# **Problem Description**

### **Input: A Clip of a Meeting**

C: Just spinning and not scrolling , I would say . (1)

C: But if you've got a [disfmarker] if if you've got a flipped thing , effectively it's something that's curved on one side and flat on the other side, but you folded it in half . (2)

D: the case would be rubber and the the buttons , (3)

B: I think the spinning wheel is definitely very now . (1)

B: and then make the colour of the main remote [vocalsound] the colour like vegetable colours , do you know ? (4)

B: I mean I suppose vegetable colours would be orange and green and some reds and um maybe purple (4)

A: but since LCDs seems to be uh a definite yes , (1)

A: Flat on the top . (2)

### **Output: Decision Abstracts (Summary)**

DECISION 1: The remote will have an LCD and spinning wheel inside. DECISION 2: The case will be flat on top and curved on the bottom. DECISION 3: The remote control and its buttons will be made of rubber. DECISION 4: The remote will resemble a vegetable and be in bright vegetable colors.

**Table 1**: A, B, C and D refer to distinct speakers; the numbers in parentheses indicate the associated meeting decision: DECISION 1, 2, 3 or 4. Also shown is the gold-standard (manual) abstract (summary) for each decision. This table lists only *decision-related dialogue acts (DRDAs)* — utterances associated with at least one decision made in the meeting.

### **Challenges:**

- The utterances associated with a single decision are not contiguous in the dialogue. For example, the dialogue acts concerning DECISION 1 are interleaved with DAs for other decisions.
- Some decision-related DAs contribute more than others to the associated decision. In composing the summary for DECISION 1, for example, we might safely ignore the first DA for DECISION 1.
- More so than for standard text summarization, purely extract-based summaries are not likely to be easily interpretable: DRDAs often contain text that is irrelevant to the decision and many will only be understandable if analyzed in the context of the surrounding utterances.

# **Clustering Decision-Related Dialogue Acts**

# **General Framework: Hierarchical Agglomerative Clustering**

### Approach1: Unsupervised Clustering

- Each DRDA is represented as a feature vector  $\overrightarrow{FV} = (x_1, x_2, \dots, x_n)$ ,  $\circ$  TFIDF similarity:  $x_i$  is word  $w_i$ 's TFIDF score
- $\circ$  LDA:  $x_i$  is topic  $T_i$ 's probability

### **Approach2: Pairwise Supervised Clustering**

- Use a classifier to determine whether pairwise DAs should be in the same cluster
- Each feature vector is derived from a pair of DAs

# Table 2: Features for Clustering

number of overlapping words proportion of the number of overlapping words to the length of shorter DA **TF-IDF** similarity

whether the DAs are in an adjacency pair

time difference of pairwise DAs relative dialogue position of pairwise DAs

whether the two DAs have the same DA type

number of overlapping words in the contexts

# **Summarizing Decisions in Spoken Meetings**

# Lu Wang and Claire Cardie

Department of Computer Science, Cornell University



# **Decision Summ**

# **Approach1: Unsupervised Methods for DA Level Summarization**

- Longest DA in the cluster
- Prototype DA: the DRDA with the largest TFIDF similarity with the cluster centroid
- **Approach2: Supervised Methods for DA/Token Level Summarization**

| Table 3: Features for DA Level Summarization          | Table 4: Features for Token Level    |  |  |
|-------------------------------------------------------|--------------------------------------|--|--|
| Lexical Features                                      | Summarization                        |  |  |
| unigram/bigram                                        | Lexical Features                     |  |  |
| length of the DA                                      | current token/current token and next |  |  |
| contain digits?                                       | token length of the DA               |  |  |
| has overlapping words with next DA?                   | is digit?                            |  |  |
| next DA is a positive feedback?                       | appearing in next DA?                |  |  |
| Structural Features                                   | next DA is a positive feedback?      |  |  |
| relative position in the meeting?                     | Structural Features                  |  |  |
| in an AP?                                             | see Table 3                          |  |  |
| if in an AP, AP type                                  | Grammatical Features                 |  |  |
| if in an AP, the other part is decision-related?      | part-of-speech                       |  |  |
| if in an AP, is the source part or target part?       | phrase type (VP/NP/PP)               |  |  |
| if in an AP and is source part, target is positive    | dependency relations                 |  |  |
| feedback?                                             | Other Features                       |  |  |
| if in an AP and is target part, source is a question? | speaker role/topic                   |  |  |
| Discourse Features                                    |                                      |  |  |
| relative position to "WRAP UP" or "RECAP"             |                                      |  |  |
| Other Features                                        |                                      |  |  |
| DA type/speaker role/topic                            |                                      |  |  |

