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Abstract

We present a scalable, high-performance solution to multidimensional recurrences that arise in adap-
tive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic
environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials.
While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the
complexity of optimizing and analyzing them. Computational challenges include massive memory require-
ments, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze
the effects of various parallelization options, and while standard approaches do not work well, with effort
an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times
more complex than those solved previously, which helps make adaptive designs practical. Further, our work
applies to many other problems involving neighbor recurrences, such as generalized string matching.

Keywords: dynamic programming, computational learning theory, bandit models, message-passing, dy-
namic domain decomposition, memory-intensive computing, load balancing, sequential analysis, perfor-
mance analysis, experimental algorithms

1 Introduction

Standard statistical designs define all sampling decisions in advance. In particular, in a clinical trial, the
number of patients that will receive each treatment is decided before the trial begins. In contrast, adaptive
designs use accruing information to adjust the decisions dynamically. For example, if in the midst of a
trial it has been observed that one treatment is performing better than the others, then more patients may be
assigned to the apparently better treatment. Thus adaptive designs can provide significant ethical benefits,
and in industrial settings can have significant cost and time advantages [6]. However, adaptive designs are
rarely used, largely because they are far more difficult to analyze. Analytical solutions are impossible in all
but the most trivial cases, and computational approaches are often considered infeasible.

We are developing new algorithms, and optimized implementations, to solve adaptive design problems.
Here we primarily report on one case, optimizing ann-stage trial with three treatment options having
Bernoulli outcomes. This problem is translated into a 6-dimensional dynamic program for which we de-
veloped a highly scalable solution, allowing us to create designs of useful size.

This dynamic programming problem is a neighbor recurrence where the value at a given location is
determined by the values at a stencil of other locations that are “near” in the parameter space. Neighbor
recurrences are quite common, such as the Fibonacci sequenceF (n) = F (n� 1) + F (n� 2) or in the use
of dynamic programming to solve optimization problems such as the alignment of gene or protein structures
in bioinformatics. They also occur in backwards induction and path induction [7].

Unfortunately, the computational complexity of such recurrences grows exponentially in the dimension.
This “curse of dimensionality” often makes exact solutions infeasible, and thus approximations are used
and the solution quality is reduced. Since there is considerable interest in solving such computationally



formidable recurrences, parallel computing is a natural approach. It is generally, but mistakenly, felt that the
regularity of neighbor recurrences implies that parallelization is straightforward. While high efficiency can
be attained, it requires considerable effort. Major difficulties include:

� Time and space grow rapidly with the input size, so intensive efforts are needed to obtain a useful
increase in problem size.

� The time/space ratio is low, making RAM the limiting factor.

� There are few calculations per memory access.

� The nested loops have dynamic index dependencies.

Performance is further exacerbated by the interaction of these aspects. Table 9 shows, for example, the
dramatic limitations imposed by space constraints and imperfect load balance caused by the loop structure.

Section 1.1 details the primary example problem, and Section 1.2 discusses prior work. Section 2 shows
a natural serial implementation and space reductions. Section 3 discusses an initial, natural, distributed
memory parallelization and its inadequacies. Section 4 develops a scalable parallelization, with timing
analyses in Section 4.2 and a discussion of a performance degradation in Section 4.3. Section 5 develops
and analyzes shared memory parallelization. Section 6 discusses the distributed memory parallelization of a
related but more difficult problem involving delayed responses, and highlights new complications that arise.
Section 7 provides a final discussion.

The distributed memory results were obtained using MPI on an IBM SP2, where each processor is an
160 MHz POWER2 Super Chip (P2SC) processor with 1 GB of RAM and 1 GB additional virtual memory.
The shared memory results were obtained on a 16 processor SGI Origin with 12 GB RAM, where each
processor is a 250 MHz MIPS R10000. Throughout, all times are elapsed wall-clock time measured in
seconds. Rerunning the same problem showed very little timing variation, so we merely report average time
(see, however, Section 4.3).

