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ABSTRACT

For any computing system to be secure, both hardware and soft-

ware have to be trusted. If the hardware layer in a secure system

is compromised, not only it would be possible to extract secret in-

formation about the software, but it would also be extremely hard

for the software to detect that an attack is underway. In this work

we detail a complete end-to-end fault-attack on a microprocessor

system and practically demonstrate how hardware vulnerabilities

can be exploited to target secure systems. We developed a theo-

retical attack to the RSA signature algorithm, and we realized it

in practice against an FPGA implementation of the system under

attack. To perpetrate the attack, we inject transient faults in the tar-

get machine by regulating the voltage supply of the system. Thus,

our attack does not require access to the victim system’s internal

components, but simply proximity to it.

The paper makes three important contributions: first, we develop

a systematic fault-based attack on the modular exponentiation al-

gorithm for RSA. Second, we expose and exploit a severe flaw on

the implementation of the RSA signature algorithm on OpenSSL, a

widely used package for SSL encryption and authentication. Third,

we report on the first physical demonstration of a fault-based secu-

rity attack of a complete microprocessor system running unmodi-

fied production software: we attack the original OpenSSL authen-

tication library running on a SPARC Linux system implemented

on FPGA, and extract the system’s 1024-bit RSA private key in

approximately 100 hours.

1. INTRODUCTION
Public-key cryptography schemes (Figure 1.a) are widely adopted

wherever there is a need to secure or authenticate confidential data

on a public communication network. When deployed with suffi-

ciently long keys, these algorithms are believed to be unbreakable.

Strong cryptographic algorithms were first introduced to secure

communications among high performance computers that required

elevated confidentiality guarantees. Today, advances in semicon-

ductor technology and hardware design have made it possible to

execute these algorithms in reasonable time even on consumer sys-

tems, thus enabling the mass-market use of strong encryption to

ensure privacy and authenticity of individuals’ personal communi-

cations. Consequently, this transition has enabled the proliferation

of a variety of secure services, such as online banking and shop-

ping. Examples of consumer electronics devices that routinely rely

on high-performance public key cryptography are Blu-ray play-

ers, smart phones, and ultra-portable devices. In addition, low-

cost cryptographic engines are mainstream components in laptops,

servers and personal computers. A key requirement for all these

hardware devices is that they must be affordable. As a result, they

commonly implement a straightforward design architecture that en-

tails a small silicon footprint and low-power profile.

Our research focuses on developing an effective attack on mass-

market crypto-chips. Specifically, we demonstrate an effective way

to perpetrate fault-based attacks on a microprocessor system in or-

der to extract the private key from the cryptographic routines that

it executes. Our work builds on a theoretical fault-based attack

proposed in [6], and extends it to stronger implementations of the

RSA-signature algorithm. In addition, we demonstrate the attack

in practice by generating a number of transient faults on an FPGA-

based SPARC system running Linux, using simple voltage manipu-

lation, and applying our proposed algorithm to the incorrectly com-

puted signatures collected from the system under attack. This at-

tack model is not uncommon since many embedded systems, for

cost reasons, are not protected against enviromental manipulations.

Our fault-based attack can be successfully perpetrated also on sys-

tems adopting techniques such as hardware self-contained keys and

memory/bus encryption.

The attack requires only limited knowledge of the victim sys-

tem’s hardware. Attackers do not need access to the internal com-

ponents of the victim chip, they simply collect corrupted signature

outputs from the system while subjecting it to transient faults. Once

a sufficient number of corrupted messages have been collected, the

private key can be extracted through offline analysis.
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Figure 1: Overview of public key authentication and our fault
based attack. a) in public key authentication, a client sends a
unique message m to a server, which signs it with its private key d.
Upon receiving the digital signature s, the client can authenticate
the identity of the server using the public key (n, e) to verify that s
will produce the original message m. b) Our faultbased attack can
extract a server’s private key by injecting faults in the server’s hard
ware, which produces intermittent computational errors during the
authentication of a message. We then use our extraction algorithm
to compute the private key d from several unique messages m and
their corresponding erroneous signatures ŝ.

