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Abstract

Generating keyphrases that summarize the
main points of a document is a fundamen-
tal task in natural language processing. Al-
though existing generative models are capa-
ble of predicting multiple keyphrases for an
input document as well as determining the
number of keyphrases to generate, they still
suffer from the problem of generating too
few keyphrases. To address this problem,
we propose a reinforcement learning (RL)
approach for keyphrase generation, with an
adaptive reward function that encourages a
model to generate both sufficient and accu-
rate keyphrases. Furthermore, we introduce a
new evaluation method that incorporates name
variations of the ground-truth keyphrases us-
ing the Wikipedia knowledge base. Thus, our
evaluation method can more robustly evaluate
the quality of predicted keyphrases. Exten-
sive experiments on five real-world datasets of
different scales demonstrate that our RL ap-
proach consistently and significantly improves
the performance of the state-of-the-art gener-
ative models with both conventional and new
evaluation methods.

1 Introduction

The task of keyphrase generation aims at predict-
ing a set of keyphrases that convey the core ideas
of a document. Figure 1 shows a sample doc-
ument and its keyphrase labels. The keyphrases
in red color are present keyphrases that appear in
the document, whereas the blue ones are absent
keyphrases that do not appear in the input. By
distilling the key information of a document into
a set of succinct keyphrases, keyphrase genera-
tion facilitates a wide variety of downstream ap-
plications, including document clustering (Ham-
mouda et al., 2005; Hulth and Megyesi, 2006),
opinion mining (Berend, 2011), and summariza-
tion (Zhang et al., 2004; Wang and Cardie, 2013).

Document: DCE MRI data analysis for cancer area classification.
The paper aims at improving the support of medical researchers in
the context of in-vivo cancer imaging… The proposed approach is
based on a three-step procedure: i) robust feature extraction from
raw time-intensity curves, ii) voxel segmentation, and iii) voxel
classification based on a learning-by-example approach… Finally, in
the third step, a support vector machine (SVM) is trained to classify
voxels according to the labels obtained by the clustering phase…

Keyphrase labels: svm; dce mri; cluster analysis; classification

catSeqD predictions: cancer area classification; support vector 
machine

catSeqD-𝟐𝑹𝑭𝟏 predictions: dce mri; cancer area classification; 
support vector machine; image segmentation; morphological analysis

Enriched keyphrase labels: {svm, support vector machine}; dce mri; 
cluster analysis; classification

Figure 1: Sample document with keyphrase labels
and predicted keyphrases. We use red (blue) color
to highlight present (absent) keyphrases. The under-
lined phrases are name variations of a keyphrase label.
“catSeqD” is a keyphrase generation model from Yuan
et al. (2018). “catSeqD-2RF1” denotes the catSeqD
model after being trained by our RL approach. The
enriched keyphrase labels are based on our new evalu-
ation method.

To produce both present and absent keyphrases,
generative methods (Meng et al., 2017; Ye and
Wang, 2018; Chen et al., 2018a,b) are de-
signed to apply the attentional encoder-decoder
model (Bahdanau et al., 2014; Luong et al., 2015)
with copy mechanism (Gu et al., 2016; See et al.,
2017) to approach the keyphrase generation task.
However, none of the prior models can deter-
mine the appropriate number of keyphrases for
a document. In reality, the optimal keyphrase
count varies, and is dependent on a given docu-
ment’s content. To that end, Yuan et al. (2018)
introduced a training setup in which a genera-
tive model can learn to decide the number of
keyphrases to predict for a given document and
proposed two models. Although they provided
a more realistic setup, there still exist two draw-
backs. First, models trained under this setup tend



to generate fewer keyphrases than the ground-
truth. Our experiments on the largest dataset show
that their catSeqD model generates 4.3 keyphrases
per document on average, while these documents
have 5.3 keyphrase labels on average. Ideally,
a model should generate both sufficient and ac-
curate keyphrases. Second, existing evaluation
methods rely only on the exact matching of word
stems (Porter, 2006) to determine whether a pre-
dicted phrase matches a ground-truth phrase. For
example, given the document in Figure 1, if a
model generates “support vector machine”, it will
be treated as incorrect since it does not match
the word “svm” given by the gold-standard la-
bels. It is therefore desirable for an evaluation
method to consider name variations of a ground-
truth keyphrase.

To address the first limitation, we design an
adaptive reward function, RF1, that encourages
a model to generate both sufficient and accurate
keyphrases. Concretely, if the number of gener-
ated keyphrases is less than that of the ground-
truth, we use recall as the reward, which does
not penalize the model for generating incorrect
predictions. If the model generates sufficient
keyphrases, we use F1 score as the reward, to
balance both recall and precision of the predic-
tions. To optimize the model towards this non-
differentiable reward function, we formulate the
task of keyphrase generation as a reinforcement
learning (RL) problem and adopt the self-critical
policy gradient method (Rennie et al., 2017) as
the training procedure. Our RL approach is flexi-
ble and can be applied to any keyphrase generative
model with an encoder-decoder structure. In Fig-
ure 1, we show a prediction result of the catSeqD
model (Yuan et al., 2018) and another prediction
result of the catSeqD model after being trained by
our RL approach (catSeqD-2RF1). This example
illustrates that our RL approach encourages the
model to generate more correct keyphrases. Per-
haps more importantly, the number of generated
keyphrases also increases to five, which is closer
to the ground-truth number (5.3).

