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What is Natural Language Dialogue?

• Communication involving
• Multiple contributions
• Coherent interaction
• More than one participant

• Interaction modalities
• Input: Speech, writing, gesture
• Output: Speech, text, graphical display, animated face/body (embodied virtual 

agent)

[Some slides are borrowed from Svetlana Stoyanchev and Dan Jurasky]



What is involved in NL dialogue

• Understanding
• What does a person say?

• Identify words from speech signal
• “Please close the window” 

• What does the speech mean?
• Identify semantic content 

• Request ( subject: close ( object: window))
• What were the speaker’s intentions?

• Speaker requests an action in a physical world 



What is involved in NL dialogue

• Managing interaction
• Internal representation of the domain
• Identify new information
• Identifying which action to perform given new information

• “close the window”, “set a thermostat” -> physical action
• “what is the weather like outside?” -> call the weather API

• Determining a response
• “OK”, “I can’t do it”
• Provide an answer
• Ask a clarification question



What is involved in NL dialogue

• Access to information
• To process a request “Please close the window” you (or the system) 

needs to know:
• There is a window
• Window is currently opened
• Window can/can not be closed



What is involved in NL dialogue

• Producing language
• Deciding when to speak
• Deciding what to say

• Choosing the appropriate meaning
• Deciding how to present information 

• So partner understands it
• So expression seems natural



When is automatic dialogue system useful?

• When hands-free interaction is needed
• In-car interface
• In-field assistant system 
• Command-and-control interface
• Language tutoring
• Immersive training

• When speaking is easier than typing
• Voice search interface
• Virtual assistant (Siri, Google Assistant)

• Replacing human agents  (cutting cost for companies)
• Call routing
• Menu-based customer help
• Voice interface for customer assistance



Visions of dialogue from science fiction

• Hal  “2001:  A Space Odyssey” (1968)
• Naturally conversing computer

• Star Trek (original 1966)
• Natural language command and control

• Her  (2013)
• A virtual partner with natural dialogue capabilities



Her (2013)



Conversational Agents  aka  Dialog Agents

Phone-based Personal Assistants 
SIRI, Cortana, Google Assistant, Amazon Echo

Talking to your car
Communicating with robots
Clinical uses for mental health
Chatting for fun



Two classes of systems
1. (Goal-based) Dialog agents

- SIRI, interfaces to cars, robots
- booking flights or restaurants

2. Chatbots



Examples of modern Virtual Assistant 
dialogue systems
• Apple Siri 
• Supports questions in a set 

of domains
• Answers open-end 

questions
• Cute “Easter egg” 

responses









Examples of modern Virtual Assistant 
dialogue systems
• Android Google Assistant (2013)
• Predictive search assistant

• Windows Cortana (2014)
• Works across different Windows devices
• Aims to be able to “talk about anything”



Embedded devices with dialogue capabilities

• Amazon Echo (2014) – home assistant device
• Plays music

• With voice commands
• Question answering

• Get weather, news
• More complex questions, like 

• “how many spoons are in a cup?”
• Setting timer
• Manages TODO lists



Architectures for Practical Dialog Systems

•Finite-State 
Simple information: e.g., passwords or credit cards
•Frame-Based

All commercial and academic system (SIRI etc.)
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Finite-State Dialog Management

Consider a trivial airline travel system:
Ask the user for a departure city
Ask for a destination city
Ask for a time
Ask whether the trip is round-trip or not 



Finite State Dialog Manager



Finite-state dialog managers

• System completely controls the conversation with the 
user.
• It asks the user a series of questions
• Ignoring (or misinterpreting) anything the user says 

that is not a direct answer to the system’s questions



Dialogue Initiative

• Systems that control conversation like this are called 
single initiative.
• Initiative: who has control of conversation
• In normal human-human dialogue, initiative shifts 

back and forth between participants.



System Initiative
System completely controls the conversation

• Simple to build
• User always knows what they can say next
• System always knows what user can say next
• Known words: Better performance from ASR
• Known topic:  Better performance from NLU

• OK for VERY simple tasks (entering a credit card, or login name 
and password)

• Too limited

+

-



Problems with System Initiative

• Real dialogue involves give and take!
• In travel planning, users might want to say something that is not the 

direct answer to the question.
• For example answering more than one question in a sentence:

Hi, I’d like to fly from Seattle Tuesday morning

I want a flight from Milwaukee to Orlando one way leaving after 5 
p.m. on Wednesday.



