CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

http://www.ccs.neu.edu/home/luwang

Project Progress Report

1. What changes you have made for the task compared to the proposal, including problem/task,
models, datasets, or evaluation methods? If there is any change, please explain why.

2. Describe data preprocessing process. This includes data cleaning, selection, feature generation or
other representation you have used, etc.

3. What methods or models you have tried towards the project goal? And why do you choose the
methods (you can including related work on similar task or relevant tasks)?

4. What results you have achieved up to now based on your proposed evaluation methods? What is
working or What is wrong with the model?

5. How can you improve your models? What are the next steps?

Grading: For 2-5, each aspect will take 25 points.

Length: 2 page (or more if necessary). Sin%le space if MS word is used. Or you can choose latex
templates, e.g. https://www.acm.org/publications/proceedings-
templateor http://icml.cc/2015/?page_id=151.

Each group only needs to submit one copy.

Logistics
* Progress report is due at Oct 31, 11:59pm

* If you can’t finish running on a large dataset, you can try a small
dataset, but notice what the effect would be

e Start with baseline models.

 Amazon Web Service credit/Google cloud credit
* Debug models locally, learn to debug and test

Outline

* Basics about Feedforward Neural Networks
* Neural language model (word2vec)
e Recurrent Neural Network (RNN) and LSTM

[Slides borrowed from Hugo Larochelle, Raymond Mooney, Kai-wei Chang]

Neural Network Learning

* Learning approach based on modeling adaptation in biological neural
systemes.

* Perceptron: Initial algorithm for learning simple neural networks
(single layer) developed in the 1950’s.

* Backpropagation: More complex algorithm for learning multi-layer
neural networks developed in the 1980’s.

e REICIAL NEWREGIN

Topics: connection weights, bias, activation function

* Neuron pre-activation (or input activation):

a(x)=b+ > wiz; =b+w'x

» Neuron (output) activation
h(x) = gla(x)) = g(b+) ,; wix;)

* W are the connection weights
« b is the neuron bias

. g() Is called the activation function

R AL INEWREIN

Topics: connection weights, bias, activation function

range determined

by g(-) |
bias b only

changes the
position of
the niff

(from Pascal Vincent's slides)

ACTIVATION FUNCTION

Topics: linear activation function

* Performs no input
squashing

* Not very interesting...

ACTIVATION FUNCTION

Topics: sigmoid activation function

» Squashes the neuron’s

pre-activation between
0 and |

* Always positive
* Bounded
* Strictly increasing

g(a) = sigm(a) = 1+ex11)(_a)

S ATION FUNGHNGHIN

Topics: hyperbolic tangent (“tanh™) activation function

* Squashes the neuron’s

3.0

pre-activation between S S S e

* Can be positive or ﬁ:ﬁﬁZIIII..E..................
negative
* Bounded e N U N N A N

« Strictly increasing

3 i exp(a) 5 exp(Ga) R exdp (2a)Eal
g(a’) = ta’nh(a’) ~ exp(a)+exp(—a) exp(2a)+1

ACTIVATION FUNCTION

Topics: rectified linear activation function

* Bounded below by O
(always non-negative)

* Not upper bounded

» Strictly increasing

* Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):

oo

def forward(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number """

cell body sum = np.sum(inputs * self.weights) + self.bias

firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function

return firing rate

Linear Separator

* Since one-layer neuron (aka perceptron) uses linear threshold
function, it is searching for a linear separator that
discriminates the classes.

03 A

ERTFICIAL NEWIR@IN

Topics: capacity of single neuron

» Can solve linearly separable problems

OR (171, 5172) A AND (f)f_l/ .’,132) AND (Zl?l . E)

/
A 7 O | o) o ,
/ ™ P
/ = ,
of,” 0 o of o 7 A
/
—
0 | 0 T

e @A L INE RN

Topics: capacity of single neuron

» Can't solve non linearly separable problem:s...

