
CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science

Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

http://www.ccs.neu.edu/home/luwang

Project Progress Report

• 1. What changes you have made for the task compared to the proposal, including problem/task,
models, datasets, or evaluation methods? If there is any change, please explain why.

• 2. Describe data preprocessing process. This includes data cleaning, selection, feature generation or
other representation you have used, etc.

• 3. What methods or models you have tried towards the project goal? And why do you choose the
methods (you can including related work on similar task or relevant tasks)?

• 4. What results you have achieved up to now based on your proposed evaluation methods? What is
working or What is wrong with the model?

• 5. How can you improve your models? What are the next steps?

• Grading: For 2-5, each aspect will take 25 points.
• Length: 2 page (or more if necessary). Single space if MS word is used. Or you can choose latex

templates, e.g. https://www.acm.org/publications/proceedings-
templateor http://icml.cc/2015/?page_id=151.

• Each group only needs to submit one copy.

Logistics

• Progress report is due at Oct 31, 11:59pm

• If you can’t finish running on a large dataset, you can try a small
dataset, but notice what the effect would be

• Start with baseline models.

• Amazon Web Service credit/Google cloud credit
• Debug models locally, learn to debug and test

Outline

• Basics about Feedforward Neural Networks
• Neural language model (word2vec)
• Recurrent Neural Network (RNN) and LSTM

[Slides borrowed from Hugo Larochelle, Raymond Mooney, Kai-wei Chang]

Neural Network Learning

• Learning approach based on modeling adaptation in biological neural
systems.
• Perceptron: Initial algorithm for learning simple neural networks

(single layer) developed in the 1950’s.
• Backpropagation: More complex algorithm for learning multi-layer

neural networks developed in the 1980’s.

Linear Separator
• Since one-layer neuron (aka perceptron) uses linear threshold

function, it is searching for a linear separator that
discriminates the classes.

o3

o2

??

How to train a neural network?

Empirical Risk Minimization

[figure from Greg Mori’s slides]

Empirical Risk Minimization

[http://cs231n.github.io/neural-networks-1/]

Model Learning

• Backpropagation algorithm (not covered in the lecture)

Toolkits

• TensorFlow
• https://www.tensorflow.org/

• Theano (not maintained any more)
• http://deeplearning.net/software/theano/

• PyTorch
• http://pytorch.org/

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://pytorch.org/

Neural language models

• Skip-grams
• Continuous Bag of Words (CBOW)
• More details can be found at

https://cs224d.stanford.edu/lecture_notes/notes1.pdf

Prediction-based models:
An alternative way to get dense vectors
• Skip-gram (Mikolov et al. 2013a), CBOW (Mikolov et al. 2013b)
• Learn embeddings as part of the process of word prediction.
• Train a neural network to predict neighboring words
• Advantages:
• Fast, easy to train (much faster than SVD)
• Available online in the word2vec package
• Including sets of pretrained embeddings!

Skip-grams

•Predict each neighboring word
• in a context window of 2C words
• from the current word.

•So for C=2, we are given word wt and predicting
these 4 words:

14 CHAPTER 19 • VECTOR SEMANTICS

This method is sometimes called truncated SVD. SVD is parameterized by k,truncated SVD
the number of dimensions in the representation for each word, typically ranging
from 500 to 1000. Usually, these are the highest-order dimensions, although for
some tasks, it seems to help to actually throw out a small number of the most high-
order dimensions, such as the first 50 (Lapesa and Evert, 2014).

The dense embeddings produced by SVD sometimes perform better than the
raw PPMI matrices on semantic tasks like word similarity. Various aspects of the
dimensionality reduction seem to be contributing to the increased performance. If
low-order dimensions represent unimportant information, the truncated SVD may be
acting to removing noise. By removing parameters, the truncation may also help the
models generalize better to unseen data. When using vectors in NLP tasks, having
a smaller number of dimensions may make it easier for machine learning classifiers
to properly weight the dimensions for the task. And the models may do better at
capturing higher order co-occurrence.

Nonetheless, there is a significant computational cost for the SVD for a large co-
occurrence matrix, and performance is not always better than using the full sparse
PPMI vectors, so for some applications the sparse vectors are the right approach.
Alternatively, the neural embeddings we discuss in the next section provide a popular
efficient solution to generating dense embeddings.