Single initiative + universals

•We can give users a little more flexibility by adding universals: 
commands you can say anywhere
• As if we augmented every state of FSA with these

Help
Start over
Correct

• This describes many implemented systems
• But still doesn’t allow user much flexibility



Instead, the state of the art:
Frame-based dialogue

•A kind of mixed initiative
• The conversational initiative shifts between system 

and user
•The structure of the frame guides dialogue



Frame-based dialogue

• Invented up the hill in 1977:

• Still the state of the art (in real world systems)
• SIRI based on GUS architecture
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GUS, A Frame-Driven Dia|og System 
Danie l  G. Bobrow, Ronald M .  Kaplan,  Mart in  Kay,  
Donald  A. Norman,  Henry  Thompson and 
Terry Winograd 

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, 
Palo Alto, CA 94304, U.S.A. 

Recommended by Don Walker 

ABSTRACT 
GUS is the first o f  a series o f  experimental computer systems that we intend to construct as part o f  
a program of  research on language understanding. In large measure, these systems will fill the role 
o f  periodic progress reports, summarizing what we have learned, assessing the mutual coherence o f  
the various lines o f  investigation we have been following, and saggestin# where more emphasis is 
needed in future work. GUS (Genial Understander System) is intended to engage a sympathetic and 
highly cooperative human in an English dialog, directed towards a specific goal within a very restricted 
domain o f  discourse. As a starting point, G US was restricted to the role o f  a travel agent in a con- 
versation with a client who wants to make a simple return trip to a single city in California. 

There is good reason for restricting the domain o f  discourse for a computer system which is to 
engage in an English dialog. Specializing the subject matter that the system can talk about permiis 
it to achieve some measure o f  realism without encompassing all the possibilities o f  human knowledge 
or o f  the English language. It also provides the user with specific motivation for participating in the 
conversation, thus narrowing the range o f  expectations that GUS must have about the user's pur- 
poses. A system restricted in this way will be more able to guide the conversation within the boundaries 
o f  its competence. 

1. Motivation and Design Issues 
Within its limitations, ous is able to conduct a more-or-less realistic dialog. But 
the outward behavior of this first system is not what makes it interesting or signifi- 
cant. There are, after all, much more convenient ways to plan a trip and, unlike 
some other artificial intelligence programs, (;us does not offer services or furnish 
information that are otherwise difficult or impossible to obtain. The system is 
i nteresting because of the phenomena of natural dialog that it attempts to model 

tThis work was done by the language understander project at the Xerox Palo Alto Research 
center. Additional affiliations: D. A. Norman, University of California, San Diego; H. Thompso6, 
University of California, Berkeley; and T. Winograd, Stanford University. 

Artificial Intelligence 8 0977), 155-173 
Copyright © 1977 by North-Holland Publishing Company 

Artificial Intelligence Journal, 1977



The Frame
• A set of slots, to be filled with specific information
• Each associated with a question to the user

Slot Question
ORIGIN What city are you leaving from?
DEST Where are you going?
DEPT DATE What day would you like to leave?
DEPT TIME What time would you like to leave?
AIRLINE What is your preferred airline?



Frames are mixed-initiative

• System asks questions of user, filling any slots that 
user specifies
•When frame is filled, do database query

• If user answers 3 questions at once, system can fill 3 
slots and not ask these questions again!



The Natural Language Understanding Component

Show me morning flights from Boston to SF on Tuesday.

SHOW:
FLIGHTS:

ORIGIN:
CITY: Boston
DATE:  Tuesday
TIME:  morning

DEST:
CITY: San Francisco



Often called "dialog state" detection

Dialog state: representation of what the user wants at any point in a 
dialog
• Which slots got filled in the last sentence?
• What is the current state of the frame?
• All the values of the filled slots

• What is the user's last "dialogue act":
• Did they ask me a question?
• Inform me of something?



How to do Frame-based Natural Language 
Understanding?

•Rule-based models
• Statistical models



Siri uses GUS architecture:
Condition-Action Rules
• Active Ontology: relational network of concepts
• data structures: a meeting has 
• a date and time, 
• a location, 
• a topic 
• a list of attendees 

• rule sets that perform actions for concepts
• the date concept turns string
• Monday at 2pm into
• date object date(DAY,MONTH,YEAR,HOURS,MINUTES)



Part of ontology for meeting task

has-a may-have-a

meeting concept: if you don’t yet have a location, ask for a location



Statistical Natural Language Understanding

• Statistical classifiers to map words to semantic frame-fillers
• Given a set of labeled sentences
“I want to fly to San Francisco on Tuesday”
Destination: SF
Depart-date: Tuesday

