
CS	6120/CS4120:	Natural	Language	Processing

Instructor:	Prof.	Lu	Wang
College	of	Computer	and	Information	Science

Northeastern	University
Webpage:	www.ccs.neu.edu/home/luwang

Logistics
• Course	webpage:

• http://www.ccs.neu.edu/home/luwang/courses/cs6120_sp2018/cs6120_sp2
018.html

• Office	hours	(starting	next	week)
• Manthan Thakar (TA), Mondays:	1:00	– 2:00	pm,	WVH	462
• Lu	Wang	(instructor), Tuesdays: 5:15pm	to	6:15pm,	or	by	appointment,	WVH	
258

• Tirthraj Maheshkumar Parmar (TA),	Wednesdays:	4:00	– 5:00	pm	WVH	462
• Liwen Hou (TA),	Fridays:	2:00	– 3:00	pm	WVH	462	(starting	1/26/2017)

• Piazza
• http://piazza.com/northeastern/sp2018/cs6120	/home
• All	course	relevant	questions	should	go	here	– also	is	the	best	way	to	reach	
the	instructor	and	TAs!

Project	Proposal
• Length:	1	page	(or	more	if	necessary).	

• Single	space	if	MS	word	is	used.	Or	you	can	choose	latex	templates,	e.g.	
https://www.acm.org/publications/proceedings-template or	http://icml.cc/2015/?page_id=151 .

• Introduction:	the	problem	has	to	be	well-defined.	What	are	the	input	and	output.	Why	this	
is	an	important	problem	to	study.

• Related	work:	put	your	work	in	context.	Describe	what	has	been	done	in	previous	work	on	
the	same	or	related	subject.	And	why	what	you	propose	to	do	here	is	novel	and	different.

• Datasets:	what	data	do	you	want	to	use?	What	is	the	size	of	it?	What	information	is	
contained?	Why	is	it	suitable	for	your	task?

• Methodology	(optional):	what	models	do	you	want	to	use?	You	may	change	the	model	as	
the	project	goes,	but	you	may	want	to	indicate	some	type	of	models	that	might	be	suitable	
for	your	problem.	Is	it	a	supervised	learning	problem	or	unsupervised?	What	classifiers	can	
you	start	with?	Are	you	making	improvements?	You	don't	have	to	be	crystal	clear	on	this	
section,	but	it	can	be	used	to	indicate	the	direction	that	your	project	goes	to.	

• Evaluation:	what	metrics	do	you	want	to	use	for	evaluating	your	models?

Sample	proposal	and	reports

• www.ccs.neu.edu/home/luwang/courses/cs6120_sp2018/cs6120_sp
2018.html

• Sample	projects	from	Stanford	NLP	course
• http://web.stanford.edu/class/cs224n/reports.html

• Finding	teammates	on	Piazza!

Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

[Modified	from	Dan	Jurafsky’s slides]

Probabilistic	Language	Models

•Assign	a	probability	to	a	sentence
•Machine	Translation:

• P(high	winds	tonight)	>	P(large winds	tonight)
•Spell	Correction

• The	office	is	about	fifteen	minuets from	my	house
• P(about	fifteen	minutes from)	>	P(about	fifteen	minuets from)

•Speech	Recognition
• P(I	saw	a	van)	>>	P(eyes	awe	of	an)

•Text	Generation	in	general:	
• Summarization,	question-answering …

Probabilistic	Language	Modeling

• Goal:	compute	the	probability	of	a	sentence	or	sequence	of	words:
P(W)	=	P(w1,w2,w3,w4,w5…wn)

• Related	task:	probability	of	an	upcoming	word:
P(w5|w1,w2,w3,w4)

• A	model	that	computes	either	of	these:
P(W)					or					P(wn|w1,w2…wn-1)										is	called	a	language	model.