19.4 Embeddings from prediction: Skip-gram and CBOW

An alternative to applying dimensionality reduction techniques like SVD to co-
occurrence matrices is to apply methods that learn embeddings for words as part
of the process of word prediction. Two methods for generating dense embeddings,
skip-gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolovskip-gram

CBOW et al. 2013a), draw inspiration from the neural methods for language modeling intro-
duced in Chapter 5. Like the neural language models, these models train a network
to predict neighboring words, and while doing so learn dense embeddings for the
words in the training corpus. The advantage of these methods is that they are fast,
efficient to train, and easily available online in the word2vec package; code and
pretrained embeddings are both available.

We’ll begin with the skip-gram model. The skip-gram model predicts each
neighboring word in a context window of 2C words from the current word. So
for a context window C = 2 the context is [wt�2,wt�1,wt+1,wt+2] and we are pre-
dicting each of these from word wt . Fig. 17.12 sketches the architecture for a sample
context C = 1.

The skip-gram model actually learns two d-dimensional embeddings for each
word w: the input embedding v and the output embedding v0. These embeddingsinput

embedding
output

embedding are encoded in two matrices, the input matrix W and the output matrix W 0. Each
column i of the input matrix W is the 1⇥ d vector embedding vi for word i in the
vocabulary. Each row i of the output matrix W 0 is a d ⇥ 1 vector embedding v0i for
word i in the vocabulary

Let’s consider the prediction task. We are walking through a corpus of length T
and currently pointing at the tth word w(t), whose index in the vocabulary is j, so
we’ll call it w j (1 < j < |V |). Let’s consider predicting one of the 2C context words,
for example w(t+1), whose index in the vocabulary is k (1 < k < |V |). Hence our task
is to compute P(wk|w j).

Skip-grams

•Predict each neighboring word
• in a context window of 2C words
• from the current word.

•So for C=2, we are given word wt and predicting
these 4 words:

14 CHAPTER 19 • VECTOR SEMANTICS

This method is sometimes called truncated SVD. SVD is parameterized by k,truncated SVD
the number of dimensions in the representation for each word, typically ranging
from 500 to 1000. Usually, these are the highest-order dimensions, although for
some tasks, it seems to help to actually throw out a small number of the most high-
order dimensions, such as the first 50 (Lapesa and Evert, 2014).

The dense embeddings produced by SVD sometimes perform better than the
raw PPMI matrices on semantic tasks like word similarity. Various aspects of the
dimensionality reduction seem to be contributing to the increased performance. If
low-order dimensions represent unimportant information, the truncated SVD may be
acting to removing noise. By removing parameters, the truncation may also help the
models generalize better to unseen data. When using vectors in NLP tasks, having
a smaller number of dimensions may make it easier for machine learning classifiers
to properly weight the dimensions for the task. And the models may do better at
capturing higher order co-occurrence.

Nonetheless, there is a significant computational cost for the SVD for a large co-
occurrence matrix, and performance is not always better than using the full sparse
PPMI vectors, so for some applications the sparse vectors are the right approach.
Alternatively, the neural embeddings we discuss in the next section provide a popular
efficient solution to generating dense embeddings.

19.4 Embeddings from prediction: Skip-gram and CBOW

An alternative to applying dimensionality reduction techniques like SVD to co-
occurrence matrices is to apply methods that learn embeddings for words as part
of the process of word prediction. Two methods for generating dense embeddings,
skip-gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolovskip-gram

CBOW et al. 2013a), draw inspiration from the neural methods for language modeling intro-
duced in Chapter 5. Like the neural language models, these models train a network
to predict neighboring words, and while doing so learn dense embeddings for the
words in the training corpus. The advantage of these methods is that they are fast,
efficient to train, and easily available online in the word2vec package; code and
pretrained embeddings are both available.

We’ll begin with the skip-gram model. The skip-gram model predicts each
neighboring word in a context window of 2C words from the current word. So
for a context window C = 2 the context is [wt�2,wt�1,wt+1,wt+2] and we are pre-
dicting each of these from word wt . Fig. 17.12 sketches the architecture for a sample
context C = 1.