• Requirements: Lots of labeled data



Statistical Slot filling
• Given a sentence:

I want to go from Boston to SF

• Classifier predicts which slot the user wants to fill
Output:  (ORIGIN, DESTINATION, DEPARTURE-DATE, AIRLINE)



Statistical Slot filling
• Given a sentence:

I want to go from Boston to SF

• Classifier predicts which slot the user wants to fill
Output:  (ORIGIN, DESTINATION, DEPARTURE-DATE, AIRLINE)
Features: Words, Named Entities

• Classifier or sequence model predicts the filler:

ORIGIN     DEST
I want to go from Boston to SF



Evaluation

1. Slot Error Rate for a Sentence
# of inserted/deleted/substituted slots
# of total reference slots for sentence

2. End-to-end evaluation (Task Success)



Evaluation

Slot error rate: 1/3

Task success: At end, was the correct meeting 

added to the calendar?

“Make an appointment with Emily at 11:30 in Rm 911”

Slot Filler
PERSON Emily

TIME 11:30 p.m.

ROOM 911



Dialog Act Detection
• Dialog Act: The dialog function of the sentence

• Question
• Command
• Suggestion

• Given a user's sentence:
• Context: David wants to eat Italian food.
• He asked: How many Italian restaurants are in 
walking distance?

• Was that a question?



Dialogue Act detection is hard

Can you give me a list of the flights from Atlanta to Boston?
• This looks like an QUESTION.
• It has a question-mark, starts with "can you"

• If so, the answer is:
• YES.

• But really it’s a COMMAND, a polite form of:
Please give me a list of the flights…

• What looks like a QUESTION can be a COMMAND



Dialogue Act detection

• Rules-based models
• Statistical Models



Another example of dialogue act detection: 
Correction Detection
• If system misrecognizes an utterance, and either
• Rejects
• Via confirmation, displays its misunderstanding

• Then user has a chance to make a correction
• Repeat themselves
• Rephrasing
• Saying “no” to the confirmation question.



Corrections
• Unfortunately, corrections are harder to recognize than normal 

sentences!
• Swerts et al (2000): corrections misrecognized twice as 

often as non-corrections!!!
• Why?
• Prosody seems to be largest factor: hyperarticulation
• Liz Shriberg example:
• “NO, I am DE-PAR-TING from Jacksonville”



A Labeled dialogue (Swerts et al)



Machine learning to detect user corrections: 
features
• Lexical information (no, correction, I don’t, swear words)
• Prosodic indicators of hyperarticulation
• pause duration, word duration

• Length
• LM probability
• Various dialogue features (repetition)



Deciding what to say:

Dialog act generation
Should I do a "Confirmation" dialog act?

Natural Language Generation
Given that I'm confirming, what exactly should I say?



Grounding

•Why do elevator buttons light up?
• Clark (1996) (after Norman 1988)

Principle of closure.  Agents performing an action require 
evidence, sufficient for current purposes, that they have 
succeeded in performing it

•What is the linguistic correlate of this?



Grounding and Confirmation

•We need to know whether an action succeeded or 
failed
• Talking is an action! 
• I need to know if my action succeeded
• i.e. the hearer understood my turn!



How do speakers ground? 
Clark and Schaefer
• Continued attention: 
• B continues attending to A

• Relevant next contribution: 
• B starts in on next relevant contribution

• Acknowledgement: 
• B nods or says continuer (uh-huh) or assessment (great!)

• Demonstration: 
• B demonstrates understanding A by reformulating A’s contribution, or by 

collaboratively completing A’s utterance
• Display: 
• B repeats verbatim all or part of A’s presentation



A human-human conversation



Grounding examples

Display:
C: I need to travel in May
A: And, what day in May did you want to travel?

Acknowledgement
C: He wants to fly from Boston
A: mm-hmm
C: to Baltimore Washington International



Grounding examples (2)

• Acknowledgement + next relevant contribution
And, what day in May did you want to travel?
And you’re flying into what city?
And what time would you like to leave?

• The and indicates to the client that agent has 
successfully understood answer to the last question.



Grounding negative responses
From Cohen et al. (2004)
• System: Did you want to review some more of your personal profile?
• Caller: No.
• System: Okay, what’s next?

• System: Did you want to review some more of your personal profile?
• Caller: No.
• System: What’s next?



Confirmation
• Errors: Speech is a pretty errorful channel

• Humans use grounding to confirm that they heard correctly

• Automatic speech recognition (ASR) is way worse than humans!