• Better:	the	grammar							
• But	language	model	(or	LM) is	standard

How	to	compute	P(W)

• How	to	compute	this	joint	probability:

•P(its,	water,	is,	so,	transparent,	that)

• Intuition:	let’s	rely	on	the	Chain	Rule	of	Probability

Quick	Review:	Probability

• Recall	the	definition	of	conditional	probabilities
p(B|A)	=	P(A,B)/P(A) Rewriting:			P(A,B)	=	P(A)P(B|A)

• More	variables:
P(A,B,C,D)	=	P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The	Chain	Rule	in	General
P(x1,x2,x3,…,xn)	=	P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The	Chain	Rule	applied	to	compute	joint	
probability	of	words	in	sentence

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

The	Chain	Rule	applied	to	compute	joint	
probability	of	words	in	sentence

P(“its	water	is	so	transparent”)	=
P(its)	× P(water|its)	× P(is|its water)	

× P(so|its water	is)	× P(transparent|its water	is	
so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

How	to	estimate	these	probabilities

• Could	we	just	count	and	divide?

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

How	to	estimate	these	probabilities

• Could	we	just	count	and	divide?

• No!		Too	many	possible	sentences!
• We’ll	never	see	enough	data	for	estimating	these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Markov	Assumption

•Simplifying	assumption:

•Or	maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Markov	Assumption

•In	other	words,	we	approximate	each	
component	in	the	product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Simplest	case:	Unigram	model

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some	automatically	generated	sentences	from	a	unigram	model

€

P(w1w2…wn) ≈ P(wi)
i
∏

Condition	on	the	previous	word:

Bigram	model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

N-gram	models

•We	can	extend	to	trigrams,	4-grams,	5-grams
• In	general	this	is	an	insufficient	model	of	language

• because	language	has	long-distance	dependencies:

“The	computer(s)	which	I	had	just	put	into	the	machine	room	
on	the	fifth	floor	is	(are)	crashing.”

•But	we	can	often	get	away	with	N-gram	models

Today’s	Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

Estimating	bigram	probabilities

• The	Maximum	Likelihood	Estimate	for	bigram	probability

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

An	example

<s>	I	am	Sam	</s>
<s>	Sam	I	am	</s>
<s>	I	do	not	like	green	eggs	and	ham	</s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

An	example

<s>	I	am	Sam	</s>
<s>	Sam	I	am	</s>
<s>	I	do	not	like	green	eggs	and	ham	</s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

More	examples:	
Berkeley	Restaurant	Project	sentences

• can	you	tell	me	about	any	good	cantonese restaurants	close	by
•mid	priced	thai food	is	what	i’m looking	for
• tell	me	about	chez	panisse
• can	you	give	me	a	listing	of	the	kinds	of	food	that	are	available
• i’m looking	for	a	good	place	to	eat	breakfast
•when	is	caffe venezia open	during	the	day

Raw	bigram	counts

• Out	of	9222	sentences

Raw	bigram	probabilities

• Normalize	by	unigrams:

• Result:

Bigram	estimates	of	sentence	probabilities

P(<s>	I	want	english food	</s>)	=
P(I|<s>)			
× P(want|I)		
× P(english|want)			
× P(food|english)			
× P(</s>|food)

=		.000031

Knowledge

•P(english|want)		=	.0011
•P(chinese|want)	=		.0065
•P(to|want)	=	.66
•P(eat	|	to)	=	.28
•P(food	|	to)	=	0
•P(want	|	spend)	=	0
•P	(i |	<s>)	=	.25

Practical	Issues

•We	do	everything	in	log	space
•Avoid	underflow
•(also	adding	is	faster	than	multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Language	Modeling	Toolkits

•SRILM
•http://www.speech.sri.com/projects/srilm/

Google	N-Gram	Release,	August	2006

…

Google	N-Gram	Release

• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Today’s	Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

Evaluation:	How	good	is	our	model?

• Does	our	language	model	prefer	good	sentences	to	bad	ones?
• Assign	higher	probability	to	“real”	or	“frequently	observed”	sentences	

• Than	“ungrammatical”	or	“rarely	observed”	sentences?

