CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Outline

* Maximum Entropy
e Feedforward Neural Networks
e Recurrent Neural Networks

Introduction

* So far we've looked at “generative models”
* Language models, Naive Bayes

e But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, IR (and ML generally)

* Because:
* They give high accuracy performance
* They make it easy to incorporate lots of linguistically important features
* They allow automatic building of language independent, retargetable NLP
modules

Joint vs. Conditional Models

* We have some data {(d, c¢)} of paired observations d and hidden
classes c.

place probabilities over both observed data
and the hidden stuff (generate the observed data from hidden stuff):
P(c,d)
* All the classic statistic NLP models:

* n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free
grammars, IBM machine translation alignment models

Joint vs. Conditional Models

* Discriminative (conditional) models take the data as given, and put a
probability over hidden structure given the data: p(¢|q)

* Logistic regression, conditional loglinear or maximum entropy models, conditional
random fields

* Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly
probabilistic)

Bayes Network/Graphical Models

* Bayes network diagrams draw circles for random variables, and lines for
direct dependencies

* Some variables are observed; some are hidden
* Each node is a little classifier (conditional probability table) based on

incoming arcs e
0) (a) (o (@) (@) (&

Naive Bayes Logistic Regression (aka Maximum Entropy)

Discriminative

Conditional vs. Joint Likelihood

A model gives probabilities P(d,c) and tries to maximize this joint
likelihood.

* It turns out to be trivial to choose weights: just relative frequencies.

* A conditional model gives probabilities P(c|d). It takes the data as
given and models only the conditional probability of the class.
* We seek to maximize conditional likelihood.
* Harder to do.
* More closely related to classification error. (Easy to tune!)

Maximum Entropy (MaxEnt)

* Or logistic regression

Features

* In these slides and most maxent work: features (or feature
functions) f are elementary pieces of evidence that link
aspects of what we observe d with a category c that we want
to predict

A feature is a function with a bounded real value: f: cxD > R

Example Task: Named Entity Type

LOCATION LOCATION DRUG PERSON
in Arcadia in Québec taking Zantac saw Sue

Example features

* f.(c, d)=[c = LOCATION A w_, = “in” AisCapitalized(w)]
* f,(c, d) =[c = LOCATION A hasAccentedLatinChar(w)]
* f5(¢c, d)=[c=DRUG A ends(w, “c”)]

LOCATION LOCATION
in Arcadia in Québec taking Zantac saw Sue
* Models will assign to each feature a weight:

A positive weight votes that this configuration is likely correct
* A negative weight votes that this configuration is likely incorrect

Features

* In NLP uses, usually a feature specifies

1. anindicator function —a yes/no boolean matching function — of
properties of the input and a particular class

f,-(C, d) = [CD(d) NC= Cj] [Value is 0 or 1]

* Each feature picks out a data subset and suggests a label for it

Feature-Based Models

* The decision about a data point is based only on the features active
at that point.

Data Data Data
BUSINESS: Stocks ... to restructure DT) NN ...
hit a yearly low ... bank:MONEY debt. | The previous fall ...
Label: BUSINESS Label: MONEY Label: NN
Features Features Features
{..., stocks, hit, a, {..., w =restructure, {w=fall, t,=]J
yearly, low, ...} w,=debt, =12, ...} w_,=previous}
Text Word-Sense POS Tagging

Categorization Disambiguation

Other Maxent Classifier Examples

* You can use a maxent classifier whenever you want to assign data points
to one of a number of classes:
» Sentence boundary detection (Mikheev 2000)
* Is a period end of sentence or abbreviation?
* Sentiment analysis (Pang and Lee 2002)
* Word unigrams, bigrams, POS counts, ...
* Prepositional phrase attachment (Ratnaparkhi 1998)
» Attach to verb or noun? Features of head noun, preposition, etc.
* Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

