Dataset Details

BIGPATENT, a novel large-scale summarization
dataset of 1.3 million US Patent documents, is col-
lected from Google Patents Public Datasets using
BigQuery (Google, 2018). Google has indexed
more than 87 million patents with full text from
17 different patent offices so far. We only consider
patent documents from United States Patent and
Trademark Office (USPTO) filed in English lan-
guage after 1971 in order to get considerably more
consistent writing and formatting style to facilitate
easier parsing of the text.

Each US patent application is filed un-
der a Cooperative Patent Classification (CPC)
code (USPTO, 2013) that provides a hierarchical
system of language independent symbols for the
classification of patents according to the different
areas of technology to which they pertain. There
are nine such classification categories: A (Human
Necessities), B (Performing Operations; Trans-
porting), C (Chemistry; Metallurgy), D (Textiles;
Paper), E (Fixed Constructions), F (Mechanical
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CPC code # Doc Comp. Dens. Summary Doc
ratio # word # sent # word

A 193,483 39.5 2.3 109.5 3.4 3,520.7
B 179,467 28.1 2.3 116.6 3.4 2,900.4
C 112,269 71.3 2.6 97.9 2.6 5,278.4
D 11,294 30.1 2.3 113.0 3.2 2,892.1
E 38,271 26.9 2.2 117.2 3.7 2,814.3
F 95,076 26.0 2.3 116.7 3.5 2,737.8
G 287,706 35.9 2.4 123.7 3.6 3,924.1
H 285,577 32.7 2.4 121.1 3.6 3,531.4
Y 138,219 33.5 2.3 116.3 3.5 3,328.0

Table 6: Statistics for 9 CPC codes in BIGPATENT.

Engineering; Lightning; Heating; Weapons; Blast-
ing), G (Physics), H (Electricity), and Y (Gen-
eral tagging of new or cross-sectional technology).
Table 6 summarizes the statistics for BIGPATENT

across all nine categories.
From the full public dataset, for each patent

record, we retained its title, authors, abstract,
claims of the invention and the description text.
Abstract of the patent, which is generally written
by the inventors after the patent application is ap-
proved, was considered as the gold-standard sum-
mary of the patent. Description text of the patent
contains several other fields such as background
of the invention covering previously published re-
lated inventions, description of figures, and de-
tailed description of the current invention. For the
summarization task, we considered the detailed
description of each patent as the input.

We tokenized the articles and summaries us-
ing Natural Language Toolkit (NLTK) (Bird et al.,
2009). Since there was a large variation in
size of summary and input texts, we removed
patent records with compression ratio less than
5 and higher than 500. Further, we only kept
records with summary length between 10 and
2, 500 words, and input length of at least 150 and
at most 80, 000. Next, to focus on the abstrac-
tive summary-input pairs, we removed the records
whose percentage of summary-worthy unigrams
absent from the input (novel unigrams) was less
than 15%. Finally, we removed references of fig-
ure from summaries and input, along with full ta-
bles from the input.

Salient Content Distribution (bigrams and
longest common subsequences). As also shown
in the main paper, i.e., Figure 4 and Figure 5, BIG-
PATENT demonstrates a relatively uniform distri-
bution of the salient content from the summary
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Figure 4: % of salient bigrams present in N th segment
of input.
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Figure 5: % of salient longest common subsequences
present in N th segment of input.

in all parts of the input. Here, the salient content
is considered as all bigrams and longest common
sub-sequences from the summary.

A.2 Experiment details

For all experiments, we randomly split BIG-
PATENT into 1, 207, 222 training pairs, 67, 068
validation pairs, and 67, 072 test pairs. For
CNN/DM, we followed preprocessing steps from
See et al. (2017), using 287, 226 training, 13, 368
validation, and 11, 490 test pairs. For NYT, fol-
lowing preprocessing steps from Paulus et al.
(2017), we used 589, 298 training, 32, 739 valida-
tion, and 32, 739 test pairs.

Extract-based Systems. For TEXTRANK, we
used the summanlp7 (Barrios et al., 2016) to gener-
ate summary with three sentences based on TEX-
TRANK algorithm (Mihalcea and Tarau, 2004).
For LEXRANK and SUMBASIC, we used sumy8.
For RNN-EXT RL from Chen and Bansal (2018),
we used the implementation provided by the au-
thors9.

Abstract-based Systems. For all the neural ab-
stractive summarization models (except for SEN-
TREWRITING), we truncated the input to 400
words and output to 100 words. Except for SEN-
TREWRITING, all other models were trained us-

7https://pypi.org/project/summa/
8https://pypi.python.org/pypi/sumy
9https://github.com/ChenRocks/fast abs rl



ing OpenNMT-py python library10 based on the
instructions provided by the authors (Gehrmann
et al., 2018b). We provide further details for each
model below.