1.1 Multi-Arm Allocation

Sequentially allocating patients to treatment options so as to optimize their outcomes in a clinical trial can
be modeled as a Bayesianbandit problem[2]. Such models are important in stochastic optimization as well
as in decision and learning theory. In ak-arm bandit problem one can sample from any ofk independent
arms (populations) at each stage of the experiment. (Here, “arm” = “treatment option”.) Associated with
each arm is a prior distribution on the unknown outcome or “reward” function. After sampling from an arm
(e.g., allocating a patient to a treatment) one observes the outcome and updates the information (prior) for
that arm. The goal is todetermine how best to utilize accruing information to optimize the total outcome for
the experiment. In this case, the outcome functions are independent Bernoulli random variables, resulting in
“success” or “failure”, and the goal is to maximize the number of successes.

At each stage,m = 0; :::; n � 1 of an experiment of lengthn, an arm is selected and the response is
observed. At stagem, let (si; fi) represent the number of successes and failures from armi. Then the
state(s1; f1; : : : ; sk; fk), is a vector of sufficient statistics. Optimal solutions can be obtained via dynamic
programming, but the time and space have the formidable growth rate of�(n2k=(2k� 1)!). We concentrate
on the 3-arm version, which has�(n6) complexity.

Figure 1 illustrates a simple 2-arm bandit design, where each arm has a uniform prior on its rate of
success, forn = 4. Non-adaptive designs would only average 2 successes, while by adapting the optimal
design achieves 2.27. The advantages of adaptation become more pronounced the longer the trial is and the
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Figure 1: A 2-arm bandit, withn = 4 and uniform priors on each arm.

more arms there are. For example, withn = 100 and uniform priors on each arm, non-adaptive allocation
will average 50 successes no matter how many arms there are. However, the optimal 2-arm bandit will
average 65 successes, and the 3-arm bandit averages 72.

1.2 Previous Work

The 3-arm problem had never previously been solved exactly because it was considered infeasible. Indicat-
ing frustration with the far easier2-armbandit problem, researchers have commented: “In theory the optimal
strategies can always be found by dynamic programming but the computation required is prohibitive” [20],
and “the space and time requirements for this computation grow at a rate proportional ton4 making it im-
practical to compute the decision even for moderate values of sayn � 50” [9]. Previously, the largest exact
2-arm bandit solution utilized a Cray 2 supercomputer to solven=200 [3]. Here, we solve a problem2,000
times harder, namely the 3-arm bandit withn = 200.

There appears to be no previous work on the parallel solution of bandit problems, but there has been
considerable work on the parallel solution of similar recurrences. Most of this concentrates on theoretical
algorithms where the number of processors scales far faster than the input size [8, 14, 15, 12, 16], or special
purpose systems are created [17, 10]. Others [11, 19] look at dynamic programming difficulties when the
subproblems are not as well understood.
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Algorithm 1 Serial Algorithm for Determining Optimal Adaptive 3-Arm Allocation

fbsi, bfi: one success, failure on armi g
fsi, fi: number of successes, failures armi g
fm: number of observations so farg
fn: total number of observationsg
fj�j: number of observations at state� g
fV: the function being optimized, where V(0) is the answerg
fpi(si,fi): prob of success on arm i, if si successes and fi failures have been observedg

for all states� with j�j=n do fi.e. for all terminal statesg
V(�)=number of successes in�

for m=n-1 downto 0do fcompute for all states of size mg
for s3=0 to mdo

for f3=0 to m-s3do
for s2=0 to m-s3-f3do

for f2=0 to m-s3-f3-s2do
for s1=0 to m-s3-f3-s2-f2do

f1 = m-s3-f3-s2-f2-s1
� = hs1,f1,s2,f2,s3,f3i
V(�) = maxf(p1(s1,f1)�V(� + bs1) + (1-p1(s1,f1))�V(� +cf1)) ,

(p2(s2,f2)�V(� + bs2) + (1-p2(s2,f2))�V(� +cf2)) ,
(p3(s3,f3)�V(� + bs3) + (1-p3(s3,f3))�V(� +cf3)) g

2 Serial Implementation

The goal of a bandit problem with dichotomous responses is to determine, at each state, which arm should
be selected so as to maximize the expected number of successes over the course of the experiment. To solve
this via standard dynamic programming (Algorithm 1), first the values of each terminal state (those withn
observations) are computed. Then, the optimal solution is found for all states withm observations based on
the optimal solutions for all states withm+ 1 observations, form = n� 1 down to 0.