Feature-Based Linear Classifiers

* Linear classifiers at classification time:
« Linear function from feature sets {f} to classes {c}.
« Assign a weight A to each feature f.
« We consider each class for sample d
« For a pair (¢,d), features vote with their weights:

* vote(c) = 2 Af(c,d)

in Québec in Québec in Québec

* Choose the class ¢ which maximizes Af/(c,d)

Feature-Based Linear Classifiers

* fi(c, d)=[c = LOCATION A w_, = “in” AisCapitalized(w)] -> weight 1.8
* f,(c, d) =[c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* f5(c, d)=[c=DRUG A ends(w, “c”)] -> weight 0.3

fi(c, d) =[c = LOCATION Aw_ = “in” AisCapitalized(w)] -> weight 1.8
f5(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
f3(c, d) =[c = DRUG A ends(w, “c”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination 2Af/(c,d)

eXp E)\’iﬁ(cad) <— Makes votes positive
2 eXp E A f:(c',d) ~— Normalizes votes

P(c|d,\) =

fi(c, d) =[c = LOCATION Aw_ = “in” AisCapitalized(w)] -> weight 1.8
f>(c, d) =[c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
f3(c, d) =[c = DRUG A ends(w, “c”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination 2Af/(c,d)

cXp E)\’iﬁ(cad) <— Makes votes positive
P(c|d,A) = ' :
2 cXp E)H—fi(c ,d) “— Normalizes votes
. P(lin Québec) = e!-8e-0-6/(el-8¢0-6 + 0.3 + @0) = 0,586
e P(lin Québec) = e0-3 /(e!-8e0-6 + e0-3 + ¢0) = (0.238
. P(lin Québec) = eV /(e!-8e0-6 + e0-3 + e0) = 0.176

* The weights are the parameters of the probability
model, combined via a “soft max” function

Feature-Based Linear Classifiers

e Exponential models:

* Given this model form, we will choose parameters {4} that maximize the
conditional likelihood of the data according to this model.

* We construct not only classifications, but probability distributions over
classifications.

* There are other (good!) ways of discriminating classes — SVMs, boosting,
even perceptrons — but these methods are not as trivial to interpret as
distributions over classes.

Outline

* Maximum Entropy
e Feedforward Neural Networks
e Recurrent Neural Networks

Neural Network Learning

* Learning approach based on modeling adaptation in biological neural
systems.

* Perceptron: Initial algorithm for learning simple neural networks
(single layer) developed in the 1950’s.

* Backpropagation: More complex algorithm for learning multi-layer
neural networks developed in the 1980’s.

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

» Neuron pre-activation (or input activation):

a(x)=b+> wr;=b+w'x

* Neuron (output) activation

h(x) = g(a(x)) = g(b+ >_; wix;)

* W are the connection weights
» b is the neuron bias

» g(+) is called the activation function

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

range determined
by 9(+)

bias b only
changes the
position of
the riff

(from Pascal Vincent's slides)

S ATION FUNCGHRIEIN

Topics: linear activation function

* Performs no input
squashing

* Not very interesting...

ACTIVATION FUNCTION

Topics: sigmoid activation function

* Squashes the neuron’s
pre-activation between
0and |

* Always positive ::j R—
* Bounded
* Strictly increasing

g(a) = sigm(a) = gEw—

ACTIVATION FUNCTION

Topics: hyperbolic tangent (“tanh”) activation function

* Squashes the neuron’s
pre-activation between
-1 and | o

1.0

* Can be positive or
negative

» Bounded

» Strictly increasing

—exp(— Sa)en
g(a) = tanh(e) = SEETEIY — PR

SRV ATION FUNGRIGHN

Topics: rectified linear activation function

* Bounded below by O
(always non-negative)

* Not upper bounded

* Strictly increasing

* Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):
#ouus
def forward(inputs):

nmun nmmn

assume inputs and weights are 1-D numpy arrays and bias is a number
cell body sum = np.sum(inputs * self.weights) + self.bias

firing rate = 1.0 / (1.0 + math.exp(-cell_body sum)) # sigmoid activation function
return firing rate

Linear Separator

* Since one-layer neuron (aka perceptron) uses linear
threshold function, it is searching for a linear
separator that discriminates the classes.