• Dialog systems need to do even more grounding and 

confirmation than humans

• Users are confused when system doesn’t give explicit 

acknowledgement signal.

Stifelman et al. (1993), Yankelovich et al. (1995)



Explicit confirmation

S: Which city do you want to leave from?
U: Baltimore
S: Do you want to leave from Baltimore?
U: Yes



Explicit confirmation

U: I’d like to fly from Denver Colorado to New York City on 
September 21st in the morning on United Airlines
S: Let’s see then.  I have you going from Denver Colorado to 
New York on September 21st.  Is that correct?
U: Yes



Implicit confirmation: display

U: I’d like to travel to Berlin
S: When do you want to travel to Berlin?

U: Hi I’d like to fly to Seattle Tuesday morning
S: Traveling to Seattle on Tuesday, August eleventh in the 
morning.  Your name?



Implicit vs. Explicit

• Complementary strengths
• Explicit: easier for users to correct systems�s mistakes (can just say 

“no”)
• But explicit is cumbersome and long
• Implicit: much more natural, quicker, simpler (if system guesses right).



Implicit and Explicit

• Early systems: all-implicit or all-explicit
• Modern systems: adaptive
• How to decide?



Implicit and Explicit

• Early systems: all-implicit or all-explicit
• Modern systems: adaptive
• How to decide?
• ASR system can give confidence metric.
• This expresses how convinced system is of its transcription of the speech
• If high confidence, use implicit confirmation
• If low confidence, use explicit confirmation

• Should also consider cost of an error: Explicit confirmation before 
moving money or booking flights



Rejection

• “I’m sorry, I didn’t understand that.”
• Reject when:
• ASR confidence is low
• Best interpretation is semantically ill-formed (e.g., where is sushi 

(Sochi))
• Might have four-tiered level of confidence:
• Below confidence threshold, reject
• Above threshold, explicit confirmation
• If even higher, implicit confirmation
• Even higher, no confirmation



Chatbots

• ELIZA (1966)

• PARRY (1968)

• The first system to pass the Turing test!

• ALICE

• CLEVER

• Microsoft Little Bing (aka Xiaoice,  ��)

• EMNLP 2018 conference tutorial: http://emnlp2018.org/tutorials/



Chatbot Architectures

•Rule-based
•Pattern-action rules (Eliza)
• + a mental model (Parry)

•Corpus-based (from large chat corpus)
• Information Retrieval
•Neural network encoder-decoder



Chatbots

• Sometimes for fun
• Originally designed as a testbed for clinical therapy



Eliza: Weizenbaum (1966)
Men are all alike.

IN WHAT WAY

They're always bugging us about something or other. 

CAN YOU THINK OF A SPECIFIC EXAMPLE 

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE 

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED 

...

WHO ELSE IN YOUR FAMILY TAKES CARE 0F YOU?

My father

YOUR FATHER



You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND 
MADE YOU COME HERE



Domain: Rogerian psychology interview

Draw the patient out by reflecting patient’s statements back at them
Rare type of conversation in which one can “assume the pose of 
knowing almost nothing of the real world”

Patient: "I went for a long boat ride”
Psychiatrist: "Tell me about boats”

• You don’t assume she didn’t know what a boat is
• You assume she had some conversational goal
• Most chatbots trying to pass Turing test choose a domain with similar 

properties



Eliza pattern/transform rules
(0 YOU 0 ME)    [pattern]
à

(WHAT MAKES YOU THINK I 3 YOU) [transform]

You hate me
WHAT MAKES YOU THINK I HATE YOU

0  means kleene star (zero or more of some words)
The 3 is the constituent number in pattern



Eliza Rules

A formal notation in which to represent the decomposition 
template is: 

(0 YOU 0 ME) 

and the reassembly rule 

(WHAT MAKES YOU T H I N K  I 3 YOU). 

The "0" in the decomposition rule stands for "an in- 
definite number of words" (analogous to the indefinite 
dollar sign of COMIT) [6] while the "3" in the reassembly 
rule indicates that  the third component of the subject 
decomposition is to be inserted in its place. The decom- 
position rule 

(0 YOU 1 ME) 

would have worked just as well in this specific example. A 
nonzero integer "n"  appearing in a decomposition rule 
indicates that the component in question should consist 
of exactly "n"  words. However, of the two rules shown, 
only the first would have matched the sentence, " I t  seems 
you hate and love me," the second failing because there is 
more than one word between "you"  and "me". 

