CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

Outline

- Vector Semantics
- Sparse representation
 Pointwise Mutual Information (PMI)
- Dense representation
 Singular Value Decomposition (SVD)
 Neural Language Model (Word2Vec)

Sparse versus dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts (or variations)
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Three methods for getting short dense vectors

- Singular Value Decomposition (SVD) (this lecture)
- "Neural Language Model" inspired by predictive models
- Brown clustering

Three methods for getting short dense vectors

- Singular Value Decomposition (SVD)
- "Neural Language Model" inspired by predictive models
- Brown clustering

Singular Value Decomposition (SVD)

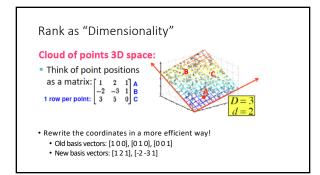
Rank of a Matrix

• What is the rank of a matrix A?

Rank of a Matrix

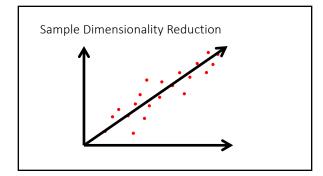
What is the rank of a matrix A?Number of linearly independent columns of A

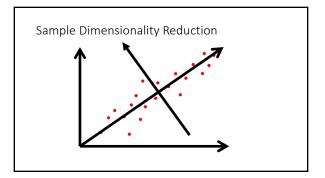
$$A = \begin{vmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{vmatrix}$$

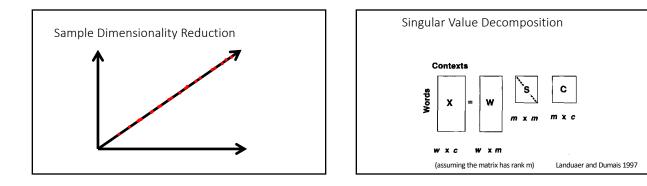


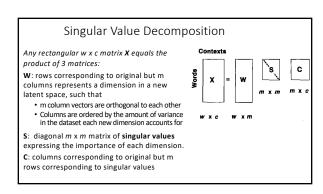
Intuition of Dimensionality Reduction

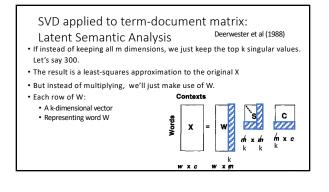
- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.



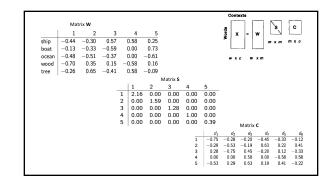


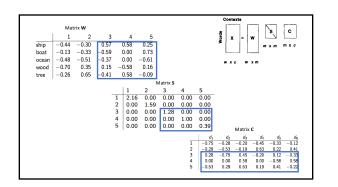




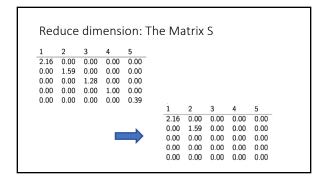


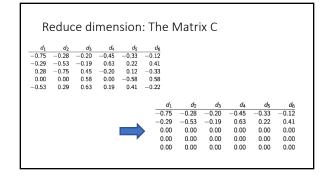
SVD on Term-Document Matrix: Example							
• The matrix X							
	d_1	d_2	d ₃	d_4	d_5	d_6	
ship		0	1	0	0	0	
boat	0	1	0	0	0	0	
ocean	1	1	0	0	0	0	
wood	1	0	0	1	1	0	
tree	0	0	0	1	0	1	





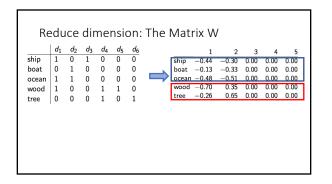
Reduce	Reduce dimension: The Matrix W								
	1	2	3	4	Ļ	5			
ship	-0.44	-0.30	0.57	0.58	30.	25			
boat	-0.13	-0.33	-0.59	0.00	0.	73			
ocean	-0.48	-0.51	-0.37	0.00) -0.	61			
wood	-0.70	0.35	0.15	-0.58	3 0.	16			
tree	-0.26	0.65	-0.41	0.58	B −0.	09			
				1	2	3	4	5	
			ship –	0.44	-0.30	0.00	0.00	0.00	
			boat –	0.13	-0.33	0.00	0.00	0.00	
		/	ocean –	0.48	-0.51	0.00	0.00	0.00	
			wood -	0.70	0.35	0.00	0.00	0.00	
			tree –	0.26	0.65	0.00	0.00	0.00	





ala lue	<i>d</i> ₁	<u>d</u> 2 0	<u>d</u> 3 1	d ₄	0 0	$\frac{d_6}{0}$		1	2	3	4	5
ship	1	-	-	-	-	-	ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0	boat	-0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0		-0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0	wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1	tree	-0.26	0.65	0.00	0.00	0.00

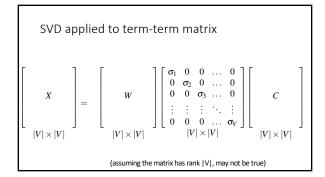
ship	<i>d</i> ₁	d ₂	<u>d</u> 3 1	d ₄	0 0	$\frac{d_6}{0}$			1	2	3	4	5
	0	1	Ō	0	0	0		ship	-0.44	-0.30	0.00	0.00	0.00
boat	۳. I	-	-	-	-	-	\rightarrow	boat	-0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0			-0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0		wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1		tree	-0.26	0.65	0.00	0.00	0.00
Similarity	betwe	en <i>shij</i>	and b	oat vs	ship an	d woo o	1?						

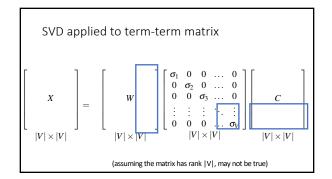


- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF)
 Local weight: Log term frequency
 Global weight: either idf or an entropy measure

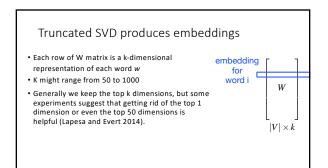
Let's return to PPMI word-word matrices

• Can we apply to SVD to them?





Truncated SVD on term-term matrix
$\begin{bmatrix} X \\ X \\ V \times V \end{bmatrix} = \begin{bmatrix} W \\ W \\ V \times V \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{bmatrix} \begin{bmatrix} C \\ k \times V \\ k \times V \end{bmatrix}$



Embeddings versus sparse vectors

- Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity • Denoising: low-order dimensions may represent unimportant
 - information • Truncation may help the models generalize better to unseen data.
 - Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.

 - Dense models may do better at capturing higher order co-occurrence.