XOR (xlny) XOR (:1:1,:1:2)
T A
! A O ‘:l A
(o 7 ~ \
= ‘ g \
0 o) A % 0 o LA
> < ——
0 / I 0 |
1 AND (.13_1, .’172)

* ... unless the input is transformed In a better representation

NEURAL NETWORK

Topics: single hidden layer neural network
* Hidden layer pre-activation:
a(x) = b + Wlx
(ate)s =6 + 3, W)
* Hidden layer activation:

h(x) = g(a(x))

 Output layer activation:

f(x)_O(b<2>+w<2>Th<1>x @ i @

output activation function

NEURAL NETWORK

Topics: softmax activation function

* For multi-class classification:
» we need multiple outputs (| output per class)
» we would like to estimate the conditional probability p(y = ClX)

* We use the softmax activation function at the output:

exp(ai) exp(ac) i
()(a) = softmax(a) = [Zc exp(ac) *°° Zc exp(ac)]

» strictly positive

» sums to one

* Predicted class is the one with highest estimated probability

NEURAL NETWORK

Topics: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h©®(x) = x)

a®) (x) = b®) 4 WE Rk (x)

» hidden layer activation (k from 1 to L):
h®) (x) = g(a™ (x))

» output layer activation (k=L+1):
h("+1(x) = o(al"*! (x)) = f(x)

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(W1l, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot (W3, h2) + b3 # output neuron (Ixl)

A CTTY OF NEURAL NETVVSISIS

Topics: single hidden layer neural network

X; X;

(from Pascal Vincent's slides)

ORK
TR

L NE
sl
ACITY
CAP

ork
| netw
eura

hidden layer n
|

s single

ics: s

Top

iy T [
!MMHMIHI""II"III
Hllf,l’l'f’lllmﬂlllll'l'lll'lll

I,

's slides)
cal Vincent's

Pas

o

A CITY OF NEURAL NETVV IS

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

A CITY OF NEURAL NETVV@IES

Topics: universal approximation

» Universal approximation theorem (Hornik, 1991):

» “a single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units”

» The result applies for sigmoid, tanh and many other hidden
layer activation functions

* This Is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

3 hidden neurons 6 hidden neurons 20 hidden neurons

How to train a neural network?

Topics: multilayer neural network

* Could have L hidden layers:

» layer input activation for k>0 (h(®(x) = x)
a(k)(x) — bk) W(k)h(k—l)(x)

» hidden layer activation (k from 1 to L):
h*) (x) = g(al® (x))

» output layer activation (k=L+1):
h(+D(x) = o(alt+D) (x)) = £(x)

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

|
arg min > U(f(x™;0),51) + AQ(6)
t

» I(f(x®);0),y®) is a loss function
»)(0) is a regularizer (penalizes certain values of @)
* Learning Is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

E@S5 U NETIEIN

Topics: loss function for classification

« Neural network estimates f(x). = p(y = ¢|x)

» we could maximize the probabilities of y(t) given x®) in the training set

* To frame as minimization, we minimize the
negative log-likelihood natural log (In)

i

I(£(X),y) = = 3, 1(y—e) log'F(x) = —Iog £(x),

» we take the log to simplify for numerical stability and math simplicity

» sometimes referred to as cross-entropy

Total error on training set

100 150 200 250 300 350 400

Number of epochs

[figure from Greg Mori’s slides]

REGULARIZATION

Topics: L2 regularization

Q(6) = T, X, 5, (W) = S WO

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

|
arg min > U(f(x™;0),51) + AQ(6)
t

» I(f(x®);0),y®) is a loss function
»)(0) is a regularizer (penalizes certain values of @)
* Learning Is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

A =0.001 A =0.01

[http://cs231n.github.io/neural-networks-1/]

| A 7

Topics: initialization
* For biases

» nitialize all to O

* For weights

» Can't intialize weights to O with tanh activation
- we can show that all gradients would then be O (saddle point)

» Can't intialize all weights to the same value

- we can show that all hidden units in a layer will always behave the same

- need to break symmetry

|[ON

size of h(®)(x)

» Recipe: sample Wf,l;) from U [—b, b] where b = V6

\/Hk+Hk—1

- the idea is to sample around O but break symmetry

- other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

Model Learning

e Backpropagation algorithm (not covered in the lecture)