Furthermore, we propose a new evaluation
method to tackle the second limitation. For each
ground-truth keyphrase, we extract its name varia-
tions from various sources. If the word stems of
a predicted keyphrase match the word stems of
any name variation of a ground-truth keyphrase,
it is treated as a correct prediction. For instance,

in Figure 1, our evaluation method enhances the
“svm” ground-truth keyphrase with its name vari-
ation, “support vector machine”. Thus, the phrase
“support vector machine” generated by catSeqD
and catSeqD-2RF1 will be considered correct,
which demonstrates that our evaluation method is
more robust than the existing one.

We conduct extensive experiments to evaluate
the performance of our RL approach. Experi-
ment results on five real-world datasets show that
our RL approach consistently improves the per-
formance of the state-of-the-art models in terms
of F -measures. Moreover, we analyze the suf-
ficiency of the keyphrases generated by different
models. It is observed that models trained by our
RL approach generate more absent keyphrases,
which is closer to the number of absent ground-
truth keyphrases. Finally, we deploy our new eval-
uation method on the largest keyphrase generation
benchmark, and the new evaluation identifies at
least one name variation for 14.1% of the ground-
truth keyphrases.

We summarize our contributions as follows: (1)
an RL approach with a novel adaptive reward
function that explicitly encourages the model to
generate both sufficient and accurate keyphrases;
(2) a new evaluation method that considers name
variations of the keyphrase labels; and (3) the new
state-of-the-art performance on five real-world
datasets in a setting where a model is able to
determine the number of keyphrases to generate.
This is the first work to study RL approach on the
keyphrase generation problem.

2 Related Work

2.1 Keyphrase Extraction and Generation

Traditional extractive methods select important
phrases from the document as its keyphrase pre-
dictions. Most of them adopt a two-step approach.
First, they identify keyphrase candidates from the
document by heuristic rules (Wang et al., 2016;
Le et al., 2016). Afterwards, the candidates are
either ranked by unsupervised methods (Mihalcea
and Tarau, 2004; Wan and Xiao, 2008) or super-
vised learning algorithms (Medelyan et al., 2009;
Witten et al., 1999; Nguyen and Kan, 2007a).
Other extractive methods apply sequence tagging
models (Luan et al., 2017; Gollapalli et al., 2017;
Zhang et al., 2016) to identify keyphrases. How-
ever, extractive methods cannot produce absent
keyphrases.



To predict both present and absent keyphrases
for a document, Meng et al. (2017) proposed a
generative model, CopyRNN, which is composed
of an attentional encoder-decoder model (Bah-
danau et al., 2014) and a copy mechanism (Gu
et al., 2016). Lately, multiple extensions to
CopyRNN were also presented. CorrRNN (Chen
et al., 2018a) incorporates the correlation among
keyphrases. TG-Net (Chen et al., 2018b) exploits
the title information to learn a better representa-
tion for an input document. Chen et al. (2019)
leveraged keyphrase extraction models and ex-
ternal knowledge to improve the performance of
keyphrase generation. Ye and Wang (2018) con-
sidered a setting where training data is limited,
and proposed different semi-supervised methods
to enhance the performance. All of the above gen-
erative models use beam search to over-generate
a large number of keyphrases and select the top-
k predicted keyphrases as the final predictions,
where k is a fixed number.

Recently, Yuan et al. (2018) introduced a set-
ting where a model has to determine the appro-
priate number of keyphrases for an input docu-
ment. They proposed a training setup that em-
powers a generative model to generate variable
numbers of keyphrases for different documents.
Two new models, catSeq and catSeqD, were de-
scribed. Our work considers the same setting and
proposes an RL approach, which is equipped with
adaptive rewards to generate sufficient and accu-
rate keyphrases. To our best knowledge, this is
the first time RL is used for keyphrase generation.
Besides, we propose a new evaluation method that
considers name variations of the keyphrase labels,
a novel contribution to the state-of-the-art.

2.2 Reinforcement Learning for Text
Generation

Reinforcement learning has been applied to a wide
array of text generation tasks, including machine
translation (Wu et al., 2016; Ranzato et al., 2015),
text summarization (Paulus et al., 2018; Wang
et al., 2018), and image/video captioning (Ren-
nie et al., 2017; Liu et al., 2017; Pasunuru and
Bansal, 2017). These RL approaches lean on the
REINFORCE algorithm (Williams, 1992), or its
variants, to train a generative model towards a
non-differentiable reward by minimizing the pol-
icy gradient loss. Different from existing work,
our RL approach uses a novel adaptive reward

function, which combines the recall and F1 score
via a hard gate (if-else statement).