Topics: capacity of single neuron

» Can solve linearly separable problems

ARTIFICIAL NEURON

L2

OR (z1, x2) N AND (77, 29)
/
\ A A | A 7 O
\ ™ ’
\ s ’
o _A of,” o o
> >
0 | 0 |
I Wis)

AND (:El) T‘.Z)

ARTIFICIAL NEURON

Topics: capacity of single neuron

» Can't solve non linearly separable problems...

XOR (:171,562) XOR (561,5172)
A Tg A
"l a o BTN RN
a\ ’ = N\
8 ¢ g \
0 o A % 0 o LA
> < A
0 | 0 I
1 AND (Z7, 2)

* ... unless the input is transformed in a better representation

NEURAL NETWORK

Topics: single hidden layer neural network
* Hidden layer pre-activation:
a(x) = bW + wlx
(ate) = + 3, W)
* Hidden layer activation:

h(x) = g(a(x))

» Output layer activation:

output activation function

NEURAL NETWORK

Topics: softmax activation function

* For multi-class classification:
» we need multiple outputs (I output per class)
» we would like to estimate the conditional probability p(y = C|X)

* We use the softmax activation function at the output:

exp(ai) exp(ac) i
o(a) = SOftmaX(a) =0 [Zc exp(lac) NS exp(ac)]

» strictly positive

» sums to one

* Predicted class is the one with highest estimated probability

NEGRAL NETVASIRS

Topics: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h©®(x) = x)

a® (x) = b®) 4 WHRRk=1) (x)

» hidden layer activation (k from 1 to L):
h*)(x) = g(a®(x))

» output layer activation (k=L+1):
R(4D (x) = o(alt+D) (x)) = £(x)

WA CITY OF NEURAL NETVAGISIS

Topics: single hidden layer neural network

X X2

(from Pascal Vincent's slides)

A CITY OF NEURAL NETVAVASISIS

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

EEPACITY OF NEURAL NETVAVSISS

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

W FACITY OF NEURAL NETVGISIS

Topics: universal approximation

* Universal approximation theorem (Homik, 1991):

» “a single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units”

* The result applies for sigmoid, tanh and many other hidden
layer activation functions

* This is a good result, but it doesnt mean there is a learning
algorithm that can find the necessary parameter values!

3 hidden neurons 6 hidden neurons 20 hidden neurons

How to train a neural network?

Topics: multilayer neural network
 Could have L hidden layers:

» layer input activation for k>0 (h(®¥(x) = x)
a(k)(x) — bk 4 W(k)h(k—l)(x)

» hidden layer activation (k from 1 to L):
h*) (x) = g(a™(x))

» output layer activation (k= L+ 1):
h("*+1(x) = o(a"+V (x)) = f(x)

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

1
arg min - > UFxM;0),y) + A(0)
t

v I(f(x®);8),y®) is aloss function
» () is a regularizer (penalizes certain values of @)
* Learning is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

The rest of the slides are for reference only
(not covered by lecture or exam)

The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
» initialize @ (0 = {W(l), b(l), e ,W(L‘H), b(L+1)})
» for N iterations

- for each training example (x(®),y(®) g
training epoch
v A = —Vol(f(x®;8),y®) — AVoQ(8) -

vO—0+aA iteration over all examples

* To apply this algorithm to neural network training, we need
» the loss function [(£(x(®); 8), y(*))
» a procedure to compute the parameter gradients Vgl(f(x(t); 0), y(t))
» the regularizer (@) (and the gradient V9$2(8))

» nrtialization method

BG5S FUNCTICN

Topics: loss function for classification

« Neural network estimates f(X). = p(y = c|x)

» we could maximize the probabilities of y(t) given x® in the training set

 To frame as minimization, we minimize the
negative log-likelihood natural log (In)