The skip-gram model actually learns two d-dimensional embeddings for each
word w: the input embedding v and the output embedding v0. These embeddingsinput

embedding
output

embedding are encoded in two matrices, the input matrix W and the output matrix W 0. Each
column i of the input matrix W is the 1⇥ d vector embedding vi for word i in the
vocabulary. Each row i of the output matrix W 0 is a d ⇥ 1 vector embedding v0i for
word i in the vocabulary

Let’s consider the prediction task. We are walking through a corpus of length T
and currently pointing at the tth word w(t), whose index in the vocabulary is j, so
we’ll call it w j (1 < j < |V |). Let’s consider predicting one of the 2C context words,
for example w(t+1), whose index in the vocabulary is k (1 < k < |V |). Hence our task
is to compute P(wk|w j).

Example: Natural language processing is a subarea of artificial intelligence.

Skip-grams learn 2 embeddings for each w

input embedding v, in the input matrix W
• Column i of the input matrix W is the 1×d embedding

vi for word i in the vocabulary.

output embedding vʹ, in output matrix W’
• Row i of the output matrix Wʹ is a d × 1 vector

embedding vʹi for word i in the vocabulary.

 |V| x d

W’

1
2

|V|

i

1 2 d…

.

.

.

.

.

.

.

.

d x |V|

W

1
2

|V|i1 2

d

.

.

.

.

…

Setup

• Walking through corpus pointing at word wt, whose index in the
vocabulary is j, so we’ll call it wj (1 < j < |V |).
• Let’s predict wt+1 , whose index in the vocabulary is k (1 < k < |V |).

Hence our task is to compute P(wk|wj).

One-hot vectors

• A vector of length |V|
• 1 for the target word and 0 for other words
• So if “popsicle” is vocabulary word 5
• The one-hot vector is
• [0,0,0,0,1,0,0,0,0…….0]

Input layer Projection layer

Output layer

W
|V|⨉d

wt

wt-1

wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt

probabilities of
context words

W’ d ⨉ |V|

W’ d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|
y1
y2

yk

y|V|

Skip-gram

Input layer Projection layer

Output layer

W
|V|⨉d

wt

wt-1

wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt

probabilities of
context words

W’ d ⨉ |V|

W’ d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|
y1
y2

yk

y|V|

Skip-gram
h = vj

o = W’h

o = W’h

Input layer Projection layer

Output layer

W
|V|⨉d

wt

wt-1

wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt

probabilities of
context words

W’ d ⨉ |V|

W’ d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|
y1
y2

yk

y|V|

Skip-gram

h = vj

ok = v’kh
ok = v’k·vj

(h = vj)

Turning outputs into probabilities

•ok = v’k·vj
•We use softmax to turn into probabilities

19.4 • EMBEDDINGS FROM PREDICTION: SKIP-GRAM AND CBOW 15

Input layer Projection layer

Output layer

W
|V|⨉d

wt

wt-1

wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt

probabilities of
context words

W’ d ⨉ |V|

W’ d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|
y1
y2

yk

y|V|

Figure 19.12 The skip-gram model (Mikolov et al. 2013, Mikolov et al. 2013a).

We begin with an input vector x, which is a one-hot vector for the current word
w j (hence x j = 1, and xi = 0 8i 6= j). We then predict the probability of each of the
2C output words—in Fig. 17.12 that means the two output words wt�1 and wt+1—
in 3 steps:

1. x is multiplied by W , the input matrix, to give the hidden or projection layer.projection layer

Since each column of the input matrix W is just an embedding for word wt ,
and the input is a one-hot vector for w j, the projection layer for input x will be
h = v j, the input embedding for w j.

2. For each of the 2C context words we now multiply the projection vector h by
the output matrix W 0. The result for each context word, o = W 0h, is a 1⇥ |V |
dimensional output vector giving a score for each of the |V | vocabulary words.
In doing so, the element ok was computed by multiplying h by the output
embedding for word wk: ok = v0kh.

3. Finally, for each context word we normalize this score vector, turning the
score for each element ok into a probability by using the soft-max function:

p(wk|w j) =
exp(v0k · v j)P

w02|V | exp(v0w · v j)
(19.24)

The next section explores how the embeddings, the matrices W and W 0, are
learned. Once they are learned, we’ll have two embeddings for each word wi: vi and
v0i. We can just choose to use the input embedding vi from W , or we can add the
two and use the embedding vi + v0i as the new d-dimensional embedding, or we can
concatenate them into an embedding of dimensionality 2d.