3 Preliminary

3.1 Problem Definition

We formally define the problem of keyphrase
generation as follows. Given a document x,
output a set of ground-truth keyphrases Y =
{y1,y2, . . . ,y|Y|}. The document x and each
ground-truth keyphrase yi are sequences of words,
i.e., x = (x1, . . . , xlx), and yi = (yi1, . . . , y

i
lyi

),
where lx and lyi denote the numbers of words in
x and yi respectively. A keyphrase that matches
any consecutive subsequence of the document is
a present keyphrase, otherwise it is an absent
keyphrase. We use Yp = {yp,1, yp,2, . . . , yp,|Yp|}
and Ya = {ya,1, ya,2, . . . , ya,|Ya|} to denote
the sets of present and absent ground-truth
keyphrases, respectively. Thus, the ground-truth
keyphrases set can be expressed as Y = Yp ∪ Ya.

3.2 Keyphrase Generation Model

In this section, we describe the attentional
encoder-decoder model (Bahdanau et al., 2014)
with copy mechanism (See et al., 2017), which is
the backbone of our implementations of the base-
line generative models.

Our training setup. For each document-
keyphrases pair (x,Y), we join all the keyphrases
in Y into one output sequence, y = yp,1 o yp,2 o
. . . o yp,|Yp| � ya,1 o ya,2 o . . . o ya,|Ya|, where � is
a special token that indicates the end of present
keyphrases, and o is a delimiter between two con-
secutive present keyphrases or absent keyphrases.
Using such (x,y) samples as training data, the
encoder-decoder model can learn to generate all
the keyphrases in one output sequence and deter-
mine the number keyphrases to generate. The only
difference with the setup in Yuan et al. (2018)
is that we use � to mark the end of present
keyphrases, instead of using o.
Attentional encoder-decoder model. We use a
bi-directional Gated-Recurrent Unit (GRU) (Cho
et al., 2014) as the encoder. The encoder’s i-th
hidden state is hi = [

−→
h i;
←−
h i] ∈ Rdh .

A single-layered GRU is adopted as the de-
coder. At decoding step t, the decoder hidden state
is st = GRU(et−1, st−1) ∈ Rds , where et−1 is
the embedding of the (t − 1)-th predicted word.
Then we apply the attention layer in (Bahdanau



et al., 2014) to compute an attention score at,i for
each of the word xi in the document. The attention
scores are next used to compute a context vector
h∗t for the document. The probability of predicting
a word yt from a predefined vocabulary V is de-
fined as PV (yt) = softmax(WV (WV ′ [st; h

∗
t ])).

In this paper, all the W terms represent trainable
parameters and we omit the bias terms for brevity.

Pointer-generator network. To alleviate the
out-of-vocabulary (OOV) problem, we adopt the
copy mechanism from See et al. (2017). For
each document x, we build a dynamic vocabu-
lary Vx by merging the predefined vocabulary V
and all the words that appear in x. Then, the
probability of predicting a word yt from the dy-
namic vocabulary Vx is computed as PVx(yt) =
pgenPV (yt) + (1− pgen)PC(yt), where PC(yt) =∑

i:xi=yt
at,i is the copy distribution and pgen =

sigmoid(Wg[h
∗
t ; st; et−1]) ∈ [0, 1] is a soft gate to

select between generating a word from the vocab-
ulary V and copying a word from the document.

Maximum likelihood training. We use θ to de-
note all model parameters and y1:t−1 to denote
a sequence (y1, ..., yt−1). Previous work learns
the parameters by maximizing the log-likelihood
of generating the ground-truth output sequence y,
defined as follows,

L(θ) = −
Ly∑
t=1

logPVx(yt|y1:t−1,x; θ). (1)

4 Reinforcement Learning Formulation

We formulate the task of keyphrase generation as
a reinforcement learning problem, in which an
agent interacts with an environment in discrete
time steps. At each time step t = 1, . . . , T , the
agent produces an action (word) ŷt sampled from
the policy π(ŷt|ŷ1:t−1,x; θ), where ŷ1:t−1 denotes
the sequence generated by the agent from step 1 to
t − 1. After that, the environment gives a reward
rt(ŷ1:t,Y) to the agent and transits to the next step
t+1 with a new state ŝt+1 = (ŷ1:t,x,Y). The pol-
icy of the agent is a keyphrase generation model,
i.e., π(.|ŷ1:t−1,x; θ) = PVx(.|ŷ1:t−1,x; θ).