(E(x),y) = — 2o Ly=c) log f (%) = —log f(x)y

» we take the log to simplify for numerical stability and math simplicity

» sometimes referred to as cross-entropy

The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
» initialize @ (0 = {W(l), b, ... W&t b(L+1)})
» for N iterations

- for each training example (x(®),y(®) g
training epoch
¢ A= —Vpl(f(x®);8),y®) — A\VQ(8) -

vO—0+aA iteration over all examples

* To apply this algorithm to neural network training, we need
» the loss function [(£(x(®); 8), y(*))
mm) > aprocedure to compute the parameter gradients Vgl(f(x(t); 0), y(t))
» the regularizer (@) (and the gradient V9$2(8))

» nrtialization method

Gradient Computation
e Qutput layer gradient (o)

» Hidden layer gradient (h)
 Activation function gradient (a)

* Parameter gradient (W, b)

Gradient Computation
e OQutput layer gradient (o)

» Hidden layer gradient (h)
 Activation function gradient (a)

* Parameter gradient (W, b)

ERADIENT COMPUTAIRSIS

Topics: loss gradient at output

* Partial derivative:

_1(y=0)

0
T ke

» Gradient:
Vix) — log f(x),)

1 Ly=0)
e | e

liy=c-1)

—e(y)
f(x)y

EIRADIENT COMPUTAIRICHN
Topics: |oss gradient at output -

pre-activation

* Partial derivative:
15)

Gatatlix),

=g (1(y=0) e f(x)c)

— log f(x)y

* Gradient:

V@i (x) — log f(x)y
= —(e(y) —f(x))

— log f(x)y
daL+1)(x),

0
aa(L"'l)(x)C — log f(x)y

—1 0

— f(X)y 8a(L+1)(X)Cf(x)y

0
daD (x), log f(x)y

1 9
f(x)y 3a(L+1)(x)Cf(x)y
1 9

FG0y B, max(@ i),

0
daL+)(x). log f(x)y

—1 0
f(X)y aa(L+1)(x)Cf(X)y
-1 0
f(x)y 9aFHD(x)c
-1 %) exp(ar+1)(x),)
f(x)y 0alFHD(x)c 3 exp(all D (x)e)

softmax(a“+1)(x)),

0

m — log f(x)y

dg(x) 1 g(x) Oh(x)

Jr h(x) h(x)?

or

-1 o o4z
76, Ba(x), T O 52 =

—1 5] '
F(%), aa(LH)(x)cSoftmax(a(L+1)(x))y

00 eplat(x),)

F(x)y 8aFHD(x)e 32 exp(altHh(x)er)

f(x)y 2o exp(altt(x))

(2. exp(al-+D(x)))”

1 (WITBIW exp(aPtV(x),) exp(a'* T (x),) (W‘LT@I)(x_)C Yo exp(a(L+1)(x)C,))

|

0
m — log f(x)y

— 9(z)

f(xl) o (L+31) f(x), aZ(x) _ dg(xz) 1 g(x) Oh(x)
_ly a a(X)C Or dr h(z) h(x)?2 Oz
f(x)y OalLtD)(x) softmax(at) (x)),

-1 0 exp(attD(x),)

69y 9 (x). T, exp(al™D (x)r)
1 (ﬁmexp(a@m(x)y) exp(a(x),) (mﬁmzdexp(a@“)(x)cf)))

f@, | Zoep@E(x)e) (3. exp(aEt1)(x),))”

—1 (ly—geP@®D(x),) exp(atV(x),) exp(a™* (x).)
Fx)y \ Yo exp(a®D(x)e) Yo explaHD(x)e) Y. exp(alF+(x)e)

0
3T (x), log f(x)y

(z)
L9y, Ofm dg(z) 1 g(x) Oh(x)

fg(l)y (9a(L+;)(x) or Oz h(x) B h(x)? Ox
760y datiG), max(@ i),
-1 0 exp(aFtV(x),)

f(x)y 0aEHD(x). 3-, exp(allth(x)e)