~1 RI,1 R1,2"'" Rl,ml D2 R2J RZ,Z" " "Rz,m2 De Ra,t FIn'2~ ' "  " R%nan 

Fro. 1. :Keyword and rule list structure 

in  ELIZA the question of which decomposition rules to 
apply to an input text is of course a crucial one. The input 
sentence might have been, for example, " I t  seems that  
you hate," in which ease the decomposition rule (0 YOU 
0 ME) would have failed in that  the word " M E "  would 
not have been found at all, let alone in its assigned place. 
Some other decomposition rule would then have to be 
tried and, failing that,  still another until a match could 
be made or a total failure reported. ELIZA must therefm~ 
have a mechanism to sharply delimit the set of decom- 
position rules which are potentially applicable to a cur- 
rently active input sentence. This is the keyword mecha- 
nism. 

An input sentence is scanned from left to right. Each 
word is looked up in a dictionary of keywords. If a word 
is identified as a keyword, then (apart from the issue of 
precedence of keywords) only decomposition rules con- 
taining that  keyword need to be tried. The trial sequence 
can even be partially ordered. For example, the decom- 
position rule (0 YOU 0) associated with the keyword 
"YOU" (and decomposing an input sentence into (1) all 
words in front of "YOU", (2) the word "YOU", and (3) 
all words following "YOU") should be the last, one tried 
since it is bound to succeed. 

Two problems now arise. One stems from the fact tha t  

almost none of the words in any given sentence are repre. 
sented in the keyword dictionary. The other is that of 
"associating" both decomposit;ion and reassembly rules 
with keyword~-;. The iirst is serious in that  the determina- 
tion that  a word is not in a dictionary may well require 
more computation (i.e., time) than the location of a word 
which is represented. The attack on both problems begins 
by placing both a keyword trod its associated rules on a 
list. The basic format of a typical key list is the following: 

(K ((D0 (R~. t) (R~, 2) " '" (Rt . . . .  )) 
((D2) (R2. ~) (R2.2) " "  (R2.,,,~)) 

: 

((D,~) (R,,, ~) (taw, ~) . . .  (R,~, . ~ ) ) )  

where K is the keyword, D, the it, h decomposition rule 
associated with K and R¢, ~ the j t h  reassembly rule ass0. 
ciated with the i th decomposition rule. 

A common pictorial representation of such a structure 
is the tree diagram shown in Figure 1. The top level of 
this structure contains the keyword followed by the names 
of lists; each one of which is again a list structure beginning 
with a decomposition rule and followed by reassembly 
rules. Since list structures of this type have no predeter- 
mined dimensionality limitations, any number of decom- 
position rules may be associated with a given keyword and 
any number of reassembly rules witch any specific decom- 
position rule. SLiP i8 rich in functions that  sequence over 
structures of this type efficiently. Hence programmin 
problems are minimized. 

An ELIZA script consists mainly of a set of list struc- 
tures of the type shown. The actual keyword dictionary is 
constructed when such a script is first read into the 
hitherto empty program. The basic structural component 
of the keyword dictionary is a vector KEY of (currently) 
128 contiguous computer words. As a particular key list 
structure is read the keyword K at its top is randomized 
(hashed) by a procedure that  produces (currently) a 7 
bit integer "i" .  The word "always", for example, yields 
the integer 14. KEY(i), i.e., the i th word of the vector 
KEY, is then examined to determine whether it contains 
a list. name. If it does not, then an empty list is created, 
its name placed in KEY(i), and the key list structure in 
question placed on that list. If KEY(i) already contains a 
list name, then the name of the key list structure is placed 
on the bottom of the list named in KEY(i). The largest 
dictionary so far attempted contains about 50 keywords. 
No list named in any of the words of the KEY vector 
contains more than two key list structures. 

Every word encountered in the scan of an input text, 
i.e., during the actual operations of ELIZA, is randomized 
by the same hashing algorithm as was originally applied to 
the incoming keywords, hence yields an integer which 
points to the only possible list structure which could 
potentially contain that  word as a keyword. Even then, 
only the tops of any key list structures that  may be found 
there need be interrogated to determine whether or not a 
keyword has been found. By virtue of the various list 

38 Communications of tile ACM Volume 9 / Number 1 / January, 1966 

keyword

pattern Ranked list of transforms



ELIZA architecture
• Examine each word w in user sentence
• Return the w with highest keyword rank

• If w exists:
• Check each rule for w in ranked order

• Choose first one that matches sentence
• Apply transform

• If no keyword applies, either
• Apply the transform for the “NONE” key, or
• Grab an action off the memory queue



Keywords are ranked from specific to general

I know everybody laughed at me
• “I” is a very general keyword:
I: (I *) -> (You say you 2)
YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

• “Everybody” is much more interesting (someone using universals 
like everybody/always is probably “referring to some quite specific 
event or person”)
WHO IN PARTICULAR ARE YOU THINKING OF?