Occurrence of hardware faults. Current silicon manufacturing

technology has reached such extreme small scales that the occur-

rence of transient hardware failures is a natural phenomenon, caused

by environmental alpha particles or neutrons striking switching tran-

sistors. Similarly, occasional transient errors can be induced by

forcing the operative conditions of a computer system. A system-

atic vulnerability to these attacks can also be introduced during the

manufacturing process, by making some components in the system

more susceptible to transient faults than others.

Several consumer electronic products, such as ultra-mobile com-

puters, mobile phones and multimedia devices are particularly sus-



ceptible to fault-based attacks: it is easy for an attacker to gain

physical access to such systems. Furthermore, even a legitimate

user of a device could perpetrate a fault-based attack on it to ex-

tract confidential information that a system manufacturer intended

to keep secure (as, for instance, in the case of multimedia players).

Contributions of this work. This paper presents a fault-based

technique to perpetrate an attack on RSA authentication by ex-

ploiting microarchitectural or circuit-level vulnerabilities in digi-

tal hardware devices. It makes three key contributions: first, we

extend the theoretical work proposed by Boneh et al., in [6] and

develop a novel RSA authentication attack (see also Figure 1.b),

which extracts a server’s RSA private key by extracting informa-

tion through perturbing the fixed-width modular exponentiation al-

gorithm used in the popular OpenSSL library [1]. OpenSSL is an

open-source secure sockets layer (SSL) implementation of RSA

authentication [13], widely deployed in internet and web security

applications, including the Apache web server, BIND DNS server

and the OpenSSH secure shell. The second contribution is the dis-

covery of a severe vulnerability in the software implementation of

RSA authentication in OpenSSL, which can be expoited to perform

fault-based attacks.

Finally, we apply our technique to demonstrate the fault-based

attack on a SPARC-based microprocessor system, implemented on

FPGA and running Linux. We inject faults into the system through

by simply manipulating the voltage supply, resulting in occasional

transient faults in the SPARC processor’s multiplier. The injected

faults create computation errors in the system’s RSA authentication

routines, which we exploit to extract the private key. The attack is

perpetrated on an unmodified OpenSSL (version 0.9.8i). In our

experiment we show that we can fully extract the server’s 1024-bit

private key in approximately 100 hours. Once the machine’s private

key is acquired, it becomes possible for the attacker to pose as the

compromised server to unsuspecting clients.

It is worth noting that this attack is immune to protection mech-

anisms such as system bus and/or memory encryption, and that it

does not damage the device, thus no tamper evidence is left to in-

dicate that a system has been compromised.

2. RELATED WORK
Several algorithms have been proposed to implement the ex-

ponentiation of large numbers, including techniques based on the

Chinese Remainder Theorem (CRT). This algorithm is particularly

prone to fault attacks, and several of them have been suggested as

reported in the literature [6, 10, 15]. Other algorithms for exponen-

tiation, such as square-and-multiply and right-to-left binary expo-

nentiation, are also susceptible to fault-based attacks [6]. Each uses

an ad-hoc fault model, ranging from altering the private exponent

stored in the system [3], to injecting single-bit errors into those reg-

isters storing partial exponentiation results [6], to carefully timing

fault-injections to corrupt a specific operation within the exponen-

tiation, as theorized in [7]. Our theoretical contribution adopts the

same single-bit flip fault model proposed in [6].

The OpenSSL library quickly computes RSA private key signa-

tures using a CRT-based algorithm, and then checks the correctness

of the generated result (detecting potential attacks) by verifying it

with the public key and comparing the result with the original mes-

sage. If a mismatch is observed, it resorts to the more time con-

suming left-to-right squaring as a safety measure, since this latter

algorithm is considered resilient to security attacks. In our work

we rely on single-bit faults to attack precisely left-to-right squar-

ing (shown in Figure 2), since this algorithm is considered a “safe

back-up” in the OpenSSL library. While left-to-right squaring is

algorithmically similar to right-to-left repeated squaring, single-

bit faults have a distinctly different impact on the computational

results. This paper presents the first systematic approach to fault-

based attacks of the left-to-right squaring algorithm, used in the

popular OpenSSL cryptographic library. We will refer to the par-

ticular implementation of the left-to-right exponentiation deployed

in OpenSSL as Fixed Window Exponentiation (FWE).