1 (WIT&U(T)C exp(a®*V(x),) - exp(aFtV)(x),) (Wu—alm > exp(a(L“)(x)cf)))
f6, | o exp(a®F D (x)e) (¥ exp(alt+D(x).))*

® (1(y=c) exp(a™(x),) exp(a"t(x),) exp(a" 1 (x).))
fx)y \ Xoexplatt(x)s) 3. exp(at(x)e) 3o, exp(altH(x)e)

! (l(yzc)softmax(a(L“)(x))y — softmax(a“ V) (x)),, softmax(a(L“)(x))c)

f(x)y

0
m — log f(x)y

— (z)

f(xl)) (L+61) f(x)y (9;];(:1:) _ _Og(z) 1 g(z) Oh(z)
_ly a 3(X)C Ox dr h(x) h(x)?2 Ox
7, G, olmax(@ T (),

—1 0 exp(aE+1)(x),)

F(x)y 9aHD(x)e 32, exp(alr) (x)er)

4 (WITBIWQXP(ot (x),) exp(a®tD(x),) (garalm > exp(a(L+1)(X)c')))

Fx), exp(aCD(x)e) (., exp(alt+D(x).))?

(l(y o exp(aF Y (x),) exp(a" V) (x),) exp(a™*1(x).))
x)y

exp(af™D(x).) L. exp(a@t(x)) T, exp(aD (x).)

(l(y_c)softmax(a(L+1)(x)) — softmax(alt*+1(x)), softmax(a(L+1)(x))c)

x)y

(l(y C)f(x)y f(x)y f(X)C)

f (x)y

)
8aT+) (x),

-1 0 89(:13) , ,
7, da (). X @ _ Og9(x) 1 g(z) Oh(z)

—log f(x)y

-1 0
f(x)y daL+D)(x), softmax(a® (), -
-1 0 exp(aFtY)(x),)

f(x)y 8allt(x)c 3. exp(allth)(x)e)
-1 WIT&‘W exp(a(L‘H)(x)y) B eXP(a(L+1)(X)y) (%(ITalm Do exp(a(“'l)(x)cf))
f(x), > exp(attl)(x)) . exp(a(L+1)(x)C,))2

1(y o) exp(al"*V(x),) exp(a" V) (x),) exp(a*1(x).)
f(x)y

sexpal(x)s) Y. explatD(x)s) T, exp(alttD(x)e)

(1 _C)softmax(a(L“)(x)), — softmax(a“*+1(x)), softmax(a(L"'l)(x))c)

(x)y
(1<y o f(X)y — f(X)y f(X)e)

Gradient Computation
e Qutput layer gradient (o)

* Hidden layer gradient (h)
 Activation function gradient (a)

* Parameter gradient (W, b)

ERADIENT COMPUTATNGEN
Topics: |oss gradient at hidden layer -

* ... this is getting complicated!!

ERADIENT COMPUTATRGHS
Topics: chain rule -

- If a function p(a) can be written as
a function of intermediate results g;(a)

then we have: CoRELS
Op(a) ~— Op(a) dg;(a)
da Z Jq;(a) Oa

* We can invoke it by setting
» @ to aunitin layer

» gi(@) to a pre-activation in the layer above Wi

> p(a) is the loss function

EIR-DIENT COMPUTAIRIGHN

Topics: loss gradient at hidden layers -
» Partial derivative;

0
(‘M(T(x)j — log f(x)y

i Z 0 — log f(x), Oa*+1)(x);
= D). 0P (x);

R Z 0 — log f(x)y W(k+1)
= —~ Jak+1)(x); 1,3

M (x) .
B (w_’fjl)T(vak+1(x) —log f(x)yi‘ .