As with the simple count-based methods like PPMI, the context window size C
effects the performance of skip-gram embeddings, and experiments often tune the
parameter C on a dev set. As as with PPMI, window sizing leads to qualitative
differences: smaller windows capture more syntactic information, larger ones more
semantic and relational information. One difference from the count-based methods

Embeddings from W and W’

• Since we have two embeddings, vj and v’j for each word wj
• We can either:
• Just use vj
• Sum them
• Concatenate them to make a double-length embedding

But wait; how do we learn the embeddings?

16 CHAPTER 19 • VECTOR SEMANTICS

is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.4.1 Learning the input and output embeddings
There are various ways to learn skip-grams; we’ll sketch here just the outline of a
simple version based on Eq. 17.24.

The goal of the model is to learn representations (the embedding matrices W and
W 0; we’ll refer to them collectively as the parameters q) that do well at predicting
the context words, maximizing the log likelihood of the corpus, Text.

argmax
q

log p(Text) (19.25)

We’ll first make the naive bayes assumptions that the input word at time t is
independent of the other input words,

argmax
q

log
TY

t=1

p(w(t�C), ...,w(t�1),w(t+1), ...,w(t+C)) (19.26)

We’ll also assume that the probabilities of each context (output) word is independent
of the other outputs:

argmax
q

X

�c jc, j 6=0

log p(w(t+ j)|w(t)) (19.27)

We now substitute in Eq. 17.24:

= argmax
q

TX

t=1

X

�c jc, j 6=0

log
exp(v0(t+ j) · v(t))P
w2|V | exp(v0w · v(t))

(19.28)

With some rearrangements::

= argmax
q

TX

t=1

X

�c jc, j 6=0

2

4v0(t+ j) · v(t) � log
X

w2|V |
exp(v0w · v(t))

3

5 (19.29)

Eq. 17.29 shows that we are looking to set the parameters q (the embedding
matrices W and W 0) in a way that maximizes the similarity between each word w(t)

and its nearby context words w(t+ j), while minimizing the similarity between word
w(t) and all the words in the vocabulary.

The actual training objective for skip-gram, the negative sampling approach, is
somewhat different; because it’s so time-consuming to sum over all the words in
the vocabulary V , the algorithm merely chooses a few negative samples to minimize
rather than every word. The training proceeds by stochastic gradient descent, using
error backpropagation as described in Chapter 5 (Mikolov et al., 2013a).

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI.
If we multiply the two context matrices W ·W 0T , we produce a |V |⇥ |V | matrix X ,
each entry mi j corresponding to some association between input word i and output
word j. Levy and Goldberg (2014b) shows that skip-gram’s optimal value occurs

But wait; how do we learn the embeddings?

16 CHAPTER 19 • VECTOR SEMANTICS

is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.4.1 Learning the input and output embeddings
There are various ways to learn skip-grams; we’ll sketch here just the outline of a
simple version based on Eq. 17.24.

The goal of the model is to learn representations (the embedding matrices W and
W 0; we’ll refer to them collectively as the parameters q) that do well at predicting
the context words, maximizing the log likelihood of the corpus, Text.

argmax
q

log p(Text) (19.25)

We’ll first make the naive bayes assumptions that the input word at time t is
independent of the other input words,

argmax
q

log
TY

t=1

p(w(t�C), ...,w(t�1),w(t+1), ...,w(t+C)) (19.26)

We’ll also assume that the probabilities of each context (output) word is independent
of the other outputs:

argmax
q

X

�c jc, j 6=0

log p(w(t+ j)|w(t)) (19.27)

We now substitute in Eq. 17.24:

= argmax
q

TX

t=1

X

�c jc, j 6=0

log
exp(v0(t+ j) · v(t))P
w2|V | exp(v0w · v(t))

(19.28)

With some rearrangements::

= argmax
q

TX

t=1

X

�c jc, j 6=0

2

4v0(t+ j) · v(t) � log
X

w2|V |
exp(v0w · v(t))

3

5 (19.29)

Eq. 17.29 shows that we are looking to set the parameters q (the embedding
matrices W and W 0) in a way that maximizes the similarity between each word w(t)

and its nearby context words w(t+ j), while minimizing the similarity between word
w(t) and all the words in the vocabulary.

