CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

Announcement

• Assignment 1 is released. Due on Oct 10, 11:59pm, on Blackboard.

Project Proposal

• Length: 1 page (or more if necessary).

- Single space if MS word is used. Or you can choose latex templates, e.g. https://www.acm.org/publications/proceedings-template_or http://icml.cc/2015/?page_id=151.
- Introduction: the problem has to be well-defined. What are the input and output. Why this is an important problem to study.
- Intpottatin provem to study.
 Related work: put your work in context. Describe what has been done in previous work on the same or related subject. And why what you propose to do here is novel and different.
- Same or reales subject. And why what you produce to do here is note and uniferent.
 Datasets: what data da oyou want to use? What is the size of it? What information is contained? Why is it suitable for your task?
 Methodology: what models do you want to use? You may change the model as the project goes, but you may want to indicate some type of models that might be suitable for your problem. Isi's a supervised learning problem or unsupervised? What classifiers can you start with? Are you making improvements? You out have to be crystal clear on this section, but it can be used to indicate the direction that your project goes to.
 Evaluation: what metrics do you want to use for evaluating your models?

Sample proposal and reports

- www.ccs.neu.edu/home/luwang/courses/cs6120_fa2018/cs6120_fa2 018.html
- Sample projects from Stanford NLP course http://web.stanford.edu/class/cs224n/reports.html
- Finding teammates on Piazza!

Outline

- Text Categorization/Classification
- Naïve Bayes
- Evaluation

Positive or negative movie review?

- unbelievably disappointing
 Full of zany characters and richly applied satire, and some great plot
 twicte twists
- this is the greatest screwball comedy ever filmed
- It was pathetic. The worst part about it was the boxing scenes.

Male or female author?

- By 1925 present-day Vietnam was divided into three parts under French colonial rule. The southern region embracing Saigon and the Mekong delta was the colony of Cochin-China; the central area with its imperial capital at Hue was the protectorate of Annam...
- Clara never failed to be astonished by the extraordinary felicity of her own name. She found it hard to trust herself to the mercy of fate, which had managed over the years to convert her greatest shame into one of her greatest assets...

Argamon, M. Koppel, J. Fine, A. R. Shimoni, 2003. "Gender, Genre, and Writing Style in Formal Written Texts," Text, volume 23, number 3, pp.

Text Classification

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis
- •...

Text Classification: definition

•Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

• Output: a predicted class $c \in C$

Classification Methods: Hand-coded rules

- Rules based on combinations of words or other features
 spam: black-list-address OR ("dollars" AND "have been selected")
- Accuracy can be high
 If rules carefully refined by expert
- But building and maintaining these rules is expensive

Classification Methods: Supervised Machine Learning • Input: • a document d • a fixed set of classes $C = \{c_1, c_2, ..., c_j\}$ • A training set of m hand-labeled documents $(d_1, y_1), ..., (d_m, y_m), y_i is in C$ • Output:

• a learned classifier $y:d \rightarrow c$

Classification Methods: Supervised Machine Learning

- Any kind of classifier
 - Naïve Bayes
 - Logistic regression
 - Support-vector machines
 - k-Nearest Neighbors

• ...

Outline

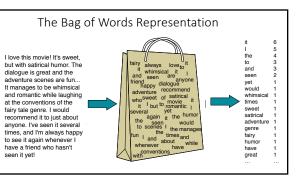
Text Categorization/Classification
 Naïve Bayes

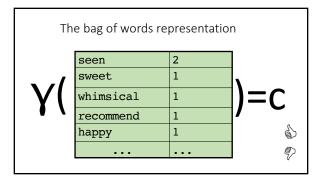
Evaluation

Naïve Bayes Classifier

Naïve Bayes Intuition

- Simple ("naïve") classification method based on Bayes rule
- Relies on very simple representation of document • Bag of words





Bayes' Rule Applied to Documents and Classes

• For a document *d* and a class *C*

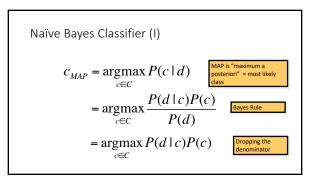
$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

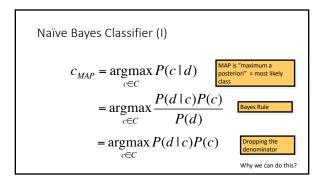
Bayes' Rule Applied to Documents and Classes

• For a document *d* and a class *C*

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

NB is a generative model! (We will talk about it later.)