A theoretical example of a similar attack is presented in [5],

where functional errors in the hardware executing the exponenti-

ation algorithm are used to break RSA and other strong crypto-

graphic systems. In that work, the authors indicate how a functional

bug in the multiplier of a microprocessor can be exploited to this

end. Note, however, that the attack proposed is viable only if the

needed bug was to escape the hardware verification phase, which is

a highly improbable proposition, given the extreme effort dedicated

to modern designs’ validation [9].

The number of reports that detail actual physical implementa-

tions of these attacks perpetrated through erroneous computation

in the hardware layer is very scarce. Recently, an attack on a phys-

ical implementation of the square-and-multiply algorithm running

on a microcontroller was demonstrated in [14]. Faults injected in

the microcontroller were used to control the program counter of

the victim, so that the program executing the exponentiation algo-

rithm would some specific instructions. Additionally, a few other

theoretical attacks have been physically demonstrated on simple

microcontroller-based systems and smart cards [2, 4]. One of our

key contributions in this paper is the first physical demonstration

of a fault-based attack on a complete microprocessor-based sys-

tem, running unmodified software, including the Linux operating

system and a current version of the OpenSSL library.

3. AUTHENTICATION WITH RSA
RSA is a commonly adopted public key cryptography algorithm

[13]. Since it was introduced in 1977, RSA has been widely used

for establishing secure communication channels and for authenti-

cating the identity of service providers over insecure communica-

tion mediums. In the authentication scheme, the server implements

public key authentication with clients by signing a unique message

from the client with its private key, thus creating what is called a

digital signature. The signature is then returned to the client, which

verifies it using the server’s known public key (see also Figure 1.a).

The procedure for implementing public key authentication re-

quires the construction of a suitable pair of public key (n, e) and
private key (n, d). Here n is the product of two distinct big prime

numbers, and e and d are computed such that, for any given mes-

sage m, the following identity holds true: m ≡ (md)e mod n ≡
(me)d mod n. To authenticate a message m, the server attaches

a signature s to the original message and transmits the pair. The

server generates s from m using its private key with the following

computation: s ≡ md mod n. Anyone who knows the public key

associated with the server can then verify that the message m and

its signature s were authentic by checking that: m ≡ se mod n.

3.1 Fixedwindow modular exponentiation
Modular exponentiation (md mod n) is a central operation in

public key cryptography. Many cryptographic schemes, including

RSA, ElGamal, DSA and Diffie-Hellman key exchange, heavily

rely on modular exponentiation for their algorithms. Several algo-

rithms that implement modular exponentiation are available [11].

In this paper we focus on the fixed window exponentiation (FWE)

algorithm ([11] - chapter 14). This algorithm, used in OpenSSL-

0.9.8i, is guaranteed to compute the modular exponentiation func-

tion in constant time, and its performance depends only on the

length of the exponent. Because of this reason, the algorithm is



impervious to timing-based attacks [8].

The fixed-window modular exponentiation algorithm is very sim-

ilar to square-and-multiply [14], but instead of examining each in-

dividual bit of the exponent, it defines a window, w bits wide,

and partitions the exponent in groups of w bits. Conceptually, the

length of the algorithm’s window may be either variable or fixed.

However, using variable window lengths makes the computation

susceptible to timing-based attacks. To avoid these attacks, thus

OpenSSL utilizes a fixed window size.

The FWE algorithm operates by computing the modular expo-

nentiation for each window of w bits of the exponent and accumu-

lating the partial results. Since w typically comprises just a few

bits, the exponent is correspondingly a small number, between 0
and (2w − 1), leading to a practical computation time. Figure 2

reports the pseudo-code for the algorithm, where an accumulator

register acc stores the partial results. The algorithm starts from

the most significant bits of the exponent d and, during each itera-

tion, the bits of d corresponding to the window under consideration

are extracted and used to compute md[win idx] mod n (lines 7-9).

In addition, the bits of the window of d under consideration must

be shifted by w positions. Since d is the exponent of the message,

shifting d to the left by one position corresponds to squaring the

base. Shifting is thus accomplished by squaring the accumulator w
times (lines 5-6). Once all windows of sizew have been considered,

the accumulator contains the final value of md mod n. Note that,
in practice, the powers of m from 0 to 2w−1 are pre-computed and

stored aside, so that line 9 in the code reduces to a simple lookup

and multiplication. By leveraging the pre-computed powers of m,

the algorithm only requires a constant number of multiplications.