• Implementation: keywords stored with their rank 
Everybody (transformation rules)
I (transformation rules)



NONE

PLEASE GO ON
THAT’S VERY INTERESTING
I SEE



Memory
(MEMORY MY
(0 YOUR 0 = LETS DISCUSS FURTHER WHY YOUR 3)
(0 YOUR 0 = EARLIER YOU SAID YOUR 3)
(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE 
FACT THAT YOUR 3)

• Whenever “MY” is highest keyword
• Randomly select a transform on the MEMORY list 
• Apply to sentence
• Store on a stack

• Later, if no keyword matches a sentence
• Return the top of the MEMORY queue instead



Other Aspects about Eliza
• Rules can refer to classes of words
Family = mother, father, brother, sister
NOUN = …

• Don’t reuse transforms in the same conversation
• Whenever we use a transform associated with a pattern
• We increment a counter for that rule
• So the next time we use the next ranked transform

• Some basic transforms happen during input processing
• I -> YOU
• YOU -> I



Parry
• Colby 1971 at Stanford
• Same pattern-response structure as Eliza
• But a much richer:
• control structure 
• language understanding capabilities
• mental model: Parry has affective variables

• Anger, Fear, Mistrust
• “If Anger level is high, respond with hostility”

• The first system to pass the Turing test (in 1971)
• Psychiatrists couldn’t distinguish interviews with PARRY from (text 

transcripts of) interviews with real paranoids



Parry’s persona

• 28-year-old single man, post office clerk
• no siblings and lives alone
• sensitive about his physical appearance, his family, his religion, his 

education and the topic of sex.
• hobbies are movies and gambling on horseracing 
• recently attacked a bookie, claiming the bookie did not pay off in a 

bet
• afterwards worried about possible underworld retaliation
• eager to tell his story to non-threating listeners



Affect variables
• Fear and Anger (each ranging 0-20)
• Mistrust (ranging 0-15)
• Initial conditions: All low

• After each user turn, if nothing malevolent in input
• Anger drops by 1, Fear drops by 0.3
• Mistrust drops by 0.05

• Otherwise depends on what the user says
• Each user statement can change Fear and Anger

• Insults increases Anger by some percentage
• Mistrust goes up if Fear or Anger do



Lots of complex I-O rules

• User implies Parry is mentally ill
• Rise in Fear and Anger

• User mentions “Mafia” or associated concepts (“kill”):
• First mention: rise in Fear
• Later mentions: depends on willingness to discuss, which depends on current levels 

of Fear, Anger, Mistrust
• User mentions Parry

• Flattery (positive mention) 
• Decreases fear/anger if Mistrust is low
• Increases Anger if Mistrust is high

• User attitudes toward Parry
• Negative attitudes (fear, disbelief) increase Fear/Anger



Flare concepts
• List of concepts related to Mafia
• An ordered graph designed to lead interviewer to topic

horsesà horseracingàgamblingàbookiesàunderwoldàMafia

• The mention of a new flare topic by interviewer causes a rise in 
Fear
• Flare topics cause Parry to give preset responses to that flare



Each sentence is mapped into conceptualization
• A predication on a conceptual object
• A predication on a relation between two objects
• A predication on an attribute:

What is your work?
What sort of work do you do?
Where do you work?                 à (your work?)
What do you do for a living?
What is your job?
Do you have a job?
What is your occupation?

• Complex Pattern/transform rules
• Different predicates (fear, afraid of)
• Ordering (You are afraid of me, I frighten you)



A Parry conversation
(1) How are you today?

OK.
(2)What is your name?

MY NAME IS FRANK SMITH. 
(3) How old are you?

TWENTY-EIGHT.
(4) Are you married?

NO.
(5) What sort of work do you do?

I WORK IN THE POST OFFICE. 
(6) Why are you in the hospital?

I SHOULDN’T BE HERE
(7) Who brought you here?

THE POLICE 
[FEAR rises slightly because police linked in graph to MAFIA]



When fear is high, the model won’t discuss its beliefs
(1) Is the law after you?
THE LAW SHOULD GET THOSE ITALIAN CROOKS. 
(2) Do you mean the Mafia?