To improve the sufficiency and accuracy of
both present keyphrases and absent keyphrases
generated by the agent, we give separate reward
signals to present keyphrase predictions and ab-
sent keyphrase predictions. Hence, we divide
our RL problem into two different stages. In

the first stage, we evaluate the agent’s perfor-
mance on extracting present keyphrases. Once
the agent generates the ‘�’ token, we denote the
current time step as T p, the environment com-
putes a reward using our adaptive reward func-
tion RF1 by comparing the generated keyphrases
in ŷ1:TP with the ground-truth present keyphrases
Yp, i.e., rTP (ŷ1:TP ,Y) = RF1(ŷ1:TP ,Yp). Then
we enter the second stage, where we evalu-
ate the agent’s performance on generating ab-
sent keyphrases. Upon generating the EOS to-
ken, the environment compares the generated
keyphrases in ŷTP +1:T with the ground-truth
absent keyphrases Ya and computes a reward
rT (ŷ1:T ,Y) = RF1(ŷT p+1:T ,Ya). After that, the
whole process terminates. The reward to the agent
is 0 for all other time steps, i.e., rt(ŷ1:t,Y) = 0
for all t /∈ {T p, T}.

Let return Rt(ŷ,Y) be the sum of future re-
ward starting from time step t, i.e., Rt(ŷ,Y) =∑T

τ=t rτ (ŷ1:τ ,Y), where ŷ denotes the complete
sequence generated by the agent, i.e., ŷ = ŷ1:T .
We then simplify the expression of return into:

Rt =


RF1(ŷ1:TP ,Yp)+
RF1(ŷTP +1:T ,Ya) if 1 ≤ t ≤ T p,

RF1(ŷTP +1:T ,Ya) if T p < t ≤ T .
(2)

The goal of the agent is to maximize the
expected initial return Eŷ∼π(.|x;θ)R1(ŷ,Y),
where R1(ŷ,Y) = RF1(ŷ1:TP ,Yp) +
RF1(ŷTP +1:T ,Ya).

Adaptive reward function. To encourage
the model to generate sufficient and accurate
keyphrases, we define our adaptive reward func-
tion RF1 as follows. First, let N be the number
of predicted keyphrases, and G be the number of
ground-truth keyphrases, then

RF1 =

{
recall if N < G,
F1 otherwise.

(3)

If the model generates insufficient number of
keyphrases, the reward will be the recall of the
predictions. Since generating incorrect keyphrases
will not decrease the recall, the model is encour-
aged to produce more keyphrases to boost the re-
ward. If the model generates a sufficient number
of keyphrases, the model should be discouraged
from over-generating incorrect keyphrases, thus



the F1 score is used as the reward, which incor-
porates the precision of the predicted keyphrases.
REINFORCE. To maximize the expected initial
return, we define the following loss function:

L(θ) = −Eŷ∼π(.|x;θ)[R1(ŷ,Y)]. (4)

According to the REINFORCE learning rule
in Williams (1992), the expected gradient of the
initial return can be expressed as ∇θL(θ) =
−Eŷ∼π(.|x;θ)[

∑T
t=1∇θ log π(ŷt|ŷ1:t−1,x; θ)Rt].

In practice, we approximate the above expectation
using a sample ŷ ∼ π(.|x; θ). Moreover, we
subtract the return Rt by a baseline Bt, which is a
standard technique in RL to reduce the variance of
the gradient estimator (Sutton and Barto, 1998).
In theory, the baseline can be any function that is
independent of the current action yt. The gradient
∇θL is then estimated by:

∇θL ≈ −
T∑
t=1

∇θ log π(ŷt|ŷ1:t−1,x; θ)(Rt −Bt).

(5)

Intuitively, the above gradient estimator increases
the generation probability of a word ŷt if its return
Rt is higher than the baseline (Rt −Bt > 0).
Self-critical sequence training. The main idea of
self-critical sequence training (Rennie et al., 2017)
is to produce another sequence ȳ from the current
model using greedy search algorithm, then use the
initial return obtained by ȳ as the baseline. The in-
terpretation is that the gradient estimator increases
the probability of a word if it has an advantage
over the greedily decoded sequence. We apply
this idea to our RL problem, which has two differ-
ent stages. When in the present (absent) keyphrase
prediction stage, we want the baselineBt to be the
initial return obtained by the greedy sequence ȳ
in its present (absent) keyphrase prediction stage.
Thus, we first let T̄P and T̄ be the decoding steps
where the greedy search algorithm generates the �
token and EOS token, respectively. We then define
the baseline1 as:

Bt =


RF1(ȳ1:T̄P ,Yp)+
RF1(ȳT̄P +1:T̄ ,Ya) if 1 ≤ t ≤ T p,

RF1(ȳT̄P +1:T̄ ,Ya) if T p < t ≤ T .
(6)

With Eqs. (5) and (6), we can simply perform gra-
dient descent to train a generative model.

1The value of Bt only depends on whether ‘�’ exists in
ŷ1:t−1, hence it does not depend on the current action ŷt.

Ground-truth Extracted variations
pca principal component analysis
ssd solid state drive
op amps operational amplifier
hackday hackathon
mobile ad hoc networks manet
electronic commerce e commerce

Table 1: Examples of name variations extracted by our
method for keyphrase labels on the KP20k dataset.