It is possible to reduce the window size w down to 1, in which

case the FWE algorithm degrades into square-and-multiply. How-

ever, using larger values of w brings noticeable benefits to the com-

putation time, because of the smaller number of multiplications re-

quired. Finally, if we define k as the ratio between the number of

bits in d and w: k = #bits(d)/w, the general expression computed

by the FWE algorithm is:

s = (· · (mdk−1)2
w

) · · ·mdi)2
w

) · · ·md1)2
w

)md0 mod n

= mdk−12w(k−1)

· · ·mdi2
wi

· · ·md12w

md0 mod n (1)

1 FWE(m, d, n, win size)

2 num win = #bits(d) / win size

3 acc = 1

4 for(win idx in [num win-1..0] )

5 for(sqr iter in [0..win size-1] )

6 acc = (acc * acc) mod n

7 d[win idx] =

8 bits(d, win idx*win size,win size)

9 acc = (acc * mˆd[win idx]) mod n

10 return acc

Figure 2: Fixed window exponentiation. The algorithm com
putes m

d
mod n. For performance, the exponent d is partitioned in

num winwindows of win sizebits. Moreover, to ensure a constant
execution time, independent from the specific value of the exponent

d, a table containing all the powers of m from 0 to 2win size − 1 is
precomputed and stored aside.

4. HARDWARE FAULT MODEL
The fault-based attack that we developed in this work exploits

hardware faults injected at the server side of a public key authenti-

cation (see Figure 1.b). Specifically, we assume that an attacker can

occasionally inject faults that affecting the result of a multiplication

computed during the execution of the fixed-window exponentiation

algorithm. Consequently, we assume that the system is subjected to

a battery of infrequent short-duration transient faults, that is, faults

whose duration is less than one clock cycle, so that they impact

at most one multiplication during the entire execution of the expo-

nentiation algorithm. Moreover, we only consider hardware faults

that produce a multiplication result differing from the correct one

in only one bit position, and simply disregard all others.

To make this attack possible, faults with the characteristics de-

scribed must be injected in the attacked microprocessor. For this

purpose, we exploit a circuit-level vulnerability common in micro-

processor design: multiplier circuits tend to be fairly complex, and

much effort has been dedicated to developing high performance

multipliers, that is, multipliers with short critical path delays. Even

so, often the critical path of a microprocessor system goes through

the multiplier circuit [12]. If environmental conditions (such as

high temperatures or voltage manipulation by an attacker) slow

down the signal propagation in the system, it is possible that signals

through the critical path do not reach their corresponding registers

or latches before the next clock cycle begins. In such situations,

one of the first units to fail in computing correct results tends to

be the multiplier, because its “margin” of delay is minimal. Note

that not all multiplications would be erroneous, only those which

required values generated through the critical path.

In order to perpetrate our attack, we collect several pairs of mes-

sages m and their corrupted signatures ŝ, where ŝ has been sub-

jected to only one transient fault with the characteristics described.

In Section 6.1 we show how we could inject faults with the proper

characteristics in the authenticating machine. Moreover, while our

attack requires a single fault placed in the exponentiation multipli-

cation operation, it is resilient to multiple errors and errors placed

in other operations; however, those will not yield any useful infor-

mation about the private key.

4.1 FWE in presence of transient faults
The fixed-window exponentiation algorithm in the OpenSSL li-

brary does not validate the correctness of the signature produced

before sending it to the client, a vulnerability that we exploit in our

attack. We now analyze the impact of a transient fault on the output

of the FWE algorithm (see Section 3.1). As mentioned above, the

software-level perception of the fault is a single-bit flipped in one of

the multiplications executed during FWE. With reference to Figure

2, during FWE, multiplications are computed executing during ac-

cumulator squaring (line 6), message window exponentiation (line

9). For sake of simplicity, in this analysis we only consider mes-

sages that have been hit by a fault during any of the accumulator

squaring multiplications of line 6, the reasoning extends similarly

for faults affecting the multiplications of line 9.