The neighbor recurrence at the heart of this algorithm is in the center of the loops. For our purposes, the
specific function used to combine values is less important than the indices of the values being referenced,
since they determine the memory accesses and communication required. Note that we have a stencil of
dependencies, whereby the value at state� depends only on the neighbor values at� + bs1, � +cf1, � + bs2,
� +cf2, � + bs3, and� +cf3, wherebsi and bfi denote a single additional success or failure, respectively, on
armi. With minor changes to this equation (and no change in the dependencies), the same program can also
performbackward inductionto evaluate the expected number of successes for an arbitrary 3-arm design,
which allows one to evaluate suboptimal designs which may have other desirable characteristics. Further,
trivial changes allow evaluation of far more general objective functions.

Note that the recurrences involve extensive memory accesses, with little computation per access. There
are

�n+6
6

�
= �(n6) states, and the time and space complexities are also�(n6).
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n first collapsed naive comp best
10 :009 :004 :082 :004
20 :18 :1 3:2 :092
30 1:4 35 :71
40 4:1 186 3:9
50 15 689 13

60 2024 35

70 5047 86

80 11242 185

90 22756 362

100 42900 659

110 1225

120 1922

130 34961

maxn 27 54 100 135
limitation memory memory time time
prog len 193 193 282 419

maxn: Maximum problem solvable with 1 GB and time� 64,400 sec. (18 hr.)

Table 1: Serial versions, time (sec.) to solve problem of sizen.

2.1 Space Optimizations

The first space reduction results from the observation that values ofV for a givenm depend only on the
values form+ 1, so only the states corresponding to these two stages need to be kept simultaneously. This
reduces the working space to�(n5), and by properly arranging the order of the calculations, the space
can be reduced to only that required for one stage’s worth of states, i.e., we gain another factor of 2. This
corresponds to thecollapsedcolumn in Table 1. In this table,maxn shows the maximum problem solvable
by a 1 GB RAM machine with a time limit of 18 hours,limitation shows which limit was reached, and
prog lenis the size of the version in lines of source code. Note that the collapsed version allows us to solve
problems substantially larger, and also results in a slight speedup.

The next space reduction results from the fact that, due to the constraints3+f3+s2+f2+s1+f1 � n,
only a corner (approximately 1/5! = 1/120 of the total) of the 5-dimensionalV array is used. To take
advantage of this, the 5-dimensionalV array is mapped into a linear array. Unfortunately, this mapping also
requires all array references to be translated from the original five indices into their position in the linear
array. From a software engineering viewpoint, the best way to implement this translation is to use a function
which takes as input the five indices and yields their position in the array. Unfortunately, this is extremely
costly as the translation function is a complicated5th degree polynomial which must be evaluated for every
array access. This version, thenaive compin Table 1, can solve larger problems, but is significantly slower
than thecollapsedversion. For thebestversion, we broke the translation function into a series of offset
functions, where each offset function corresponds to a given nested loop level. An offset function only
needs to be recalculated before its corresponding loop is entered, and the more expensive offset functions
correspond to the outermost loops. This method dramatically reduces the translation cost down to a usable
level, but greatly increases program complexity, as is shown by the increase inprog len.
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The simplified Algorithm 1 ignores the fact that in order to utilize the design, one needs to record the
arm selected at each state. This is typical with dynamic programming. Unfortunately these values cannot
be overwritten and the storage required is�(n6). Fortunately, this too involves only values in one corner,
allowing a reduction by a factor of 1/6! = 1/720. These values are stored on disk and do not reduce the
amount of memory available for calculation. Using run-length encoding would reduce this to�(n5), but so
far this has not been necessary.

3 Initial Parallel Algorithm

To parallelize the recurrence, we first address load balancing. In the initial parallelization the natural ap-
proach of dividing the work among the processors was taken. The outermostm loop behaves very much
like time and cannot be parallelized, so instead one parallelizes the second outermost loop,s3 . At stage
m, processorPj is assigned the task of computing all values wheres3 was in the rangestart s3(j,m)
. . .end s3(j,m) .