5 New Evaluation Method

Our new evaluation method maintains a set
of name variations ỹi for each ground-truth
keyphrase yi of x. If a predicted keyphrase ŷi

matches any name variation of a ground-truth
keyphrase, then ŷi is considered a correct predic-
tion. A ground-truth keyphrase is also its own
name variation. If there are multiple ground-truth
keyphrases in x that have the same name varia-
tions set, we will only keep one of them.

In our evaluation method, the name variation
set of a ground-truth keyphrase may contain both
present phrases and absent phrases. In such a case,
a ground-truth keyphrase can be matched by a
present predicted keyphrase or an absent predicted
keyphrase. Thus, this ground-truth keyphrase
should be treated as both a present ground-truth
keyphrase and an absent ground-truth keyphrase,
as shown in the following definition.

Definition 5.1. Present (Absent) ground-truth
keyphrase. If a name variation set ỹi of a ground-
truth keyphrase yi only consists of present (ab-
sent) keyphrases, then yi is a present (absent)
ground-truth keyphrase. Otherwise, yi is both
a present ground-truth keyphrase and an absent
ground-truth keyphrase, i.e., yi ∈ Yp and yi ∈
Ya.

5.1 Name Variation Extraction

We extract name variations of a ground-truth
keyphrase from the following sources: acronyms
in the ground-truths, Wikipedia disambiguation
pages, and Wikipedia entity titles. The later two
sources have also been adopted by entity linking
methods (Zhang et al., 2010, 2011) to find name
variations. Some examples of extracted name vari-
ations are shown in Table 1.

Acronyms in the ground-truths. We found
that some of the ground-truth keyphrases have
included an acronym at the end of the string,
e.g.,“principal component analysis (pca)”. Thus,
we adopt the following simple rule to extract an



acronym from a ground-truth keyphrase. If a
ground-truth keyphrase ends with a pair of paren-
theses, we will extract the phrase inside the pair,
e.g., “pca”, as one of the name variations.

Wikipedia entity titles. An entity page in
Wikipedia provides the information of an entity,
and the page title represents an unambiguous name
variation of that entity. For example, a search for
“solid state disk” on Wikipedia will be redirected
to the entity page of “solid state drive”. In such
case, the title “solid state drive” is a name varia-
tion of “solid state disk”.

Wikipedia disambiguation pages. A disam-
biguation page helps users find the correct entity
page when the input query refers to more than
one entity in Wikipedia. It contains a list of en-
tity pages that the query refers to. For exam-
ple, a keyphrase of “ssd” may refer to the entity
“solid state drive” or “sterol-sensing domain” in
Wikipedia. To find the correct entity page for a
keyphrase, we iterate through this list of possible
entities. If an entity title is present in a document,
we assume it is the entity that the keyphrase refers
to. For example, if a document x contains “solid
state drive”, we will assume that the keyphrase
“ssd” refers to this entity.

6 Experiments

We first report the performance of different mod-
els using the conventional evaluation method. Af-
terwards, we present the results based on our new
evaluation method. All experiments are repeated
for three times using different random seeds and
the averaged results are reported. The source code
and the enriched evaluation set are released to the
public2. Sample output is shown in Figure 1.

6.1 Datasets
We conduct experiments on five scientific article
datasets, including KP20k (Meng et al., 2017),
Inspec (Hulth, 2003), Krapivin (Krapivin et al.,
2009), NUS (Nguyen and Kan, 2007b), and Se-
mEval (Kim et al., 2010). Each sample from
these datasets consists of the title, abstract, and
keyphrases of a scientific article. We concatenate
the title and abstract as an input document, and use
the assigned keyphrases as keyphrase labels. Fol-
lowing the setup in (Meng et al., 2017; Yuan et al.,
2018; Chen et al., 2018b), we use the training set

2Source code and evaluation set are available at
https://github.com/kenchan0226/keyphrase-generation-rl

of the largest dataset, KP20k, for model training
and the testing sets of all five datasets to evaluate
the performance of a generative model. From the
training set of KP20k, we remove all articles that
are duplicated in itself, either in the KP20k vali-
dation set, or in any of the five testing sets. After
the cleanup, the KP20k dataset contains 509,818
training samples, 20,000 validation samples, and
20,000 testing samples.

6.2 Evaluation Metrics

The performance of a model is typically evalu-
ated by comparing the top k predicted keyphrases
with the ground-truth keyphrases. The evaluation
cutoff k can be either a fixed number or a vari-
able. Most previous work (Meng et al., 2017; Ye
and Wang, 2018; Chen et al., 2018a,b) adopted
evaluation metrics with fixed evaluation cutoffs,
e.g., F1@5. Recently, Yuan et al. (2018) pro-
posed a new evaluation metric, F1@M , which has
a variable evaluation cutoff. F1@M compares all
the keyphrases predicted by the model with the
ground-truth to compute an F1 score, i.e., k =
number of predictions. It can also be interpreted
as the original F1 score with no evaluation cutoff.