Since the error manifests as a single-bit flip, the corrupted result

will be modified by ±2f , where f is the position of the bit flipped

in the partial result, that is, the location of the corrupted bit f is

in the range 0 ≤ f < #bits(acc). The error amount is added or

subtracted, depending on the transition induced by the flip: if the

fault modified a bit from 1 to 0, the error is subtracted, otherwise it

is added. Thus, with reference to Eq. (1), showing the computation

executed by the FWE algorithm, if a single-bit flip fault hits the

server during the pth squaring operation in the computation for the

ith window of the exponent d, the system will generate a corrupted

signature ŝ as follows (the mod n notation has been omitted):

ŝ = (· · (mdk−1)2
w

) · · ·mdi)2
p

± 2f )2
w−p

) · · ·md1)2
w

)md0 (2)

or, equivalently,

ŝ =

 

(

k−1
Y

j=i+1

mdj2(j−i)w

)mdi2
p

± 2f

!2iw−p
i−1
Y

j=0

mdj2jw

(3)



5. FAULTBASED ATTACK TO FWE
In this section we show how to extract the private key in a pub-

lic key authentication system from a set of messages m and their

erroneously signed counterpart ŝ, which have been collected by in-
jecting transient faults at the server.

We developed an algorithm whose complexity is only polyno-

mial on the size of the private key in bits. The algorithm proceeds

by attempting to recover one window of w bits of the private key

d at a time, starting from the most significant set of bits. When

the first window has been recovered, it moves on to the next one,

and so on. While working on a window i, it considers all message-

corrupted signature pairs, < m, ŝ >, one at a time, and attempts to

use them to extract the bits of interests. Pairs for which a fault has

been injected in a bit position within the window i can be effective

in revealing those key’s bits. All other pairs will fail at the task,

they will be discarded and used again when attempting to recover

the next windows of private key bits. The core procedure in the

algorithm, applied to one specific window of bits i and one spe-

cific < m, ŝ > pair, is a search among all possible fault locations,

private key window values and timing of the fault, with the goal of

finding a match for the values of the private key bits under study. In

the next section we present the details of the extraction algorithm.

5.1 Algorithm for private key recovery

THEOREM 5.1. Given a public key authentication system,

< n, d, e > where n and e are known and d is not known, and

for which the signature with the private key d of length N is com-

puted using the fixed-window exponentiation (FWE) algorithm with

a window size w, we call k the number of windows in the private

key d, that is, k = N/w. Let us call ŝ a corrupted signature of

the message m computed with the private key d. Assume that a

single-bit binary value change has occurred at the output of any of

the squaring operations in FWE during the computation of ŝ. An
attacker that can collect at least S = k · ln(2k) different pairs

< m, ŝ > has a probability pr = 1/2 to recover the private key d
of N bits in polynomial time - O(2wN3S).

The proof of Theorem 5.1 is presented in Appendix A. We de-

veloped an algorithm based on the construction presented there that

iterates through all the windows, starting from the one correspond-

ing to the most significant bits. For each window, it considers one

message - signature < m, ŝ > pair at a time, discarding all of those

that lead to 0 or more than one solution for the triplet < di, f, p >.

As soon as a signature is found that provides a unique solution,

the value di can be determined, and the algorithm can advance to

recover the next window of bits.
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Figure 3: Example of our private key recovery. The schematic
shows a situation where the private key d to be recovered has size
16 bits, and each window is 4 bits long. Key recovery proceeds
by determining first the 4 most significant bits in d, d3. Then in
attempting to recover d2, all possible values for d2, p and f must be
checked to evaluate if they correspond to the signature ŝ. d2 may
assume values [0, 15], p [0, 3] and f [0, 15].

As an example, consider a window w of size 4, and m and d of

16 bits. Figure 3 illustrates this scenario. Assume that the most

significant window has already been identified to be the 4-bit value

d∗

3. In the inductive step we must search for an appropriate value of

d2, f and p that satisfy Eq. (10) in the Appendix. The figure shows

how the three components of the triplets correspond to different

variable aspects of the faulty signature ŝ.
The core function of the algorithm considers one message and its

corresponding signature, and it attempts to determine a valid triplet

satisfying Eq. (10). The function is illustrated in the pseudo-code

of Figure 4.

window search (m, s, e, win size, win idx)

found = 0;

for(d[win idx] in [0..2ˆwin size-1];

sqr iter in [0..win_size-1];

fault in [0..#bits(d)-1] )

found += test_equation 10( m, s, e,

win idx, d[win idx], sqr iter, fault loc)

if (found == 1) return d[win idx]

else return -1

Figure 4: Privatekeywindowsearch. The core functionof the pri
vate key recovery algorithm considers one messagesignature pair
and scans through all possible values in the window d[win idx],
the fault location fault and the squaring iteration sqr iter. If one
and only one solution is found that satisfies Eq. (10), the function
returns the value determined for d[win idx].