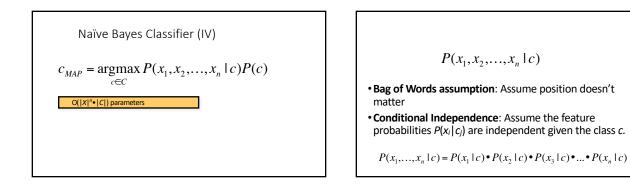




Naïve Bayes Classifier (II)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c)P(c) \xrightarrow{\text{Document d}}_{\text{represented as}}$$



Multinomial Naïve Bayes Classifier

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c)$$

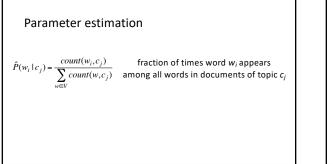
Applying Multinomial Naive Bayes Classifiers to Text Classification positions \leftarrow all word positions in test document $c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{i \in positions} P(x_i | c_j)$

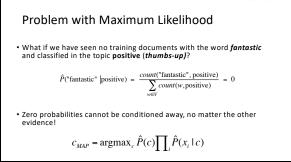
Learning for Naïve Bayes Model

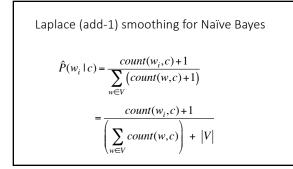
Learning the Multinomial Naïve Bayes Model

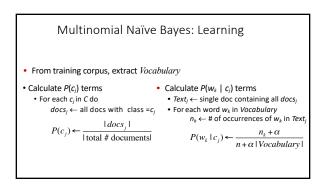
• First attempt: maximum likelihood estimates • simply use the frequencies in the data

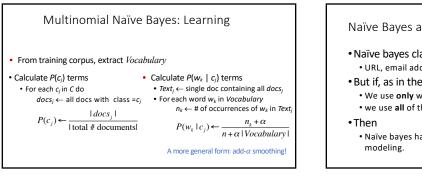
$$\begin{split} \hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}} \\ \hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)} \end{split}$$

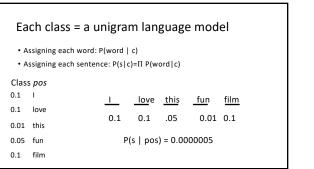


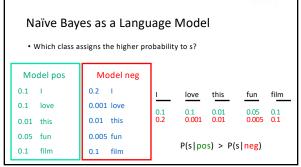












Naïve Bayes and Language Modeling

- Naïve bayes classifiers can use any sort of feature • URL, email address, dictionaries, network features
- But if, as in the previous slides
 - We use only word features
 - we use **all** of the words in the text (not a subset)
 - Naïve bayes has an important similarity to language

An Example

		Doc	Words	Class
$\hat{P}(c) = \frac{N_c}{N}$	Training	1	Chinese Beijing Chinese	с
N N		2	Chinese Chinese Shanghai	с
		3	Chinese Macao	с
$\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(w, c) + 1}$		4	Tokyo Japan Chinese	j
count(c)+ V	Test	5	Chinese Chinese Tokyo Japan	?
Priors: $P(c) = \frac{3}{4}$ $P(j) = \frac{1}{4}$			Choosing a class: $P(c d5) \propto 3/4 * (3/7)^3 * 1/14$ ≈ 0.0003	* 1/14
$\begin{array}{llllllllllllllllllllllllllllllllllll$	L) / (8+6) = L) / (8+6) = L) / (8+6) = L) / (3+6) =	1/14 1/14 2/9 2/9	= 3/7 $P(j \mid dS) ~ \propto ~ 1/4 * (2/9)^* * 2/9 \\ \approx 0.0001$	* 2/9 38