SEQ2SEQ with attention (Sutskever et al.,
2014) was trained using a 128-dimensional word-
embedding and 512-dimensional 1-layer LSTM.
We used a bidirectional LSTM for the encoder and
attention mechanism from Bahdanau et al. (2014).
The model was trained using Adagrad (Duchi
et al., 2011) with learning rate 0.15 and an ini-
tial accumulator value of 0.1. At inference time,
we used the beam size 5. We used the same set-
tings for training POINTGEN and POINTGEN +
COV (See et al., 2017), adding the copy attention
mechanism that allows the model to copy words
from the source. At inference time, for POINT-
GEN + COV, we used coverage penalty with beta
set to 5 and length penalty (Wu et al., 2016) with
alpha as 0.9.

For SENTREWRITING from Chen and Bansal
(2018), we again used the implementation by the
authors11 to train their full RL-based model using
their default parameters.

A.3 Summaries for sample Input Document
from BIGPATENT

For the sample summary presented in introduc-
tion of the main paper, in Table 7 we list complete
gold-standard summary along with the summaries
generated by SEQ2SEQ, POINTGEN + COV and
SENTREWRITING. For the respective input, we
also list the first 400 words for brevity.

10https://opennmt.net/OpenNMT-py/Summarization.html
11https://github.com/ChenRocks/fast abs rl



Gold-Standard summary
a shoelace cover incorporating an interchangeable fashion panel for covering the shoelaces of a gym shoe. the shoelace cover
is secured to the shoe by a number of straps threaded through slots in the shoelace cover. a strap secured to each side of the
gym shoe includes a loop and hook material such that the straps can be disengaged and the shoelace cover can be drawn back
to expose the shoelaces of the shoe. the fashion panel is attached to the shoelace cover by a loop and hook material such that at
the whim of the shoe wearer, the fashion panel can be replaced by other fashion panels to convey a fashion statement.
SEQ2SEQ generated summary
a shoe having a sole portion and an upper portion. the sole portion includes an upper portion and a lower portion. the upper
portion is configured to receive the upper portion of the sole portion. the lower portion of the upper portion is configured to
receive the upper portion of the sole portion.
POINTGEN + COV generated summary
a gym shoe and associated shoelace shoe is disclosed. the shoe includes a sole portion, a shoelace cover, and an upper portion.
the upper portion has a toe area that extends from the toe area to the opening. the shoelace cover is curved to the shoelace.
SENTREWRITING generated summary
a gym shoe and associated shoelace cover and associated shoelace cover and fashion panel are disclosed. the shoe includes a
sole portion and an upper portion. the shoelace cover is a semi-rigid panel that is curved to conform to the shoelace area of the
shoelace area. the shoelace area is generally split into a shoelace area and a shoelace area. a shoe for use in a shoe, such as a
shoe, is disclosed. a tongue extends from the toe area to the shoelace.
Input (first 400 words)
the following discussion of the preferred embodiment concerning a gym shoe and associated shoelace cover and fashion panel
is merely exemplary in nature and is in no way intended to limit the invention or its applications or uses. the shoe includes
a sole portion, generally comprised of a rugged rubber material, and an upper portion 14 generally comprised of a durable
and pliable leather or canvas material. at a back location of the upper portion is an opening for accepting a wearer’s foot. a
cushion is visible through the opening on which the wearer’s foot is supported. at a front end of the upper portion is a toe
area. extending from the toe area to the opening is a shoelace area. the shoelace area is generally split such that a shoelace is
threaded through eyelets associated with the shoelace area in order to bind together the shoelace area and secure the shoe to the
wearer’s foot. a tongue, also extending from the toe area to the opening, is positioned beneath the shoelace such that the tongue
contacts the wearer’s foot, and thus provides comfort against the shoelace to the wearer. the basic components and operation
of a gym shoe is well understood to a person of normal sensibilities, and thus, a detailed discussion of the parts of the shoe and
their specific operation need not be elaborated on here. secured to the upper portion of the shoe covering the shoelace area is a
shoelace cover. in a preferred embodiment, the shoelace cover is a semi-rigid panel that is curved to be shaped to conform to
the shoelace area such that an upper portion of the shoelace cover extends a certain distance along the sides of the upper portion
adjacent the opening. the shoelace cover narrows slightly as it extends towards the toe area. the specifics concerning the shape,
dimensions, material, rigidity, etc. of the shoelace cover will be discussed in greater detail below. additionally, the preferred
method of securing the shoelace cover to the shoe will also be discussed below. in a preferred embodiment, affixed to a top
surface of the shoelace cover is a fashion panel. the fashion panel is secured to the shoelace cover by an applicable securing
mechanism, such as a loop and hook and/or velcro type fastener device, so that the fashion panel can be readily removed from
the shoelace cover and replaced with an alternate fashion panel having a different design.

Table 7: Gold-standard and system generated summaries for BIGPATENT. Input (pre-processed) is truncated to
400 words for brevity.