• We	train	parameters	of	our	model	on	a	training	set.
• We	test	the	model’s	performance	on	data	we	haven’t	seen.

• A	test	set	is	an	unseen	dataset	that	is	different	from	our	training	set,	totally	
unused.

• An	evaluation	metric	tells	us	how	well	our	model	does	on	the	test	set.

Training	on	the	test	set

• We	can’t	allow	test	sentences	into	the	training	set
• We	will	assign	it	an	artificially	high	probability	when	we	set	it	in	the	
test	set

• “Training	on	the	test	set”
• Bad	science!
• And	violates	the	honor	code

34

Extrinsic	evaluation	of	N-gram	models

•Best	evaluation	for	comparing	models	A	and	B
• Put	each	model	in	a	task

• spelling	corrector,	speech	recognizer,	MT	system
• Run	the	task,	get	an	accuracy	for	A	and	for	B

• How	many	misspelled	words	corrected	properly
• How	many	words	translated	correctly

• Compare	accuracy	for	A	and	B

Difficulty	of	extrinsic	evaluation	of		N-gram	
models
•Extrinsic	evaluation

• Time-consuming;	can	take	days	or	weeks
•So

• Sometimes	use	intrinsic evaluation:	perplexity

Difficulty	of	extrinsic	evaluation	of		N-gram	
models
•Extrinsic	evaluation

• Time-consuming;	can	take	days	or	weeks
•So

• Sometimes	use	intrinsic evaluation:	perplexity
• Bad	approximation	

• unless	the	test	data	looks	just like	the	training	data
• So	generally	only	useful	in	pilot	experiments

• But	is	helpful	to	think	about.

Intuition	of	Perplexity

• The	Shannon	Game:
• How	well	can	we	predict	the	next	word?

• Unigrams	are	terrible	at	this	game.		(Why?)

• A	better	model	of	a	text
• is	one	which	assigns	a	higher	probability	to	the	word	that	actually	occurs

I	always	order	pizza	with	cheese	and	____

The	33rd President	of	the	US	was	____

I	saw	a	____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity	is	the	inverse	probability	of	
the	test	set,	normalized	by	the	number	
of	words:

The	best	language	model	is	one	that	best	predicts	an	unseen	test	set
• Gives	the	highest	P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity

Perplexity	is	the	inverse	probability	of	
the	test	set,	normalized	by	the	number	
of	words:

Chain	rule:

For	bigrams:

Minimizing	perplexity	is	the	same	as	maximizing	probability

The	best	language	model	is	one	that	best	predicts	an	unseen	test	set
• Gives	the	highest	P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity	as	branching	factor

• Let’s	suppose	a	sentence	consisting	of	random	digits
• What	is	the	perplexity	of	this	sentence	according	to	a	model	that	
assign	P=1/10	to	each	digit?

Perplexity	as	branching	factor

• Let’s	suppose	a	sentence	consisting	of	random	digits
• What	is	the	perplexity	of	this	sentence	according	to	a	model	that	
assign	P=1/10	to	each	digit?

Lower	perplexity	=	better	model

•Training	38	million	words,	test	1.5	million	words,	WSJ

N-gram	
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Today’s	Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

The	perils	of	overfitting

•N-grams	only	work	well	for	word	prediction	if	the	
test	corpus	looks	like	the	training	corpus
• In	real	life,	it	often	doesn’t
•We	need	to	train	robust	models	that	generalize!
•One	kind	of	generalization:	Zeros!

•Things	that	don’t	ever	occur	in	the	training	set
•But	occur	in	the	test	set

The	perils	of	overfitting

•N-grams	only	work	well	for	word	prediction	if	the	
test	corpus	looks	like	the	training	corpus
• In	real	life,	it	often	doesn’t
•We	need	to	train	robust	models	that	generalize!