The private key recovery algorithm invokes window search()

several times: for each window of the private key d, this core func-
tion is called using different < m, ŝ > pairs, until a successful

di is obtained. Figure 5 shows the pseudo-code for the overall al-

gorithm. Note that it is possible that no < m, ŝ > pair leads to

revealing the bits of the window under consideration. In this sit-

uation, the algorithm can still succeed by moving on to the next

window and doubling the window size. This is a backup measure

with significant impact on the computation time. Alternatively it is

also possible to collect more < m, ŝ > pairs.

The private key extraction algorithm may be optimized in several

ways. It is possible to parallelize the computation by distributing

the search for a given window over several processes, each attempt-

ing to validate the same triplets of values over different signatures.

In addition, it is also possible to distribute different values for the

candidate triplets over different machines.

private key recovery ( array<m,s>, e, win size)

num win = #bits(d) / win size

for(win idx in [num win-1..0] )

for (<m,s> in array<m,s>)

d[win idx] = window_search(m,s,e,

win size, win idx)

if (d[win idx] >= 0) break

if (d[win idx] < 0) double win size

Figure 5: Privatekey recovery algorithm. The recovery algo
rithm sweeps all the windows of the private key, from the most
significant to the least one. For each windows it determines the cor
responding bits of the private key d by calling window search()

until a successful value is returned. If no signature s can be used
to reveal the value of d[win idx], the window size is doubled for
the next iteration.

6. EXPERIMENTAL RESULTS
In this section we detail the physical attack that we performed

on a SPARC-based Linux system, and analyze the behavior of the

system under attack. The device under attack is a complete sys-

tem mapped on a field-programmable gate array (FPGA) device.



The hardware consists of a SPARC-based Leon3 SoC from Gaisler

Research, which is representative of an off-the-shelf commericial

embedded device. In our experiments, the unmodified VHDL of

the Leon3 was mapped on a Xilinx Virtex2Pro FPGA. The system

runs a Debian/GNU distribution with Linux Kernel version 2.6.21

and OpenSSL version 0.9.8i

6.1 Induced fault rate
As we mentioned in Section 4, voltage regulation is critical to

an efficient implementiation of a fault-based attack. If the voltage

is too high, the rate of faults is too low, and it will require a long

time to gather a sufficient number of faulty digital signatures. If the

voltage is too low, the fault rate increases, causing system instabil-

ity and multiple bit errors for each FWE algorithm invocation, thus

yielding no private key information.

Figure 6 shows the injected fault rate as a function of the supply

voltage. We studied the behavior of the hardware system comput-

ing the functions used in the OpenSSL library while being sub-

jected to supply voltage manipulation. In particular, we studied

the behavior of the routine that computes the multiplication using

10,000 randomly generated operand pairs of 1,024 bits in length.
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Figure 6: Sensitivity of multiplications executed in OpenSSL
to voltage manipulations. The graph plots the behavior of the
system under attack computing a set of 10,000 multiplications with
randomly selected input operands at different supply voltages. The
number of faults increases exponentially as the voltage drops. The
graph also reports the percentage of erroneous products that mani
fest only a singlebit flip.

As expected, the number of faults grows exponentially with de-

creasing voltage. In the graph of Figure 6 we also plotted the frac-

tion of FWE erroneous computations that incurred only a single-bit

fault, as it is required to extract private key information effectively.

Note that, with decreasing voltage, eventually the fraction of single

fault events begins to decrease as the FWE algorithm experiences

multiple faults more frequently. The ideal voltage is the one at

which the rate of single bit fault injections is maximized, 1.25V for

our experiment. The error rate introduced at that voltage is consis-

tent with the computational characteristics of FWE, which requires

1,261 multiplications to compute the modular exponentiation of a

1,024-bit key. Thus, the attacker should target a multiplication fault

rate of about 1 in 1,261 multiplications (0.079%). Using this par-

ticular voltage during the signature routine we found that 88% of

all FWE invocations led to a corrupt signature.