REMINDER

ERADIENT COMPUITATRIGIN

Topics: [oss gradient at hidden layers -
* Gradient:

Vh(k)(x) — log f(x),
s W(k+1)T (Va(k+1)(x) g log f(X)y)

GRADIENT COMPUTAIRSIN

Topics: loss gradient at hidden layers
pre-activation -

* Partial derivative:

&z%(x)j —log f(x)y
0 —log f(x), 3h(k)(x)j

ohP (x); 9al¥ (x),
0 —log f(x)y ,

— G (x)j q (a,(k) (X)j)

REMINDER

ERADIENT COMPUTATRICIR
Topics: loss gradient at hidden layers -

pre-activation

» Gradient: : -
Va(k)(x)—logf(x)y \f ,—/'—

o (k) 3 \\ b®)
= (Vh(k)(x) —log f (X)y) Va(k)(x)h (x) WGE) N
= (Vaw —log f(x)y) @[, ' (@™ (x);), - ..] | | |

element-wise
product

REMINDER

Gradient Computation
e Qutput layer gradient (o)

» Hidden layer gradient (h)
 Activation function gradient (a)

* Parameter gradient (W, b)

SETIVATION FUNGCHRIGHN

Topics: linear activation function gradient

* Partial derivative:

g'(a) =1

ACTIVATION FUNCTION

Topics: sigmoid activation function gradient

* Partial derivative: e

g'(a) = g(a)(1 —g(a))

g = sl = s

ACTIVATION FUNCTION

Topics: tanh activation function gradient

* Partial derivative:

Bar=1— g(a)?

25 __ exp(a)—exp(—a) __ exp(2a)-1
g(a) = tanh(a’) ~ exp(a)+exp(—a) exp(2a)+1

Some Common Activation Functions Activation Function Derivatives

Gradient Computation
e Qutput layer gradient (o)

» Hidden layer gradient (h)
 Activation function gradient (a)

e Parameter gradient (W, b)

ERADIENT COMPUTAINGIN
Topics: loss gradient of parameters -

* Partial derivative (weights):

B
— —log f(x)
(k) v
ow"

0 — log f(x)y da*) (x);
dak) (X)z (9Wi(l;)

_ O0—log e)
ol 525 (x), yhj (x)

SRABDIENT COMPUTAIRSHS
Topics: loss gradient of parameters -

» Gradient (weights):

Vwx —log f(x)y
— (Va(k)(x) — log f(x)y) h(k_l)(X)T

EIRADIENT COMPUTATIGHN
Topics: loss gradient of parameters -

* Partial derivative (biases):

0
— — log f(x)y

obk)

0 —log f(x)y da'k) =9k
0a®)(x); op{F)

0 — log f(x),
daF) (x);

ERADIENT COMPUTARGN

Topics: loss gradient of parameters -
* Gradient (biases):

Vi — log f(x),
= Vaw(x) —log f(x),

Backpropagation

RECH VY GRAR

Topics: flow graph

* Forward propagation can be
represented as an acyclic
flow graph

* It's a nice way of implementing
forward propagation in a modular
way
» each box could be an object with an fprop method,

that computes the value of the box given its
children

» calling the fprop method of each box in the
right order yield forward propagation

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (Ixl)

B GIROA [l

Topics: automatic differentiation

» Each object also has a bprop method

» it computes the gradient of the loss with
respect to each children

» fprop depends on the fprop of a box’s children,
while bprop depends the bprop of a box’s parents

» By calling bprop in the reverse order,
we get backpropagation

» only need to reach the parameters

RECH GRARE

Topics: automatic differentiation

* Each object also has a bprop method

» it computes the gradient of the loss with
respect to each children

» fprop depends on the fprop of a box’s children,
while bprop depends the bprop of a box's parents

* By calling bprop in the reverse order,
we get backpropagation

» only need to reach the parameters

BACKPROPAGATION

Topics: backpropagation algorithm

* This assumes a forward propagation has been made before

» compute output gradient (before activation)
Vaain(x) —log f(x)y <= —(e(y) —f(x))
» for kfrom L+1to 1