We evaluate the performance of a model using
a metric with a variable cutoff and a metric with a
fixed cutoff, namely, F1@M and F1@5. Marco
average is deployed to aggregate the evaluation
scores for all testing samples. We apply Porter
Stemmer before determining whether two phrases
are matched. Our implementation of F1@5 is dif-
ferent from that of Yuan et al. (2018). Specifically,
when computing F1@5, if a model generates less
than five predictions, we append random wrong
answers to the prediction until it reaches five pre-
dictions3. The rationale is to avoid producing sim-
ilar F1@5 and F1@M , when a model (e.g., cat-
Seq) generates less than five keyphrases, as shown
in the Table 2 of Yuan et al. (2018).

6.3 Baseline and Deep Reinforced Models

We train four baseline generative models us-
ing maximum-likelihood loss. These mod-
els include catSeq, catSeqD (Yuan et al.,
2018), catSeqCorr (Chen et al., 2018a), and
catSeqTG (Chen et al., 2018b). For all baselines,
we use the method in Yuan et al. (2018) to prepare
the training data, by concatenating all keyphrases

3The implementation in Yuan et al. (2018) sets F1@5 =
F1@M for such samples.



Model Inspec Krapivin NUS SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq 0.262 0.225 0.354 0.269 0.397 0.323 0.283 0.242 0.367 0.291
catSeqD 0.263 0.219 0.349 0.264 0.394 0.321 0.274 0.233 0.363 0.285
catSeqCorr 0.269 0.227 0.349 0.265 0.390 0.319 0.290 0.246 0.365 0.289
catSeqTG 0.270 0.229 0.366 0.282 0.393 0.325 0.290 0.246 0.366 0.292
catSeq-2RF1 0.300 0.250 0.362 0.287 0.426 0.364 0.327 0.285 0.383 0.310
catSeqD-2RF1 0.292 0.242 0.360 0.282 0.419 0.353 0.316 0.272 0.379 0.305
catSeqCorr-2RF1 0.291 0.240 0.369 0.286 0.414 0.349 0.322 0.278 0.382 0.308
catSeqTG-2RF1 0.301 0.253 0.369 0.300 0.433 0.375 0.329 0.287 0.386 0.321

Table 2: Results of present keyphrase prediction on five datasets. Suffix “-2RF1” denotes that a model is trained
by our reinforcement learning approach.

into one output sequence. With this setup, all base-
lines can determine the number of keyphrases to
generate. The catSeqCorr and catSeqTG models
are the CorrRNN (Chen et al., 2018a) and TG-
Net (Chen et al., 2018b) models trained under this
setup, respectively.

For the reinforced models, we follow the
method in Section 3.2 to concatenate keyphrases.
We first pre-train each baseline model using
maximum-likelihood loss, and then apply our RL
approach to train each of them. We use a suffix “-
2RF1” to indicate that a generative model is fine-
tuned by our RL algorithm, e.g., catSeq-2RF1.

6.4 Implementation Details

Following (Yuan et al., 2018), we use greedy
search (beam search with beam width 1) as the
decoding algorithm during testing. We do not ap-
ply the Porter Stemmer to the keyphrase labels in
the SemEval testing dataset because they have al-
ready been stemmed. We remove all the dupli-
cated keyphrases from the predictions before com-
puting an evaluation score. The following steps
are applied to preprocess all the datasets. We low-
ercase all characters, replace all the digits with a
special token 〈digit〉, and perform tokenization.
Following (Yuan et al., 2018), for each document,
we sort all the present keyphrase labels accord-
ing to their order of the first occurrence in the
document. The absent keyphrase labels are then
appended at the end of present keyphrase labels.
We do not rearrange the order among the absent
keyphrases.

The vocabulary V is defined as the most fre-
quent 50,002 words, i.e., |V | = 50002. We train
all the word embeddings from scratch with a hid-
den size of 100. The hidden size of encoder dh
and the hidden size of decoder ds are both set to
300. The followings are the dimensions of the
W terms: WV ∈ R|V |×ds , WV ′ ∈ Rds×(dh+ds),

Wg ∈ R1×(dh+ds+100). The encoder bi-GRU has
only one layer. The initial state of the decoder
GRU is set to [

−→
h Lx ;

←−
h 1]. For all other model

parameters of the baseline models, we follow the
dimensions specified by their corresponding pa-
pers (Yuan et al., 2018; Chen et al., 2018a,b). We
initialize all the model parameters using a uniform
distribution within the interval [−0.1, 0.1]. During
training, we use a dropout rate of 0.1 and gradient
clipping of 1.0.

For maximum-likelihood training (as well as
pretraining), we use the Adam optimization algo-
rithm (Kingma and Ba, 2014) with a batch size
of 12 and an initial learning rate of 0.001. We
evaluate the validation perplexity of a model for
every 4000 iterations. We reduce the learning
rate by half if the validation perplexity (ppl) stops
dropping for one check-point and stop the training
when the validation ppl stops dropping for three
contiguous check-points. We also use teaching-
forcing during the training.