6.2 Faulty signature collection
In our experiments, we gathered 10,000 digital signatures com-

puted using a 1024-bit private RSA key. Once collected, signatures

were first tested to check if they were faulty (by verifying them

with the victim machine’s public key). Once a faulty signature was

identified, it was sent to a distributed analysis framework that im-

plemented the algorithm outlined in Section 5.1. By setting the

supply voltage at 1.25V, we found that 8,800 of the 10,000 signa-

tures were incorrect. Within this set, only 12% (1,015 in total) had

incurred a single-bit fault in the result of only one multiplication

during the computation of the FWE algorithm, leading to useful

corrupted signatures for our private key recovery routine. The sub-

set of corrupted signatures that conforms to our fault model is not

known a priori, thus all the 8,800 collected signatures had to be

analyzed with our algorithm.

The analysis was run on a 81-machine cluster of 2.4 GHz Intel

Pentium4-based systems, running Linux. The distributed algorithm

was implemented using the OpenMPI libraries and followed a clas-

sic master-slave computing paradigm, with one machine acting as

a master and 80 as slaves. The master distributed approximately

110 messages to each slave for checking. Individual slaves could

check a message against a single potential window value and all

fault locations and squaring iterations in about 2.5 seconds. During

the analysis, the master directed all slaves to check their own mes-

sages for a particular single-bit fault in a particular window of the

FWE computation. To reduce the time for synchronizing slaves,

we divided their messages into 4 equal-size groups, and processed

these groups serially until the value of the key window was found.
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Figure 7: Cumulative percentage of private key bits recovered.
To recover the private key in the shortest amount of time, we need
to collect at least one corrupted signature for each of the exponent
windows. The graph shows the percent of key bits recovered as a
function of the number of faulty signatures analyzed.

Figure 7 shows the percentage of the total private key bits re-

covered, as a function of single-bit faulty signatures processed. As

shown in the graph, the full key is recovered after about 650 single-

bit faulty signatures are processed. Figure 8 shows the number of

single-bit corrupted signatures available for each bit position within

the 1024-bit FEWmultiplication. We found that the bit errors were

skewed towards the most-significant bits of the processor’s 32-bit

datapath (due to the longer circuit paths used to compute these bits),

thus by searching for bit errors in these bit positions first, we could

significantly speed up the search process. With our distributed anal-

ysis system, our computer cluster was able to recover the private

key of the attacked system in 104 hours, for a total of about one

year of CPU time. We expect the overall performance of the dis-

tributed application to scale linearly with the number of workers in

the cluster.

7. CONCLUSIONS
In this work we described an end-to-end attack to a RSA au-

thentication scheme on a complete FPGA-based SPARC computer

system. We theorized and implemented a novel fault-based attack

to the fixed-window exponentiation algorithm and applied it to the

well known and widely used OpenSSL libraries. In doing so we

discovered and exposed a major vulnerability to fault-based attacks

in a current version of the libraries and demonstrated how this at-

tack can be perpetrated even with limited computational resources.
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Figure 8: Single bit fault locations in the corrupted signatures.
Due to the implementation of the OpenSSL functions and the mul
tiplier used in the processor, the number of locations that might
be corrupted in our experiment was limited to only a few locations.
This significantly reduced the computational time needed to recover
the key, since only a few fault locations have to be tested before the
correct result is recovered.

To demonstrate the effectiveness of our attack, we subjected a

SPARC Linux system to a fault injection campaign, implemented

through simple voltage manipulation. The system attacked was

running an unmodified version of the OpenSSL library. Using our

attack technique, we were able to successfully extract the server’s

1024-bit RSA private key in 104 hours. The work presented in this

paper further underscores the potential danger that systems face due

to fault-based attacks and exposes a severe weakness to fault-based

attacks in the OpenSSL libraries.
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Appendix A  Proof of Theorem 5.1
From here on, all expressions are implicitly assumed to be modn, we omit the no-

tation for reasons of space. Define k as the ratio between the number of bits in the

private key d and the number of bits w in the window size: k = #bits(d)/w. The

proof proceeds by induction. For the base case, we show that the value of the private

key in the most significant window, indexed k−1, can be recovered. For the inductive
step, we show that, if the value of the private key for windows i+1 to k−1 is known,

then we can recover the value for window i.
Base case. We consider one of the < m, ŝ > pairs and we assume that the fault in the

corrupted signature ŝwas injected during the pth squaring iteration, with 1 ≤ p ≤ w.