| SUMMARIZATION      | via CRFs  |        |        | via SVMs  |        |        |
|--------------------|-----------|--------|--------|-----------|--------|--------|
|                    | PRECISION | RECALL | F1     | PRECISION | RECALL | F1     |
| CLUSTERING         |           |        |        |           |        |        |
| True Clusterings   |           |        |        |           |        |        |
| DA                 | 0.3922    | 0.4449 | 0.3789 | 0.3661    | 0.4695 | 0.3727 |
| Token              | 0.5055    | 0.2453 | 0.3033 | 0.4953    | 0.3788 | 0.3963 |
| DA+Context         | 0.3753    | 0.4372 | 0.3678 | 0.3595    | 0.4449 | 0.3640 |
| Token+Context      | 0.5682    | 0.2825 | 0.3454 | 0.6213    | 0.3868 | 0.4387 |
| System Clusterings |           |        |        |           |        |        |
| using LDA          |           |        |        |           |        |        |
| DA                 | 0.3087    | 0.1663 | 0.1935 | 0.3391    | 0.2097 | 0.2349 |
| Token              | 0.3379    | 0.0911 | 0.1307 | 0.3760    | 0.1427 | 0.1843 |
| DA+Context         | 0.3305    | 0.1748 | 0.2041 | 0.2903    | 0.1869 | 0.2068 |
| Token+Context      | 0.4557    | 0.1198 | 0.1727 | 0.4882    | 0.1486 | 0.2056 |
| using SVMs         |           |        |        |           |        |        |
| DA                 | 0.3508    | 0.1884 | 0.2197 | 0.3592    | 0.2026 | 0.2348 |
| Token              | 0.2807    | 0.0497 | 0.0777 | 0.3607    | 0.0885 | 0.1246 |
| DA+Context         | 0.3583    | 0.1891 | 0.2221 | 0.3418    | 0.1892 | 0.2213 |
| Token+Context      | 0.4891    | 0.0822 | 0.1288 | 0.4873    | 0.0914 | 0.1393 |
| No Clustering      |           |        |        |           |        |        |
| DA                 | 0.0867    | 0.1957 | 0.0993 | 0.0707    | 0.1979 | 0.0916 |
| Token              | 0.1906    | 0.0625 | 0.0868 | 0.1890    | 0.3068 | 0.2057 |

**Table 5**: Supervised Summarization Results by using True/System/No Clustering

| SUMMARIZATION      |           |        |        |
|--------------------|-----------|--------|--------|
| CLUSTERING         |           |        |        |
|                    | PRECISION | RECALL | F1     |
| True Clusterings   |           |        |        |
| Longest DA         | 0.3655    | 0.4077 | 0.3545 |
| Prototype DA       | 0.3626    | 0.4140 | 0.3539 |
| System Clusterings |           |        |        |
| using LDA          |           |        |        |
| Longest DA         | 0.3623    | 0.1892 | 0.2214 |
| Prototype DA       | 0.3669    | 0.1887 | 0.2212 |
| using SVMs         |           |        |        |
| Longest DA         | 0.3719    | 0.1261 | 0.1682 |
| Prototype DA       | 0.3816    | 0.1264 | 0.1700 |
| No Clustering      |           |        |        |
| Longest DA         | 0.1039    | 0.1382 | 0.1080 |
| Prototype DA       | 0.1350    | 0.1209 | 0.1138 |
| Upper Bound        | 0.8970    | 0.4089 | 0.5333 |

**Table 6**: Unsupervised Summarization Results by using True/System/No Clustering

- CRFs on every task.
- level summaries.
- produced by SVMs (supervised).



**Cornell University** 

### Results

## Conclusion

• Among the unsupervised clustering methods, the LDA topic modeling is preferred to TFIDF. For the pairwise supervised clustering methods, SVMs and Maximum Entropy produce comparable results. • SVMs have a superior or comparable summarization performance vs.

 Token-level summaries perform better than DA-level summaries only using TRUE CLUSTERINGS and the SVM-based summarizer. • Discourse context generally improves token-level summaries but not DA-

• Clusterings produced by (unsupervised) LDA lead to summaries that are quite comparable in quality to those generated from DRDA clusterings