The actual training objective for skip-gram, the negative sampling approach, is
somewhat different; because it’s so time-consuming to sum over all the words in
the vocabulary V , the algorithm merely chooses a few negative samples to minimize
rather than every word. The training proceeds by stochastic gradient descent, using
error backpropagation as described in Chapter 5 (Mikolov et al., 2013a).

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI.
If we multiply the two context matrices W ·W 0T , we produce a |V |⇥ |V | matrix X ,
each entry mi j corresponding to some association between input word i and output
word j. Levy and Goldberg (2014b) shows that skip-gram’s optimal value occurs

16 CHAPTER 19 • VECTOR SEMANTICS

is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.4.1 Learning the input and output embeddings
There are various ways to learn skip-grams; we’ll sketch here just the outline of a
simple version based on Eq. 17.24.

The goal of the model is to learn representations (the embedding matrices W and
W 0; we’ll refer to them collectively as the parameters q) that do well at predicting
the context words, maximizing the log likelihood of the corpus, Text.

argmax
q

log p(Text) (19.25)

We’ll first make the naive bayes assumptions that the input word at time t is
independent of the other input words,

argmax
q

log
TY

t=1

p(w(t�C), ...,w(t�1),w(t+1), ...,w(t+C)) (19.26)

We’ll also assume that the probabilities of each context (output) word is independent
of the other outputs:

argmax
q

X

�c jc, j 6=0

log p(w(t+ j)|w(t)) (19.27)

We now substitute in Eq. 17.24:

= argmax
q

TX

t=1

X

�c jc, j 6=0

log
exp(v0(t+ j) · v(t))P
w2|V | exp(v0w · v(t))

(19.28)

With some rearrangements::

= argmax
q

TX

t=1

X

�c jc, j 6=0

2

4v0(t+ j) · v(t) � log
X

w2|V |
exp(v0w · v(t))

3

5 (19.29)

Eq. 17.29 shows that we are looking to set the parameters q (the embedding
matrices W and W 0) in a way that maximizes the similarity between each word w(t)

and its nearby context words w(t+ j), while minimizing the similarity between word
w(t) and all the words in the vocabulary.

The actual training objective for skip-gram, the negative sampling approach, is
somewhat different; because it’s so time-consuming to sum over all the words in
the vocabulary V , the algorithm merely chooses a few negative samples to minimize
rather than every word. The training proceeds by stochastic gradient descent, using
error backpropagation as described in Chapter 5 (Mikolov et al., 2013a).

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI.
If we multiply the two context matrices W ·W 0T , we produce a |V |⇥ |V | matrix X ,
each entry mi j corresponding to some association between input word i and output
word j. Levy and Goldberg (2014b) shows that skip-gram’s optimal value occurs

16 CHAPTER 19 • VECTOR SEMANTICS

is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.4.1 Learning the input and output embeddings
There are various ways to learn skip-grams; we’ll sketch here just the outline of a
simple version based on Eq. 17.24.

The goal of the model is to learn representations (the embedding matrices W and
W 0; we’ll refer to them collectively as the parameters q) that do well at predicting
the context words, maximizing the log likelihood of the corpus, Text.

argmax
q

log p(Text) (19.25)

We’ll first make the naive bayes assumptions that the input word at time t is
independent of the other input words,

argmax
q

log
TY

t=1

p(w(t�C), ...,w(t�1),w(t+1), ...,w(t+C)) (19.26)

We’ll also assume that the probabilities of each context (output) word is independent
of the other outputs:

argmax
q

X

�c jc, j 6=0

log p(w(t+ j)|w(t)) (19.27)

We now substitute in Eq. 17.24:

= argmax
q

TX

t=1

X

�c jc, j 6=0

log
exp(v0(t+ j) · v(t))P
w2|V | exp(v0w · v(t))

(19.28)

With some rearrangements::

= argmax
q

TX

t=1

X

�c jc, j 6=0

2

4v0(t+ j) · v(t) � log
X

w2|V |
exp(v0w · v(t))

3

5 (19.29)

Eq. 17.29 shows that we are looking to set the parameters q (the embedding
matrices W and W 0) in a way that maximizes the similarity between each word w(t)

and its nearby context words w(t+ j), while minimizing the similarity between word
w(t) and all the words in the vocabulary.