Summary: Naive Bayes is Not So Naive

- Very Fast, low storage requirements
- Robust to Irrelevant Features Irrelevant Features cancel each other without affecting results
- · Very good in domains with many equally important features
- Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- A good dependable baseline for text classification

Outline

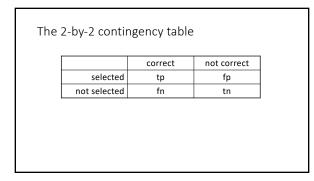
- Text Categorization/Classification
- Naïve Bayes ➡• Evaluation

Evaluation	The mate
	For exa • Whit • Whit
	- whic

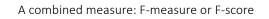
2-by-2 contingency table (or confusion trix)

	correct	not correct
selected	tp (true positive)	fp (false positive)
not selected	fn (false negative)	tn (true negative)

ample, ich set of documents are related to the topic of NLP? ich set of documents are written by Shakespeare?



red	cision and red	call		
	ision : % of selected all: % of correct item			
[correct	not correct	
Ī	selected	tp	fp	
t	not selected	fn	tn	



• A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• People usually use balanced F1 measure • i.e., $\alpha = \frac{1}{2}$, $F = \frac{2PR}{P+R}$

More Than Two Classes: Sets of binary classifiers

• Dealing with any-of or multivalue classification A document can belong to 0, 1, or >1 classes.

- For each class $c \in C$
- Build a classifier γ_c to distinguish c from all other classes $c' \in C$ • Given test doc d,
 - Evaluate it for membership in each class using each γ_c
 - d belongs to any class for which γ_c returns true

More Than Two Classes: Sets of binary classifiers

• One-of or multinomial classification Classes are mutually exclusive: each document in exactly one class

- For each class c∈C
- Build a classifier γc to distinguish c from all other classes c' ∈C • Given test doc d,
- Evaluate it for membership in each class using each γ_c d belongs to the one class with maximum score

• For each pair of incorrectly ass • c3,2: 90 whea	igned to c	<c1,c2> hov 2?</c1,c2>	w many do		rom c1 we	re
Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

Per class evaluation measures	
Per class evaluation measures	
Recall: Fraction of docs in class <i>i</i> classified correctly:	$\frac{c_{ii}}{\sum\limits_{j}^{j}c_{ij}}$
Precision: Fraction of docs assigned class <i>i</i> that are actually about class <i>i</i> :	$\frac{c_{ii}}{\sum_{j}^{C_{ji}}}$
Accuracy: (1 - error rate) Fraction of docs classified correctly:	$\frac{\sum_{i}^{c_{ii}}}{\sum_{j}\sum_{i}^{c_{ij}}}$

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

1VIIC	cro- v			vera	ging: Ex		
Truth:	Truth:		Truth:	Truth:		Truth:	Truth:
10	10	Classifier: yes	90	10	Classifier: yes	100	20
10	970	Classifier: no	10	890	Classifier: no	20	1860
	Truth: yes 10	Truth: Truth: yes no 10 10	5 1 Class Truth: Truth: yes no 10 10 Classifier: yes	Truth: yes Truth: no Truth: yes 10 10	Truth: Truth: Truth: Truth: yes no 10 10 Classifier: yes 90 10	S 1 Class 2 Micro A Truth: Truth: Truth: Truth: yes no Image: Classifier: yes 10 10 10 Classifier: yes 90 10	S.1 Class 2 Micro Ave. Ta Truth: yes no Truth: Classifier: yes no 10 10 Classifier: yes 90 10