Zeros

In	training	set,	we	see
…	denied	the	allegations
…	denied	the	reports
…	denied	the	claims
…	denied	the	request

P(“offer”	|	denied	the)	=	0

But	in	test	set,
…	denied	the	offer
…	denied	the	loan

Zero	probability	bigrams

• Bigrams	with	zero	probability
• mean	that	we	will	assign	0	probability	to	the	test	set!

• And	hence	we	cannot	compute	perplexity	(can’t	divide	by	0)!

Today’s	Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

The intuition of smoothing (from Dan Klein)

• When	we	have	sparse	statistics:

• Steal	probability	mass	to	generalize	better

P(w	|	denied	the)
3	allegations
2	reports
1	claims
1	request
7	total

P(w	|	denied	the)
2.5	allegations
1.5	reports
0.5	claims
0.5	request
2	other
7	total

al
le
ga
tio

ns

re
po

rt
s

cl
ai
m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le
ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…al
le
ga
tio

ns

re
po

rt
s

cl
ai
m
s

re
qu

es
t

Add-one	estimation

•Also	called	Laplace	smoothing
• Pretend	we	saw	each	word	one	more	time	than	we	did
• Just	add	one	to	all	the	counts!	(Instead	of	taking	away	
counts)

•MLE	estimate:

•Add-1	estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Add-one	estimation

•Also	called	Laplace	smoothing
• Pretend	we	saw	each	word	one	more	time	than	we	did
• Just	add	one	to	all	the	counts!

•MLE	estimate:

•Add-1	estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V Why	add	V?

Berkeley	Restaurant	Corpus:	Laplace	
smoothed	bigram	counts

Laplace-smoothed	bigrams

Add-1	estimation	is	a	blunt	instrument

• So	add-1	isn’t	used	for	N-grams:	
• We’ll	see	better	methods	
• (nowadays,	neural	LM	becomes	popular,	will	discuss	in	semantic	
lecture)

• But	add-1	is	used	to	smooth	other	NLP	models
• For	text	classification	(coming	soon!)	
• In	domains	where	the	number	of	zeros	isn’t	so	huge.

Today’s	Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

Backoff and	Interpolation
• Sometimes	it	helps	to	use	less	context

• Condition	on	less	context	for	contexts	you	haven’t	learned	much	about	

• Backoff:	
• use	trigram	if	you	have	good	evidence
• otherwise	bigram
• otherwise	unigram

• Interpolation:	
• mix	unigram,	bigram,	trigram

• In	general,	interpolation	works	better

Linear	Interpolation

•Simple	interpolation

• Lambdas	conditional	on	context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

How	to	set	the	lambdas?

• Use	a	held-out corpus

• Choose	λs to	maximize	the	probability	of	held-out	data:
• Fix	the	N-gram	probabilities	(on	the	training	data)
• Then	search	for	λs that	give	largest	probability	to	held-out	set:

Training	Data Held-Out	
Data

Test	
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

A	Common	Method	– Grid	Search

• Take	a	list	of	possible	values,	e.g.	[0.1,	0.2,	… ,0.9]
• Try	all	combinations

Unknown	words:	Open	versus	closed	
vocabulary	tasks

• If	we	know	all	the	words	in	advanced
• Vocabulary	V	is	fixed
• Closed	vocabulary	task

• Often	we	don’t	know	this
• Out	Of	Vocabulary =	OOV	words
• Open	vocabulary	task

Unknown	words:	Open	versus	closed	
vocabulary	tasks

• If	we	know	all	the	words	in	advanced
• Vocabulary	V	is	fixed
• Closed	vocabulary	task

• Often	we	don’t	know	this
• Out	Of	Vocabulary =	OOV	words
• Open	vocabulary	task

• Instead:	create	an	unknown	word	token	<UNK>
• Training	of	<UNK>	probabilities

• Create	a	fixed	lexicon	L	of	size	V	(e.g.	selecting	high	frequency	words)
• At	text	normalization	phase,	any	training	word	not	in	L	changed	to		<UNK>
• Now	we	train	its	probabilities	like	a	normal	word