For RL training, we use the Adam optimization
algorithm (Kingma and Ba, 2014) with a batch
size of 32 and an initial learning rate of 0.00005.
We evaluate the validation initial return of a model
for every 4000 iterations. We stop the training
when the validation initial return stops increasing
for three contiguous check-points. If the model
generates more than one ‘�’ segmenter, we will
only keep the first one and remove the duplicates.
If the model does not generate the ‘�’ segmenter,
we will manually insert a ‘�’ segmenter to the first
position of the generated sequence.

6.5 Main Results

In this section, we evaluate the performance of
present keyphrase prediction and absent keyphrase
prediction separately. The evaluation results of
different models on predicting present keyphrases
are shown in Table 2. We observe that our re-



Model Inspec Krapivin NUS SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq 0.008 0.004 0.036 0.018 0.028 0.016 0.028 0.020 0.032 0.015
catSeqD 0.011 0.007 0.037 0.018 0.024 0.014 0.024 0.016 0.031 0.015
catSeqCorr 0.009 0.005 0.038 0.020 0.024 0.014 0.026 0.018 0.032 0.015
catSeqTG 0.011 0.005 0.034 0.018 0.018 0.011 0.027 0.019 0.032 0.015
catSeq-2RF1 0.017 0.009 0.046 0.026 0.031 0.019 0.027 0.018 0.047 0.024
catSeqD-2RF1 0.021 0.010 0.048 0.026 0.037 0.022 0.030 0.021 0.046 0.023
catSeqCorr-2RF1 0.020 0.010 0.040 0.022 0.037 0.022 0.031 0.021 0.045 0.022
catSeqTG-2RF1 0.021 0.012 0.053 0.030 0.031 0.019 0.030 0.021 0.050 0.027

Table 3: Results of absent keyphrase prediction on five datasets.

Model Present Absent
MAE Avg. # MAE Avg. #

oracle 0.000 2.837 0.000 2.432
catSeq 2.271 3.781 1.943 0.659
catSeqD 2.225 3.694 1.961 0.629
catSeqCorr 2.292 3.790 1.914 0.703
catSeqTG 2.276 3.780 1.956 0.638
catSeq-2RF1 2.118 3.733 1.494 1.574
catSeqD-2RF1 2.087 3.666 1.541 1.455
catSeqCorr-2RF1 2.107 3.696 1.557 1.409
catSeqTG-2RF1 2.204 3.865 1.439 1.749

Table 4: The abilities of predicting the correct number
of keyphrases on the KP20k dataset. MAE denotes the
mean absolute error (the lower the better), Avg. # de-
notes the average number of generated keyphrases per
document.

inforcement learning algorithm consistently im-
proves the keyphrase extraction ability of all base-
line generative models by a large margin. On the
largest dataset KP20k, all reinforced models ob-
tain significantly higher F1@5 and F1@M (p <
0.02, t-test) than the baseline models.

We then evaluate the performance of differ-
ent models on predicting absent keyphrases. Ta-
ble 3 suggests that our RL algorithm enhances the
performance of all baseline generative models on
most datasets, and maintains the performance of
baseline methods on the SemEval dataset. Note
that predicting absent keyphrases for a document
is an extremely challenging task (Yuan et al.,
2018), thus the significantly lower scores than
those of present keyphrase prediction.

6.6 Number of Generated Keyphrases

We analyze the abilities of different models to pre-
dict the appropriate number of keyphrases. All
duplicated keyphrases are removed during pre-
processing. We first measure the mean abso-
lute error (MAE) between the number of gen-
erated keyphrases and the number of ground-
truth keyphrases for all documents in the KP20k
dataset. We also report the average number of
generated keyphrases per document, denoted as

Model Present Absent
F1@M F1@5 F1@M F1@5

catSeq 0.367 0.291 0.032 0.015
catSeq-RF1 0.380 0.336 0.006 0.003
catSeq-2F1 0.378 0.278 0.042 0.020
catSeq-2RF1 0.383 0.310 0.047 0.024

Table 5: Ablation study on the KP20k dataset. Suf-
fix “-2RF1” denotes our full RL approach. Suffix “-
2F1” denotes that we replace our adaptive RF1 reward
function in the full approach by an F1 reward function.
Suffix “-RF1” denotes that we replace the two separate
RF1 reward signals in our full approach with only one
RF1 reward signal for all the generated keyphrases.