- compute gradients of hidden layer parameter
Vwm —log f(x)y <= (Vaw(x) —logf(x),) hE=D(x)T
Vem —log f(x)y <= V,umx) —log f(x)y

- compute gradient of hidden layer below

|
Vhte-1(x) — log f(x)y < VLS (Va(k)(x) —loy f(x)y)

- compute gradient of hidden layer below (before activation)

Va(k—l)(x) —log f(x)y < (Vh(k—l)(x) — log f(x)y) ol... ,gl(a(k_l)(x)j)u 2D

Error Surface: 1-layer Network Error Surface: 2-layer Network

10

Total error on training set

(R

—#

50 100 150 200 250 300 350
Number of epochs

[figure from Greg Mori’s slides]

400

The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
» initialize @ (0 = {W(l), b, ... W&t b(L+1)})
» for N iterations

- for each training example (x(®),y(®) g
training epoch
¢ A= —Vpl(f(x®);8),y®) — A\VQ(8) -

vO—0+aA iteration over all examples

* To apply this algorithm to neural network training, we need
» the loss function [(£(x(®); 8), y(*))
» a procedure to compute the parameter gradients Vgl(f(x(t); 0), y(t))
m) » the regularizer (@) (and the gradient V£2(8))

» nrtialization method

REGULARIZATION

Topics: L2 regularization

6) = S 5 T, (W) = T WO

- Gradient: V() = 2WK)

* Only applied on weights, not on biases (weight decay)

» Can be interpreted as having a Gaussian prior over the
weights

REGULARIZATION

Topics: L| regularization

WG D W

» Gradient: V) Q(0) = sign(W®))
» where sign(W®); ; = Lw® 50 = Lw® oo
» Also only applied on We}ghts
» Unlike L2, LI will push certain weights to be exactly O

» Can be interpreted as having a Laplacian prior over the
weights

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

1
arg min - > UFxM;0),y) + A(0)
t

v I(f(x®);8),y®) is aloss function
» () is a regularizer (penalizes certain values of @)
* Learning is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

A =0.001 A=0.01

[http://cs231n.github.io/neural-networks-1/]

The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
» initialize @ (0 = {W(l), b, ... W&t b(L+1)})
» for N iterations

- for each training example (x(®),y(®) g
training epoch
¢ A= —Vpl(f(x®);8),y®) — A\VQ(8) -

vO—0+aA iteration over all examples

* To apply this algorithm to neural network training, we need
» the loss function [(£(x(®); 8), y(*))
» a procedure to compute the parameter gradients Vl(f(x®); 8), y(*))
» the regularizer (@) (and the gradient V9$2(8))
B, initialization method

INITIALIZATION

Topics: initialization
* For biases

» initialize all to O
* For weights

» Can't intialize weights to O with tanh activation
- we can show that all gradients would then be O (saddle point)
» Can't initialize all weights to the same value
- we can show that all hidden units in a layer will always behave the same
size of h(¥ (x)
- need to break symmetry
» Recipe: sample Wf? from U [—b, b] where b= V6

VHet+Hr—1

- other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

- the idea is to sample around O but break symmetry

The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
» initialize @ (0 = {W(l), b(l), e ,W(L‘H), b(L+1)})
» for N iterations

- for each training example (x(®),y(®) g
training epoch
v A = —Vol(f(x®;8),y®) — AVoQ(8) -

vO—0+aA iteration over all examples

* To apply this algorithm to neural network training, we need
» the loss function [(£(x(®); 8), y(*))
» a procedure to compute the parameter gradients Vgl(f(x(t); 0), y(t))
» the regularizer (@) (and the gradient V9$2(8))

» nrtialization method

Toolkits

* TensorFlow
* https://www.tensorflow.org/

* Theano (not maintained any more)
e http://deeplearning.net/software/theano/

* PyTorch
e http://pytorch.org/