• At	test	time
• If	text	input:	Use	UNK	probabilities	for	any	word	not	in	training

Smoothing	for	Web-scale	N-grams

• “Stupid	backoff”	(Brants et	al.	2007)
•No	discounting,	just	use	relative	frequencies	

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N
Until	unigram	probability

Today’s	Outline

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

Absolute	discounting:	just	subtract	a	little	from	
each	count

• Suppose	we	wanted	to	subtract	a	little	from	a	
count	of	4	to	save	probability	mass	for	the	
zeros

• How	much	to	subtract	?

• Church	and	Gale	(1991)’s	clever	idea
• Divide	up	22	million	words	of	AP	Newswire

• Training	and	held-out	set
• for	each	bigram	in	the	training	set
• see	the	actual	count	in	the	held-out	set!

• It	sure	looks	like	c*	=	(c	- .75)

Bigram	count	
in	training

Bigram	count	in	
heldout set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Absolute Discounting Interpolation
• Save	ourselves	some	time	and	just	subtract	0.75	(or	some	d)!

•But	should	we	really	just	use	the	regular	unigram	P(w)?

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted	bigram

unigram

Interpolation	weight

• Better	estimate	for	probabilities	of	lower-order	unigrams!
• Shannon	game:		I	can’t	see	without	my	reading___________?
• “Francisco”	is	more	common	than	“glasses”
• …	but	“Francisco”	always	follows	“San”

• The	unigram	is	useful	exactly	when	we	haven’t	seen	this	bigram!
• Instead	of		P(w):	“How	likely	is	w”
• Pcontinuation(w):		“How	likely	is	w	to	appear	as	a	novel	continuation?

• For	each	word,	count	the	number	of	bigram	types	it	completes
• Every	bigram	type	was	a	novel	continuation	the	first	time	it	was	seen

Francisco

Kneser-Ney	Smoothing	I

glasses

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

Kneser-Ney	Smoothing	II

• How	many	times	does	w	appear	as	a	novel	continuation	(unique	bigram	types):

• Normalized	by	the	total	number	of	word	bigram	types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

Kneser-Ney	Smoothing	III
• Alternative	metaphor:	The	number	of		#	of	word	types	seen	to	precede	w

• normalized	by	the	#	of	words	preceding	all	words:

• A	frequent	word	(Francisco)	occurring	in	only	one	context	(San)	will	have	a	low	
continuation	probability

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}
{w 'i−1 : c(w 'i−1,w ')> 0}

w '
∑

| {wi−1 : c(wi−1,w)> 0} |

Kneser-Ney	Smoothing	IV

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is	a	normalizing	constant;	the	probability	mass	we’ve	discounted

the	normalized	discount
The	number	of	word	types	that	can	follow	wi-1
=	#	of	word	types	we	discounted
=	#	of	times	we	applied	normalized	discount

Kneser-Ney	Smoothing:	Recursive	formulation

PKN (wi |wi−n+1
i−1) = max(cKN (wi−n+1

i)− d, 0)
cKN (wi−n+1

i−1)
+λ(wi−n+1

i−1)PKN (wi |wi−n+2
i−1)

cKN (•) =
count(•) for the highest order

continuationcount(•) for lower order

!
"
#

$#

Continuation	count	=	Number	of	unique	single	word	contexts	for	�

Language	Modeling

• Probabilistic	language	model	and	n-grams
• Estimating	n-gram	probabilities
• Language	model	evaluation	and	perplexity
• Generalization	and	zeros
• Smoothing:	add-one
• Interpolation,	backoff,	and	web-scale	LMs
• Smoothing:	Kneser-Ney	Smoothing

Homework

• Reading	J&M	ch1	and	ch4.1-4.9
• Start	thinking	about	course	project	and	find	a	team
• Project	proposal	due Jan	30