Determining the range ofs3 values assigned to each processor is nontrivial, because the number of
states corresponding to a given value ofs3 grows as(m � s3)4. Thus, simply assigning all processors an
equal number ofs3 values would result in massive load imbalance and poor scaling. We evaluated two
solutions to this problem. Optimals3 partitioning is itself a small dynamic programming problem which
takes time and space�(mp). However, it was easy to develop a fast�(m) greedy heuristic which was
nearly optimal, and it is this heuristic which was used in the program.

3.1 Communication

The communication needed can be divided intoarray redistributionandexternal neighbor acquisition. Ar-
ray redistribution occurs because, as the calculation proceeds, the number of states shrinks. To maintain
load-balance, thes3 range owned by a processor changes over time. At stagem, processorPj needs the
states withs3 values in the rangestart s3(j,m)...start s3(j,m+1)-1 from Pj�1. Redistribu-
tion includes the cost of moving the states currently on the processor to create space for these new states.

External neighbor acquisition occurs because the calculations for a state may depend on its neighbors
in other processors. To calculate states withs3=end s3(j,m) during stagem, Pj needs to obtain a
copy of the states withs3=end s3(j,m)+1 from Pj+1. Note that external neighbor acquisition negates
round-robin or self-scheduling approaches to load-balancing thes3 loops, as this would result in a dramatic
increase in the communication requirements. This does not necessarily hold for shared memory systems,
however, as can be seen from the OpenMP version in Section 5. Shared memory computers are able to
utilize these approaches because their much faster communication systems reduce the latency down to a
managable level.

4 Scalable Parallel Algorithm

The initial load-balancing approach is simple to implement and debug because it makes minimal changes to
the serial version. Unfortunately, it has imperfect load and working space balancing, which severely limits
scalability (see Table 2) and the size of problem solvable (see Table 9).

For a more scalable version (Algorithm 2), instead of partitioning the states using the coarse granularity
of thes3 values, we partition them as finely as possible. However, this leads to numerous difficulties. The
first is that a processor’sV array can now start or end at arbitrary values ofs3, f3, s2, f2, s1, and
f1 , so one can no longer use a simple set of nested loops to iterate between the start and end value. Our
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Algorithm 2 Scalable Parallel Algorithm
fPj : processor jg
fstart�(j,m), end�(j,m): range of� values assigned toPj for this m value,
with start�(j+1,m)=end�(j,m)+1 g

fFor all processorsPj simultaneously, dog

for �=start�(j,n) to end�(j,n) do fi.e. for all terminal statesg
V(�)=number of failures in�

for m=n-1 downto 0do fcompute for all states of size mg
for �=start�(j,m) to end�(j,m) do

determine s1, f1, s2, f2, s3, f3 from�
compute V as before

fArray redistributiong
Send needed V values to other processors
Receive V values from other processors

fExternal data acquisitiong
Send needed V values to other processors
Receive V values from other processors

first attempt to solve this problem had nested if-statements within the innermost loop, where the execution
rarely went deep within the nest. While logically efficient, this turned out to be quite slow because it was
too complex for the compiler to optimize. A solution that the compiler was able to cope with was to use
a set of nested loops with if-statements in front of each loop so that it starts and stops appropriately. This
solution was almost as fast as the original serial nested loops.

Another difficulty was that the offset calculations are not uniformly distributed along the range of theV
array, and this leads to a noticeable load imbalance. Storing the results of the offset equations in arrays sig-
nificantly decreases the cost of each offset calculation and reduces the load imbalance to a more acceptable
level. However, there is still some slight load imbalance that could be addressed by including the cost of
these array lookups in the load balancing.

4.1 Communication

The move to perfect division of theV array also caused complications in the communication portion of the
program. The main complication was that data needed for either external or redistribution aspects was no
longer necessarily located on adjacent processors. This resulted in a considerable increase in the complexity
of the communication portions of the program.