“Avg. #”. The results are shown in Table 4,
where oracle is a model that always generates
the ground-truth keyphrases. The resultant MAEs
demonstrate that our deep reinforced models no-
tably outperform the baselines on predicting the
number of absent keyphrases and slightly out-
perform the baselines on predicting the number
of present keyphrases. Moreover, our deep re-
inforced models generate significantly more ab-
sent keyphrases than the baselines (p < 0.02, t-
test). The main reason is that the baseline mod-
els can only generate very few absent keyphrases,
whereas our RL approach uses recall as the reward
and encourages the model to generate more ab-
sent keyphrases. Besides, the baseline models and
our reinforced models generate similar numbers of
present keyphrases, while our reinforced models
achieve notably higher F -measures, implying that
our methods generate present keyphrases more ac-
curately than the baselines.

6.7 Ablation Study

We conduct an ablation study to further analyze
our reinforcement learning algorithm. The results
are reported in Table 5.

Single Reward vs. Separate Rewards. To
verify the effectiveness of separately rewarding
present and absent keyphrases, we train the cat-



Model
Present Absent

F1@M F1@M F1@M F1@M
old new old new

catSeq 0.367 0.376 0.032 0.034
catSeqD 0.363 0.372 0.031 0.033
catSeqCorr 0.365 0.375 0.032 0.034
catSeqTG 0.366 0.374 0.032 0.033
catSeq-2RF1 0.383 0.396 0.047 0.054
catSeqD-2RF1 0.379 0.390 0.046 0.052
catSeqCorr-2RF1 0.382 0.393 0.045 0.051
catSeqTG-2RF1 0.386 0.398 0.050 0.056

Table 6: Keyphrase prediction results on the KP20k
dataset with our new evaluation method.

Seq model using another RL algorithm which
only gives one reward for all generated keyphrases
without distinguishing present keyphrases and ab-
sent keyphrases. We use “catSeq-RF1” to de-
note such a method. As seen in Table 5, although
the performance of catSeq-RF1 is competitive to
catSeq-2RF1 on predicting present keyphrases, it
yields an extremely poor performance on absent
keyphrase prediction. We analyze the cause as
follows. During the training process of catSeq-
RF1, generating a correct present keyphrase or a
correct absent keyphrase leads to the same degree
of improvement in the return at every time step.
Since producing a correct present keyphrase is an
easier task, the model tends to generate present
keyphrases only.

Alternative reward function. We implement a
variant of our RL algorithm by replacing the adap-
tive RF1 reward function with an F1 score func-
tion (indicated with a suffix “-2F1” in the result
table). By comparing the last two rows in Table 5,
we observe that our RF1 reward function slightly
outperforms the F1 reward function.

6.8 Analysis of New Evaluation Method

We extract name variations for all keyphrase la-
bels in the testing set of KP20k dataset, follow-
ing the methodology in Section 5. Our method
extracts at least one additional name variation for
14.1% of the ground-truth keyphrases. For these
enhanced keyphrases, the average number of name
variations extracted is 1.01. Among all extracted
name variations, 14.1% come from the acronym in
the ground-truth, 28.2% from the Wikipedia dis-
ambiguation pages, and the remaining 61.6% from
Wikipedia entity page titles.

We use our new evaluation method to evaluate
the performance of different keyphrase generation
models, and compare with the existing evaluation
method. Table 6 shows that for all generative mod-

els, the evaluation scores computed by our method
are higher than those computed by prior method.
This demonstrates that our proposed evaluation
successfully captures name variations of ground-
truth keyphrases generated by different models,
and can therefore evaluate the quality of generated
keyphrases in a more robust manner.

7 Conclusion and Future Work

In this work, we propose the first RL approach
to the task of keyphrase generation. In our RL
approach, we introduce an adaptive reward func-
tionRF1, which encourages the model to generate
both sufficient and accurate keyphrases. Empirical
studies on real data demonstrate that our deep rein-
forced models consistently outperform the current
state-of-the-art models. In addition, we propose a
novel evaluation method which incorporates name
variations of the ground-truth keyphrases. As a
result, it can more robustly evaluate the quality
of generated keyphrases. One potential future di-
rection is to investigate the performance of other
encoder-decoder architectures on keyphrase gen-
eration such as Transformer (Vaswani et al., 2017)
with multi-head attention module (Li et al., 2018;
Zhang et al., 2018a). Another interesting direc-
tion is to apply our RL approach on the microblog
hashtag annotation problem (Wang et al., 2019;
Gong and Zhang, 2016; Zhang et al., 2018b).
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Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Sujatha Das Gollapalli, Xiaoli Li, and Peng Yang.
2017. Incorporating expert knowledge into
keyphrase extraction. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California,
USA., pages 3180–3187.

Yuyun Gong and Qi Zhang. 2016. Hashtag recom-
mendation using attention-based convolutional neu-
ral network. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 2782–2788.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.

Khaled M. Hammouda, Diego N. Matute, and Mo-
hamed S. Kamel. 2005. Corephrase: Keyphrase ex-
traction for document clustering. In Machine Learn-
ing and Data Mining in Pattern Recognition, 4th In-
ternational Conference, MLDM 2005, Leipzig, Ger-
many, July 9-11, 2005, Proceedings, pages 265–274.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP 2003, Sap-
poro, Japan, July 11-12, 2003.
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