LET'S TALK ABOUT SOMETHING ELSE. 
(3) Are you afraid of the Mafia

I'D RATHER NOT DISCUSS IT. 
[Fear is too high so Parry won’t talk about 'Mafia’.]
(4) Perhaps you are paranoid about them?

YOU WANT TO KEEP ME IN THE HOSPITAL.
(The model interprets being called 'paranoid’ as an insult 
and as an intent to control, so ANGER & FEAR rise)



Eliza Meets Parry
Good Evening.  Tell me your problems.  Please terminate input with 
a period or a question mark.

*People get on my nerves sometimes.
I am not sure I understand you fully.

*You should pay more attention.
Suppose you should pay more attention.
*You're entitled to your own opinion.

What makes you think I am entitled to my own opinion?
*It bothers me just to be around people in general.

Please go on.
*I went to the track at Bay Meadows a while back.

What does that suggest to you?
*I went to the races.

What else would you like to discuss?

Vincent Cerf, RFC439



*Horseracing interests me.
Why do you say that just now?

*There's a lot of crooked gambling going on there.
I am not sure I understand you fully,

*It's clear to me if not to you.
Do you think its likely that not to I?

*I went to the races.
Please go on.

*I gamble on horses.
What does that suggest to you?

*I went to the races.
What else would you like to discuss?

*Gambling has been nothing but trouble to me.
Why do you say that just now?

*I've had experience with crooks gambling at the track.
I am not sure I understand you fully.

*I've already told you enough about that.



IR-based models of chatbots

• Cleverbot
• Xiaoice

• Mine conversations of human chats or human-machine chats
• Choose a response by
• Taking user's turn and finding a (tf-idf) similar turn in the dataset
• Grabbing whatever the response was to that turn.



Deep-learning chatbots

• Train on:
•movie dialogue databases
• twitter conversations

• Train a deep neural net to map from one users’ turn 
to the other users response



Seq2seq model architecture

Figure 1: The computational graph of the HRED architecture for a dialogue composed of three turns. Each utterance is
encoded into a dense vector and then mapped into the dialogue context, which is used to decode (generate) the tokens in the
next utterance. The encoder RNN encodes the tokens appearing within the utterance, and the context RNN encodes the temporal
structure of the utterances appearing so far in the dialogue, allowing information and gradients to flow over longer time spans.
The decoder predicts one token at a time using a RNN. Adapted from Sordoni et al. (2015a).

the advantage that the embedding matrix E may separately
be bootstrapped (e.g. learned) from larger corpora. Analo-
gously, the matrix O 2 Rdh⇥|V | represents the output word
embeddings, where each possible next token is projected
into another dense vector and compared to the hidden state
hn. The probability of seeing token v at position n + 1 in-
creases if its corresponding embedding vector Ov is “near”
the context vector hn. The parameter H is called a recurrent

parameter, because it links hn�1 to hn. All parameters are
learned by maximizing the log-likelihood of the parameters
on a training set using stochastic gradient descent.

Hierarchical Recurrent Encoder-Decoder
Our work extends the hierarchical recurrent encoder-
decoder architecture (HRED) proposed by Sordoni et
al. (2015a) for web query suggestion. In the original frame-
work, HRED predicts the next web query given the queries
already submitted by the user. The history of past submitted
queries is considered as a sequence at two levels: a sequence
of words for each web query and a sequence of queries.
HRED models this hierarchy of sequences with two RNNs:
one at the word level and one at the query level. We make
a similar assumption, namely, that a dialogue can be seen
as a sequence of utterances which, in turn, are sequences of
tokens. A representation of HRED is given in Figure 1.

In dialogue, the encoder RNN maps each utterance to an
utterance vector. The utterance vector is the hidden state
obtained after the last token of the utterance has been pro-
cessed. The higher-level context RNN keeps track of past ut-
terances by processing iteratively each utterance vector. Af-
ter processing utterance Um, the hidden state of the context
RNN represents a summary of the dialogue up to and includ-

ing turn m, which is used to predict the next utterance Um+1.
This hidden state can be interpreted as the continuous-valued
state of the dialogue system. The next utterance prediction is
performed by means of a decoder RNN, which takes the hid-
den state of the context RNN and produces a probability dis-
tribution over the tokens in the next utterance. The decoder
RNN is similar to the RNN language model (Mikolov et al.
2010), but with the important difference that the prediction
is conditioned on the hidden state of the context RNN. It can
be interpreted as the response generation module of the di-
alogue system. The encoder, context and decoder RNNs all
make use of the GRU hidden unit (Cho et al. 2014). Every-
where else we use the hyperbolic tangent as activation func-
tion. It is also possible to use the maxout activation func-
tion between the hidden state and the projected word em-
beddings of the decoder RNN (Goodfellow et al. 2013). The
same encoder RNN and decoder RNN parameters are used
for every utterance in a dialogue. This helps the model gen-
eralize across utterances. Further details of the architecture
are described by Sordoni et al. (2015a).