Our initial version of the communication functions used a natural strategy when space is a concern:
each processor sent the data it needed to send, shifted its remaining internal data, and then received the data
sent to it. Blocking sends were used to insure that there was space to receive the messages. Unfortunately,
this serialized the communication, because the only processor initially ready to receive was the one holding
the end of the array, i.e., the only processor which does not redistribute to any other processor. The next
processor able to receive was the second from the end, because it sent only to the end processor, and so on.
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p efficiencye(p)
initial scalable

1 1.00 1.00
2 .96 .96
4 .93 .94
8 .81 .91

16 .64 .86
32 .48 .81

Table 2: Scaling results,n = 100.

version t(1) t(8) e(8)

first scalable 1044 178 .734
improved loops 775 143 .678
offsets in array 766 134 .715
scalable comm 762 106 .903

non-blocking comm 760 104 .913

Table 3: Stepwise improvements in scalable version,
n = 100, 1 and 8 processors.

array redist external
p calc file misc comm shift comm
1 98 1.9 0.1 0.0 0.0 0.0
2 94 1.6 0.9 1.9 1.2 0.4
4 88 1.6 0.1 4.5 2.0 3.8
8 84 1.4 0.2 6.5 2.0 5.9

16 73 1.2 0.7 11.0 2.1 12.0
32 57 1.1 0.0 16.1 1.7 24.1

Table 4: Percentage distribution of time within scalable version,n = 100.

The performance of this version was unacceptable. The next version removed the interaction and performed
adequately but synchronization costs became more of a problem. To remove these, we switched to non-
blocking communication wherever possible. This made communication fairly efficient, however there may
still be room for some slight additional improvements.

In general there is a serious conflict between extensive user space requirements and minimizing com-
munication delays. The communication buffers needed to overlap communication and calculation, and to
overlap incomplete sends and receives, can be large.

4.2 Scalable Timing Results

Table 2 shows the efficiency,e(p), of the initial and scalable parallel versions as the number of processorsp
increases. Table 3 shows the effect on timing and scaling of each of the major changes detailed in Section 4,
contrasting 1 processor and 8 processor versions, wheret(p) is the time. Note that the improvements reduced
the serial time, and increased the parallel efficiency relative to the reduced serial time.

Table 4 contains the percentage of the total running time taken by different parts of the scalable program
as the number of processors increases.Calc is the percentage of time taken by the dynamic programming
calculations,file is the cost of writing the decisions to disk, andmisc is the part of the time not attributed
elsewhere. Underarray redist, we show the cost of shifting data among the processors to maintain load-
balance, wherecommis the cost of calculating the redistribution and communicating the data between the
processors, andshift is the cost of moving the data on the processor. Belowexternal commis the cost of
getting neighbor states from other processors, including the cost of determining which processor has the

8



p t(p)

16 10463
32 1965

Table 5: Timing results,n = 200, scalable version.

p 1 2 4 8 16 32
old t(p) 760 396 203 104 55 30

e(p) 1.00 .96 .94 .91 .86 .81
new t(p) 854 448 237 131 73 42

e(p) 1.00 .95 .90 .81 .72 .63

Table 6: Comparison of scalable program efficiencies from old to new system,n=100

data and where to put it on the current processor, and the cost of communicating the data.
Table 5 presents the running times of the scalable program forn = 200 for 16 and 32 processors. Note

that the speedup is more than a factor of two. This occured because on 16 processors the program must
make extensive use of disk-based virtual memory. A similar effect can be seen in Table 1 asn increases
from 120 to 130. This illustrates an often overlooked advantage of parallel computers, a bonus increase
in speed simply because dividing a problem among more processors allows it to run in RAM instead of in
virtual memory. However, this can be successful only if the parallelization load-balances the memory and
computation requirements.

4.3 System Performance Degradation

While generating the timing analyses for this paper we collected data on the SP2 at two different times
approximately a year apart. Much to our consternation we discovered that the most recent data showed the
program to be running much slower and scaling poorly. For an example of this change see Table 6 where
we present the change in time and efficiency in the scalable version from last year to this year. Note that this
slowdown occurred with exactly the same code, in fact with the same binaries, used the previous year. The
slowdown occured for multiple versions of our programs, and we even have some evidence of it occuring
in different applications, although finding other users with precise timing data from the previous year has
proved to be quite difficult.