Toolkits

* TensorFlow
* https://www.tensorflow.org/

* Theano (not maintained any more)
* http://deeplearning.net/software/theano/

* PyTorch
* http://pytorch.org/

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://pytorch.org/

Neural language models

* Skip-grams
* Continuous Bag of Words (CBOW)

* More details can be found at
https://cs224d.stanford.edu/lecture notes/notesl.pdf

Prediction-based models:
An alternative way to get dense vectors

 Skip-gram (Mikolov et al. 2013a), CBOW (Mikolov et al. 2013b)
* Learn embeddings as part of the process of word prediction.
* Train a neural network to predict neighboring words

* Advantages:
e Fast, easy to train (much faster than SVD)
* Available online in the word2vec package
* Including sets of pretrained embeddings!

Skip-grams

* Predict each neighboring word
* in a context window of 2C words
* from the current word.

*So for C=2, we are given word wy and predicting
these 4 words:

[Wt—27 Wir—1,Wr+1, Wt—I—Z]

Skip-grams

* Predict each neighboring word
* in a context window of 2C words
* from the current word.

*So for C=2, we are given word wy and predicting
these 4 words:

[Wt—za Wir—1,Wr+1, Wt—I—Z]

Example: Natural language processing is a subarea of artificial intelligence.

Skip-grams learn 2 embeddings for each w |

input embedding v, in the input matrix W dL
e Column i of the input matrix W is the 1xd embedding dx |V
V; for word i in the vocabulary.
W

output embedding v/, in output matrix W’

N —

* Row i of the output matrix W'is a d x 1 vector

embedding v'; for word i in the vocabulary.

V]

V| x d

Setup

* Walking through corpus pointing at word w,, whose index in the
vocabulary is j, so we’ll call it Wj (1<j<|V]).

* Let’s predict w,,; , whose index in the vocabularyisk (1< k< |V |).
Hence our task is to compute P(wkl Wj)'

One-hot vectors

* A vector of length | V]|

1 for the target word and O for other words
* So if “popsicle” is vocabulary word 5

* The one-hot vector is

e [0,0,0,0,1,0,0,0,0.......0]

Skip-gram Output layer

probabilities of
context words

Q0
<
[\®]

Projection layer

Input layer _
embedding for w;

1-hot input vector

- O
X1 : .
X) .
Q| :
L e . o
Wi oxlo| W . Dy
) IVixd : 9,
® : Oy,
o d) ol :
Xvie ——— Wixv "
Q| y, t+1
1X|V| 1 xd :
Q| :
O
!,}’|V|

Skip-gram

Input layer

h =v;

1-hot input vector

X1

Ay

™

.

\

'V|xd

J

Projection layer
embedding for w;

@O0 @ ¢« @

-

1 X|V]

(@@ e+ @ e ©O0)

I1xd

Output layer

probabilities of
context words

Wik

ce Q00 (000 - 0O

(@9 @ --

Y1
20=W’h
Yo o Wil

Yvi

Y1

Y20= W'h
v Vit

Y|

Skip-gram

Output layer
probabilities of
h=v. context words
. g J o) v
Input layer Projection layer ® v,
| hot 3 embedding for wy :
-hot 1input vector Y —
X, ? ? Yo o Wi-1 Ok =V kh (h - VJ)
X, @) ; -‘>O \/
it W 0 S k= VK]
Wi ox e ® =y
b VIxd : oV,
® @ © Y2
0 L) ol :
Xylo —— W dX|V|
oy, “ittl
1X|V] 1xd

(OO @ e

Turning outputs into probabilities

*Op = ViV,

* We use softmax to turn into probabilities
/

exp(vi - vj)

w' €|V exp(vy, - v;)

p(wilw;) = >

Embeddings from W and W’

* Since we have two embeddings, v; and v’j for each word w;

J

* We can either:
* Just use v;
* Sum them
* Concatenate them to make a double-length embedding

But wait; how do we learn the embeddings?

argmax log p(Text)
0

But wait; how do we learn the embeddings?