The actual training objective for skip-gram, the negative sampling approach, is
somewhat different; because it’s so time-consuming to sum over all the words in
the vocabulary V , the algorithm merely chooses a few negative samples to minimize
rather than every word. The training proceeds by stochastic gradient descent, using
error backpropagation as described in Chapter 5 (Mikolov et al., 2013a).

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI.
If we multiply the two context matrices W ·W 0T , we produce a |V |⇥ |V | matrix X ,
each entry mi j corresponding to some association between input word i and output
word j. Levy and Goldberg (2014b) shows that skip-gram’s optimal value occurs

CBOW (Continuous Bag of Words)
Input layer

Projection layer Output layer

W
|V|⨉d

wt

wt-1

wt+1

1-hot input vectors
for each context word

1⨉d

1⨉|V|

sum of embeddings
 for context words

probability of wt

W’ d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

x1
x2

xj

x|V|

W
|V|⨉d

Properties of embeddings

• Nearest words to some embeddings (Mikolov et al. 20131)

18 CHAPTER 19 • VECTOR SEMANTICS

matrix is repeated between each one-hot input and the projection layer h. For the
case of C = 1, these two embeddings must be combined into the projection layer,
which is done by multiplying each one-hot context vector x by W to give us two
input vectors (let’s say vi and v j). We then average these vectors

h = W · 1
2C

X

�c jc, j 6=0

v(j) (19.31)

As with skip-grams, the the projection vector h is multiplied by the output matrix
W 0. The result o = W 0h is a 1⇥ |V | dimensional output vector giving a score for
each of the |V | words. In doing so, the element ok was computed by multiplying
h by the output embedding for word wk: ok = v0kh. Finally we normalize this score
vector, turning the score for each element ok into a probability by using the soft-max
function.

19.5 Properties of embeddings

We’ll discuss in Section 17.8 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 17.14 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 19.14 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 17.15 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property. We return in the next section to these
relational properties of embeddings and how they relate to meaning compositional-
ity: the way the meaning of a phrase is built up out of the meaning of the individual
vectors.

19.6 Compositionality in Vector Models of Meaning

To be written.

Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

Long Distance Dependencies
• It is very difficult to train NNs to retain information over many time steps
• This make is very difficult to handle long-distance dependencies, such as subject-

verb agreement.
• E.g. Jane walked into the room. John walked in too. It was late in the day. Jane

said hi to _?_

Recurrent Neural Networks

Recurrent Neural Networks

Long-Short Term Memory Networks (LSTMs)

Another Visualization

Figure: Christopher Olah

Capable of modeling long-distant dependencies between states.

Long-Short Term Memory Networks (LSTMs)

Use gates to control the information to
be added from the input, forgot from the
previous memories, and outputted.
σ and f are sigmoid and tanh function
respectively, to map the value to [-1, 1]

Sequence to Sequence
• Encoder/Decoder framework maps one sequence to a "deep vector"

then another LSTM maps this vector to an output sequence.

This is my cat C’est mon chat

Encoder Decoder

Summary of LSTM Application Architectures

Image Captioning Video Activity Recog
Text Classification

Video Captioning
Machine Translation

POS Tagging
Language Modeling

Successful Applications of LSTMs
• Speech recognition: Language and acoustic modeling
• Sequence labeling

• POS Tagging
• NER
• Phrase Chunking

• Neural syntactic and semantic parsing
• Image captioning
• Sequence to Sequence

• Machine Translation (Sustkever, Vinyals, & Le, 2014)
• Video Captioning (input sequence of CNN frame outputs)

Bi-directional LSTM (Bi-LSTM)
• Separate LSTMs process sequence forward and backward and

hidden layers at each time step are concatenated to form the cell
output.

xt+1xtxt-1

ht-1 ht+1ht

Homework

• Neural language models:
https://web.stanford.edu/~jurafsky/slp3/7.pdf, 3rd ed
• Project progress report is due on Oct 31.

https://web.stanford.edu/~jurafsky/slp3/7.pdf