Questioning the SP2 systems staff revealed that during the year the operating system had been upgraded.
Further investigation revealed that the new operating system allowed off-processor access to the local disk
on each node. We believe it is this change which resulted in our performance degradation. Allowing off-
processor jobs to access the local disk causes contention for the disk, for the high performace switch used
in interprocessor communication, and for the CPU, all of which can degrade performance for a program
running on the node. Further, the more processors being used, the more likely it is that at least one of them
is having its disk accessed. If any user node is delayed then the internode communication dependencies
quickly insure that all of the nodes are delayed, which degrades scalability. Since our dynamic programming
problems have a low calculation to communication ratio, they are quite sensitive to these effects.

This problem illustrates an interesting dilemma of many computing centers. Allowing users to remotely
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access local disks increases throughput and is more convienient for the users as a whole, although it hurts
the individual user trying to extract maximum run-time performace. The question of whether to optimize
for throughput or individual performace is a complex one without easy answers, and our results show that
decisions may have more extensive impact than expected.

5 Shared Memory Implementations

To measure the performance of the 3-arm bandit code on a shared memory machine we implemented four
seperate versions.

The first version, which we call MPI, uses the shared memory implementation of the MPI libraries.
Aside from a few changes due to differences in the versions of Fortran on the two machines, this version is
identical to the scalable version of the code previously described.

The next version, OpenMP, uses OpenMP directives to implement a shared memory version of the code.
This version is very similar to that in Algorithm 1, except for the addition of a second copy of theV array.
This second copy is necessary because while using a shared memory implemention the sameV array is
shared among all the processors, which may be acting on different sections of it at arbitrary times. This
means there is no longer a guarantee that every calculation that uses a state will be finished before the state
is overwritten, and thus we need to have a second array to hold the current stage’s inputs while the current
stage’s outputs are being stored. After a stage is completed its output array is copied into the input array for
the next stage.

To convert the code, OpenMP parallel-do directives were used around the outmost,s3 , loop of the dy-
namic programming setup, and thes3 loop in the dynamic programming. Both of these loops use OpenMP
dynamic scheduling, which means that each processor grabs a user defined chunk size number of iterations,
performs them, and then when completed grabs another set. This process continues until all the iterations
of the loop have been completed. To compute the chunk size for each stage, we first determine the average
amount of work per processor at that stage. The chunk size is then 1 less than the mininum number of
iterations whose combined work is greater than the average work. Note that this will not necessarily be the
number of iterations divided by the number of processors since the work in each iteration varies dramati-
cally. This type of dynamic scheduling approach is not feasable for the distributed memory version of our
code because of the increase in complexity that would result from tracking the location of the states and
synchronizing access to them.

The third version of shared memory code, Auto, was generated by using the SGI Fortran autoparallelizer
on the serial version of our code. Unfortunately, due to the dependencies inside theV array described above,
the autoparallelizer was only able to parallelize the innermost,s1 , loop of the dynamic programming setup.

The final version of shared memory code, Auto+Copy, again used the autoparallelizer, but this time
on the doubleV array code described above for OpenMP. The reduction in dependencies allowed it to do
slightly better. It parallelized the innermost,s1 , loops of both the setup and the main body of the dynamic
programming.

Table 7 shows the results of our measurements on these four versions. As can be seen, the hand paral-
lelized versions perform far better than those done automatically. In fact, Auto, has almost no discernable
increase in speed as the number of processors increases. Auto+Copy does slightly better, but is still far infe-
rior to the others. The winner clearly is OpenMP, which was to be expected as it has far less overhead than
MPI. Note, however, that OpenMP’s scalability will degrade as the number of processors increases because
it cannot allocate less than ones3 loop per processor. (Because we have only 16 nodes on our SGI Origin,
we could not provide numbers for more processsors). Implementing a fully scalable code using OpenMP
would be difficult, and in the end would probably result in something similar to the MPI version.
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MPI OpenMP Auto Auto+Copy
p t(p) e(p) t(p) e(p) t(p) e(p) t(p) e(p)

1 439 1.00 406 1.00 471 1.00 454 1.00
2 290 .76 209 .97 473 .49 419 .54
4 155 .70 113 .90 465 .25 404 .28
8 90 .61 72 .70 473 .13 403 .14