argmax log p(Text)
0

argmaxz Z log il , .vzt))

t=1 —c<j<c,j#0 ZW€|V|€XP(VW

T
-argmaxz Z { (r+]) —log Z exp(v! vl

O =1 —c<j<e,j#0 welV|

CBOW (Continuous Bag of Words)

Input layer

1-hot input vectors
for each context word

i; S Projection layer Output layer
? sum of embeddings probability of w,
. for context words
\4 X @
t-1 i °
- e :— —. Y1
o) @ Y2
™ ° : o
X| (@ . W dx|V| Yk Wy
X, (@ ® .
. . .
: OJ)
: T 9
Y+l x; @ Yvi
. I1xd
)
Xy @)

1X|V]

Properties of embeddings

* Nearest words to some embeddings (Mikolov et al. 20131)

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel = martial arts grafitti capitulated

Microsoft Velvet Revolution swordsmanship taggers capitulating

Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

WOMAN

UNCLE

KING

MAN/ /

QUEEN

AUNT

QUEENS

KINGS \
\ QUEEN

KING

Long Distance Dependencies

* |t is very difficult to train NNs to retain information over many time steps

* This make is very difficult to handle long-distance dependencies, such as subject-
verb agreement.

e E.g. Jane walked into the room. John walked in too. It was late in the day. Jane
saidhito ?

h) h b)
L.T ! !
A A

1
b b

» A

:
b

Recurrent Neural Networks

Feed-forward NN Recurrent NN
h:g(VX—I—C> ht :g(VXt—I—Uht_1+C)

T &=

1

Recurrent Neural Networks

Feed-forward NN Recurrent NN
h=g(Vx+c) hr=g¢tetUh=rie)
y=Wh+b h; = g(V[x¢;hy1] +)

y: = Wh; +b

Long-Short Term Memory Networks (LSTMs)

A
4) e) a8)
> —o—— > >
A Ll A
— > -
\I J J \I J
&) x) &)

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Another Visualization

Forget some of the past Add ®ew memories

Capable of modeling long-distant dependencies between states.

Figure: Christopher Olah

Long-Short Term Memory Networks (LSTMs)
\ "/ it\ /0(

W[b,
_>< :EOutputGate ! ft - 0(Wf | Xt ht‘ T bf)
/ \\\ 0; (T(WO | Xt . ht‘ + bo)
\‘\ Bt / \ f(Wg_Xt.ht‘ +bg)
g Forget Gate / Ct — f; * Ct—l < it * gt
@) :<
\ ’/'/ = ht = O * f(Ct)
—>
/4 e Use gates to control the information to
be added from the input, forgot from the
i previous memories, and outputted.
g Block

o and f are sigmoid and tanh function
/ T \ respectively, to map the value to [-1, 1]

Seguence to Sequence

* Encoder/Decoder framework maps one sequence to a "deep vector"
then another LSTM maps this vector to an output sequence.

Encoder Decoder

\ \
! | ! \

—O—0 O

This is my cat C’est mon chat

Summary of LSTM Application Architectures

one to many many to one many to many many to many

Pt ! SRR [l

f Pt Pt Pt 1
Image Captioning Video Activity Recog Video Captioning POS Tagging

Text Classification Machine Translation Language Modeling

Successful Applications of LSTMs

* Speech recognition: Language and acoustic modeling

e Sequence labeling

* POS Tagging
* NER
* Phrase Chunking

* Neural syntactic and semantic parsing
* Image captioning

* Sequence to Sequence

 Machine Translation (Sustkever, Vinyals, & Le, 2014)
* Video Captioning (input sequence of CNN frame outputs)

Bi-directional LSTM (Bi-LSTM)

* Separate LSTMs process sequence forward and backward and
hidden layers at each time step are concatenated to form the cell
output.

©® ® () AR AR AR AR
| | N N R U
<« n- P P Lo b
v [P v

< ® X

N\

' !

@ B

Ih; I

I
® ©

Homework

* Neural language models:
https://web.stanford.edu/~jurafsky/slp3/7.pdf 3 ed

* Project progress report is due on Oct 31.

https://web.stanford.edu/~jurafsky/slp3/7.pdf