Hence, from Eq. (3), ŝ will have the form:

ŝ = (mdk−12p
± 2f )2

w(k−1)−p
k−2
Y

j=0

mdj2jw
(4)

The value of dk−1 is bound by: 0 ≤ dk−1 < 2w . The fault location f can

assume any value in 0 ≤ f < #bits(d). Finally the squaring iteration p satisfies

0 ≤ p < w. Assume that the correct values for dk−1, f and p were known to be

d∗

k−1, f
∗ and p∗ (the correct values for di, 0 ≤ i ≤ k − 2 are not known). Then

we can multiply both sides of Eq. (4) by m
d∗

k−12w(k−1)
and obtain:

ŝ · m
d∗

k−12w(k−1)
= (m

d∗

k−12p∗

± 2f∗

)2
w(k−1)−p∗

· md
(5)

If we raise both sides to the known public exponent e, we obtain:

(ŝ · m
(d∗

k−1)2w(k−1)
)e = (m

d∗

k−12p∗

± 2f∗

)e2(w(k−1)−p∗)
mde

(6)

ŝe
· m

e(d∗

k−1)2w(k−1)
= (m

d∗

k−12p∗

± 2f∗

)e2(w(k−1)−p∗)
m (7)

It is now possible to search for all triplets < d∗

k−1, f∗, p∗ > that satisfy Eq. (7), by

varying each value within the legal range specified above and checking if the identity

holds. Three situations may arise:

1. No solution is found. It is possible that no triplet

< d∗

k−1, f∗, p∗ > exists that satisfies the equation. In this case, the pair

< m, ŝ > is discarded and another one is considered. This situation may

arise, for instance, if the corrupted signature ŝ was subjected to a fault during

an iteration outside the analyzed window.

2. Exactly one solution. If only one set of values for d∗

k−1, f∗ and p∗ satisfies

Eq. (7), then the value of the private key in the (k − 1)th window has been

found.

3. More than one solution. In this case, one of the triplets include the correct

d∗

k−1 value, while the others correspond to other set of values that still satisfy

Eq. (7), but do not correspond to the correct private key d on the server side. In

this case, the pair < m, ŝ > should also be discarded.

Inductive step. The value of the private key d for windows indexed i + 1 to k − 1
is known. We want to find the value di. We proceed similarly to the base step. From

Eq. (3), ŝ will now have the form:

ŝ =

0

@(

k−1
Y

j=i+1

mdj2(j−i)w
)mdi2

p
± 2f

1

A

2iw−p
i−1
Y

j=0

mdj2jw
(8)

We want to identify a triplet < d∗

i , f∗, p∗ > for which d∗

i is the value we are

searching for. The ranges for the three values are 0 ≤ di < 2w , 0 ≤ f < #bits(d)
and 0 ≤ p < k. To this end, we first assume that we have found such triplet and we

multiply Eq. (8) by
Qk−1

j=i
mdj2jw

:

ŝ ·

k−1
Y

j=i

mdj2jw
= md

0

@(

k−1
Y

j=i+1

mdj2(j−i)w
)md∗

i
2p∗

± 2f∗

1

A

2iw−p∗

(9)

and then raise it to the exponent e to obtain:

ŝe
k−1
Y

j=i

medj2jw
= m

0

@(

k−1
Y

j=i+1

mdj2(j−i)w
)md∗

i
2p∗

± 2f∗

1

A

e2iw−p∗

(10)

Note that all values dj for i ≤ j < k are known. There are again three possible

outcomes in the search for a triplet satisfying Eq. (10): we only accept < m, ŝ >
pairs that lead to one and only one satisfying solution.

In conclusion, given a sufficient number of < m, ŝ > pairs, it is always possible

to find a subset of cardinality k that allows to determine all di for 0 ≤ i < k. By
concatenating the di, we obtain the private key d. 2

In practice, the situation where more than one solution to Eq. (7) or Eq. (10) is

found has extremely low probability and never occurred in our experiments. Com-

plexity and success probability of our attack can be inferred from [6], which targets a

different exponentiation algorithm but proposes a similar attack.