16 73 .38 59 .43 470 .06 397 .07

Table 7: Efficiency of shared memory implementations,n=100

6 Delayed Response Problem

We have also applied our scalable parallelization approach to a more complex problem involving 2 Bernoulli
arms, where now there is no assumption that the responses are obtained immediately. Thus new patients may
need to be assigned to treatment even though we have not observed the outcomes of all prior assignments.
Thisdelayed responsesituation is a significant practical problem, and is often cited as a difficulty when try-
ing to apply adaptive designs [1, 18]. Moreover, like the 3-arm problem, the delayed response problem had
never been fully optimized, neither analytically nor computationally, because it was considered intractible.

There are many different models of the delay, appropriate for varying circumstances. Here we assume
that the response times for each arm are exponentially distributed, and that patients arrive according to a
Poisson process. In this setting, the natural states are of the form(s1; f1; u1; s2; f2; u2), whereui is the
number of patients assigned to treatmenti with unknown outcome. As before, we have the condition that
s1+f1+u1+s2+f2+u2 � n, which allows compression, and we have exactly the same number of states
as in the 3-arm problem of sizen. However, a critical difference is that the recurrence forV (�) depends
uponV (�+cu1), V (�+ bs1�cu1), V (�+cf1�cu1), V (�+cu2), V (�+ bs2�cu2), andV (�+cf2�cu2). That
is, either a patient is assigned a treatment and the outcome is initially unknown, or we have just observed
the outcome of a treatment. See [5] for the detailed form of the recurrence and its derivation.

Figure 2 shows the effect of delay on the number of successes for a simple problem involving uniform
priors on the success rates of each arm, withn = 100. If no responses were obtained before all patients were
allocated then the expected number of successes would be 50, which could be obtained by equal allocation
of patients to each arm. If all responses were immediate and the optimal 2-arm bandit design was used
then the expected number of successes would increase to 64.92. Under delayed response we would expect
fewer successes, but the optimal number obtainable was previously unknown. In the figure,B represents the
optimal design for the known delay parameters, andR represents the most commonly suggested adaptive
design for this situation, known asrandomized play the winner(RPW) [21]. Note that the optimal design is
significantly better than RPW, and that it tolerates delays quite well.

While the recurrences for the delayed response model again have a stencil of neighbor dependencies,
they are more complicated. To go through the calculations systematically, one needs the appropriate notion
of “stage”, corresponding tom in the 3-arm program. In general, the stage of a state� should be the
maximum path length to the state from the initial state0. Previously, all paths to� from 0 took the same
number of steps, which was the sum of the entries. Here again all paths have the same length, but it is
2(s1 + f1 + s2 + f2) + u1 + u2, i.e., the components do not contribute uniformly. Because all the paths
from � from 0 are the same length, states at stagek (i.e., at distancek) depend only on states at stagek+1,
which allows one to store only 2 stages at a time. Further, as in the original problem, by carefully analyzing
the dependencies and going through the loops in the correct order, this can be reduced down to 1 stage.
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Figure 2: Expected successes vs. delay, expected patient arrival rate =100, uniform priors.

array redist external
p e(p) calc misc comm shift comm
1 1.00 95.8 0.0 0.0 4.2 0.0
2 .93 89.5 0.0 3.7 3.8 3.0
4 .79 75.7 0.0 12.4 3.6 8.3
8 .67 61.9 0.1 18.4 2.8 16.8

16 .41 41.5 0.2 28.2 2.0 28.1
32 .27 25.8 0.2 31.8 1.2 41.0

Table 8: Analysis of delay program on new system,n=100.

However, there are now2n stages for the outermost loop, as opposed to then used previously. This
has the negative effect of doubling the number of rounds of communication, which significantly reduces the
parallel efficiency. It does have a positive effect, however, of slightly reducing the memory requirements
since the same number of states are spread over more stages.