For modeling dialogues, we expect the HRED model to be
superior to the standard RNN model for two reasons. First,
because the context RNN allows the model to represent a
form of common ground between speakers, e.g. to represent
topics and concepts shared between the speakers using a dis-
tributed vector representation, which we hypothesize to be
important for building an effective dialogue system (Clark
and Brennan 1991). Second, because the number of com-
putational steps between utterances is reduced. This makes
the objective function more stable w.r.t. the model parame-
ters, and helps propagate the training signal for first-order
optimization methods (Sordoni et al. 2015a).

Serban, Iulian V., Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.  2015.  
"Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.



Sample outputs from a neural net chatbot

How are you doing? 
I’m good, you? 

I am off all week next week
What time you going? 

I know you love me and I love you.
I love you too, baby. 

Ohh I’ve never seen that! How long does it take you guys to learn the drill? 
Like 2 weeks ago!! 

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng
Gao, and Bill Dolan. 2015.
A Diversity-Promoting Objective Function for 
Neural Conversation Models.



Sample output from a neural net chatbot

# Context c Message m Generated Response r

1 noone can help this time its just i need a support system well im here to support you. whenever you
need me.

thank you, i appreciate it thank you

2 nothin much, and how’s the book?! its good but i’m only like halfway through
cuz i don’t feel like reading. i’m so bored ...

that’s good! i have the book but i’m
bored too.

3 i know! what have you been up to? nothing really. just enjoying summer and
working. what about you?

that’s good! nothing much just
listening to music and you?

4 thanks, your way better though i’m just good at expressing it that’s but trust
me you are freakin amazing and waay better

i know, i don’t trust you, i love you
too! thank you

5 thanks. yeah i am good thanks! good, but angry! sorry you’re angry, been there, i hope it dies
down.

i hope so too, i’m not angry!!

6 figures. bass. never ate bass. bass is extremely mild with very few bones.
my favorite after catfish

that’s one of the bones, chuck bass is
mine too.

7 today i will walk for miles. clear sky clear mind. love walking. it’s too hot to walk this month.
i haven’t moved. frozen. heat freeze.

it’s too hot for you to get up to honey
if you have frozen yogurt to you.

8 arresting people over “nasty tweets”? please. i’m not
condoning what the lad did but arresting him is a tad
silly.

it appears he may have sent death threats to
others while all this was kicking off too.

i did! he was armed with nuclear
threats? that’s what’s happening to
you.

Table 5: Sample responses produced by the MT-based DCGM-II+CMM system.

information that conflicts either internally within the
response itself, or is at odds with the context, as in ex-
amples 4-5. This is not unsurprising, since our model
lacks mechanisms both for reflecting agent intent in
the response and for maintaining consistency with
respect to sentiment polarity. Longer context and
message components may also result in responses
that wander off-topic or lapse into incoherence as in
6-8, especially when relatively low frequency uni-
grams (“bass”, “threat”) are echoed in the response.
In general, we expect that larger datasets and incorpo-
ration of more extensive contexts into the model will
help yield more coherent results in these cases. Con-
sistent representation of agent intent is outside the
scope of this work, but will likely remain a significant
challenge.

7 Conclusion
We have formulated a neural network architecture
for data-driven response generation trained from so-
cial media conversations, in which generation of
responses is conditioned on past dialog utterances
that provide contextual information. We have pro-
posed a novel multi-reference extraction technique
allowing for robust automated evaluation using stan-
dard SMT metrics such as BLEU and METEOR.
Our context-sensitive models consistently outper-
form both context-independent and context-sensitive
baselines by up to 11% relative improvement in

BLEU in the MT setting and 24% in the IR setting, al-
beit using a minimal number of features. As our mod-
els are completely data-driven and self-contained,
they hold the potential to improve fluency and con-
textual relevance in other types of dialog systems.

Our work suggests several directions for future
research. We anticipate that there is much room for
improvement if we employ more complex neural net-
work models that take into account word order within
the message and context utterances. Direct genera-
tion from neural network models is an interesting and
potentially promising next step. Future progress in
this area will also greatly benefit from thorough study
of automated evaluation metrics.
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