The nonuniform roles of the indices make the array compression calculations somewhat more complex,
and make it harder to determine the indices of the states depended on. An additional complication comes
from the fact that previously, any combination of nonnegative entries having a sum ofm was a valid state at
stagem � n. Now, however, there can be a valid stagem � 2n, and a combination of nonnegative entries
having that weighted sum, but the combination does not correspond to a state. For example, ifn = 100,
then (0, 0, 75, 0, 0, 75) is not a valid state, even though it is at stage 150. The reason is that it violates the
constraint thats1 + f1 + u1 + s2 + f2 + u2 � n. Previously this constraint was automatically satisfied, but
this is no longer true. This situation complicates the compressed indexing and access processes.

Table 8 contains the timing and scaling analysis of the program, which incorporates all of the features
of the most scalable 3-arm program. This was run on the new version of the system, so one would expect

12



n uncompressed initial scalable
100 100 1 1
200 1 21 16
300 1 1 173

Max problem solvable: uncompressed: 105; initial: 231; scalable:1.

Table 9: Min. processors (p) needed to solve problem of sizen, using 1 GB per processor.

the performance to be degraded some. However, the drop in efficiency is rather significant, caused by the
complex indexing and extra rounds of communication. We assume that another important factor is that the
program was only recently developed, and with additional tuning its performance should improve some.

7 Conclusions

There is considerable interest in using adaptive designs in various experiments because they can save lives
(human or animal), time, cost, or other resources. For example, for a representative delayed response prob-
lem with n = 100, uniform priors, and response delay rates 10 times patient arrival rates, simple equal
allocation averages 50 successes. The most commonly suggested adaptive technique, randomized play the
winner (RPW), achieves only a 14.7% improvement, while the newly obtained optimal solution achieves a
28.4% improvement (see Figure 2). In fact, the optimal solution is nearly as good as the optimal solution
for the case where there are no delays. Note that this is also the first exact evaluation of RPW in this setting,
using a trivial modification of the optimization program to perform backwards induction.

However, the complexity of adaptive designs has proven to be a major hurdle impeding their use. Our
goal is to reduce computational concerns to the point where they are not a key issue in the selection of
appropriate designs. This paper has concentrated on the parallel computational aspects of this work, while
other papers analyze the statistical and application impact [4, 5, 6].

Unfortunately, the recurrences involved have attributes that make it difficult to achieve high performance
and scalability. Space tends to be the limiting factor, and trying to ameliorate this causes overhead and a
significant increase in program complexity. As noted in Section 4, increases in program complexity can
cause severe performance problems when the compiler is unable to optimize the inner-most loops, and hence
one must select alternatives with the compiler’s limitations in mind. Space constraints, and low calculation to
communication ratios, also complicate the ability to reduce communication latencies. However, by working
diligently, it is possible to achieve significant speedups and scalable parallelizations, although this comes at
a cost of increased program length and more complex program maintanence. Of course, as was shown in
Section 4.3, even highly scalable programs can have their performance degraded in unhelpful environments.

In Table 9 we illustrate the effects of memory limitations on the 3-arm problem, assuming 1 GB per
processor.Uncompressedrefers to a parallel program using load-balancing as in the initial parallel version,
but without compressing to a 1-dimensional array. Note how the scalable version needs fewer processors
to solve large problems, and that it can solve arbitrarily large problems, while the other versions cannot go
beyond a fixed problem size no matter how many processors are available. This is due to the imperfect load
balancing in the earlier versions which were unable to allocate less than a singles3 loop per processor.

Besides being able to compare alternative parallelizations, we can also compare to the work of others.
Using only 16 processors of an IBM SP2 we solved the 3-arm,n=200 problem. This is approximately
500,000 times harder than the problem called “impractical” in [9], and 2,000 times harder than that solved
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in [3] on a Cray 2. Our system is only about 22� a single processor Cray 2, and hence the primary advantage
is our serial and parallel optimizations.

Note that our work applies much more broadly than adaptive designs for clinical and preclinical trials,
though this in itself is an important application. The bandit model is widely used in areas such as operations
research, artificial intelligence, and game theory. Further, our work generally applies to neighbor recurrences
using stencils. This common class of recurrences includes many dynamic programming problems such as
the generalized string matching used in some data mining and bioinformatics applications, and includes
other evaluation techniques such as backward induction and path induction.
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