
Intermediate Representation I
High-Level to Low-Level IR
Translation

EECS 483 – Lecture 17
University of Michigan
Monday, November 6, 2006

- 1 -

Where We Are...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Gen

Source code
(character stream)

token stream

abstract syntax
tree

abstract syntax
tree + symbol
tables, types

Intermediate code

regular expressions

grammars

static semantics

- 2 -

Intermediate Representation (aka IR)

The compilers internal representation
» Is language-independent and machine-

independent

AST IR

Pentium
Java bytecode

Itanium

TI C5x

ARM

optimize

Enables machine independent
and machine dependent optis

- 3 -

What Makes a Good IR?

Captures high-level language constructs
» Easy to translate from AST
» Supports high-level optimizations

Captures low-level machine features
» Easy to translate to assembly
» Supports machine-dependent optimizations

Narrow interface: small number of node
types (instructions)
» Easy to optimize
» Easy to retarget

- 4 -

Multiple IRs
Most compilers use 2 IRs:
» High-level IR (HIR): Language independent but closer

to the language
» Low-level IR (LIR): Machine independent but closer

to the machine
» A significant part of the compiler is both language and

machine independent!

AST HIR

Pentium
Java bytecode
Itanium
TI C5x
ARM

optimize

LIR

optimize
optimize

C++
C

Fortran

- 5 -

High-Level IR

HIR is essentially the AST
» Must be expressive for all input languages

Preserves high-level language constructs
» Structured control flow: if, while, for, switch
» Variables, expressions, statements, functions

Allows high-level optimizations based on
properties of source language
» Function inlining, memory dependence

analysis, loop transformations

- 6 -

Low-Level IR

A set of instructions which emulates an
abstract machine (typically RISC)
Has low-level constructs
» Unstructured jumps, registers, memory

locations
Types of instructions
» Arithmetic/logic (a = b OP c), unary

operations, data movement (move, load,
store), function call/return, branches

- 7 -

Alternatives for LIR

3 general alternatives
» Three-address code or quadruples

a = b OP c
Advantage: Makes compiler analysis/opti easier

» Tree representation
Was popular for CISC architectures
Advantage: Easier to generate machine code

» Stack machine
Like Java bytecode
Advantage: Easier to generate from AST

- 8 -

Three-Address Code

a = b OP c
» Originally, because instruction had at most 3

addresses or operands
This is not enforced today, ie MAC: a = b * c + d

» May have fewer operands
Also called quadruples: (a,b,c,OP)
Example

a = (b+c) * (-e) t1 = b + c
t2 = -e
a = t1 * t2

Compiler-generated
temporary variable

- 9 -

IR Instructions
Assignment instructions
» a = b OP C (binary op)

arithmetic: ADD, SUB,
MUL, DIV, MOD
logic: AND, OR, XOR
comparisons: EQ, NEQ,
LT, GT, LEQ, GEQ

» a = OP b (unary op)
arithmetic MINUS,
logical NEG

» a = b : copy instruction
» a = [b] : load instruction
» [a] = b : store instruction
» a = addr b: symbolic

address

Flow of control
» label L: label instruction
» jump L: unconditional jump
» cjump a L : conditional jump

Function call
» call f(a1, ..., an)
» a = call f(a1, ..., an)

IR describes the instruction
set of an abstract machine

- 10 -

IR Operands

The operands in 3-address code can be:
» Program variables
» Constants or literals
» Temporary variables

Temporary variables = new locations
» Used to store intermediate values
» Needed because 3-address code not as

expressive as high-level languages

- 11 -

Class Problem

n = 0;
while (n < 10) {

n = n+1;
}

Convert the following code segment to assembly code

- 12 -

Translating High IR to Low IR

May have nested language constructs
» E.g., while nested within an if statement

Need an algorithmic way to translate
» Strategy for each high IR construct
» High IR construct sequence of low IR

instructions
Solution
» Start from the high IR (AST like) representation
» Define translation for each node in high IR
» Recursively translate nodes

- 13 -

Notation
Use the following notation:
» [[e]] = the low IR representation of high IR construct e

[[e]] is a sequence of low IR instructions
If e is an expression (or statement expression), it
represents a value
» Denoted as: t = [[e]]
» Low IR representation of e whose result value is

stored in t

For variable v: t = [[v]] is the copy instruction
» t = v

- 14 -

Translating Expressions

Binary operations: t = [[e1 OP e2]]
» (arithmetic, logical operations and comparisons)

Unary operations: t = [[OP e]]

OP

e1 e2

t1 = [[e1]]
t2 = [[e2]]
t1 = t1 OP t2

OP

e1

t1 = [[e1]]
t = OP t1

- 15 -

Translating Array Accesses

Array access: t = [[v[e]]]
» (type of e is array [T] and S = size of T)

t1 = addr v
t2 = [[e]]
t3 = t2 * S
t4 = t1 + t3
t = [t4] /* ie load */

array

v e

- 16 -

Translating Structure Accesses

Structure access: t = [[v.f]]
» (v is of type T, S = offset of f in T)

t1 = addr v
t2 = t1 + S
t = [t2] /* ie load */

struct

v f

- 17 -

Translating Short-Circuit OR

Short-circuit OR: t = [[e1 SC-OR e2]]
» e.g., || operator in C/C++

t = [[e1]]
cjump t Lend
t = [[e2]]
Lend:

semantics:
1. evaluate e1
2. if e1 is true, then done
3. else evaluate e2

SC-OR

e1 e2

- 18 -

Class Problem

Short-circuit AND: t = [[e1 SC-AND e2]]
» e.g., && operator in C/C++

Semantics:
1. Evaluate e1
2. if e1 is true,

then evaluate e2
3. else done

- 19 -

Translating Statements

Statement sequence: [[s1; s2; ...; sN]]

IR instructions of a statement sequence =
concatenation of IR instructions of
statements

[[s1]]
[[s2]]
...
[[sN]]

seq

s1 s2 sN...

- 20 -

Assignment Statements

Variable assignment: [[v = e]]

Array assignment: [[v[e1] = e2]]

v = [[e]]

t1 = addr v
t2 = [[e1]]
t3 = t2 * S
t4 = t1 + t3
t5 = [[e2]
[t4] = t5 /* ie store */

recall S = sizeof(T)
where v is array(T)

- 21 -

Translating If-Then [-Else]
[[if (e) then s]] [[if (e) then s1 else s2]]

t1 = [[e]]
t2 = not t1
cjump t2 Lelse
Lthen: [[s1]]
jump Lend
Lelse: [[s2]]
Lend:

t1 = [[e]]
t2 = not t1
cjump t2 Lend
[[s]]
Lend:

How could I do this more
efficiently??

- 22 -

While Statements

[[while (e) s]]

Lloop: t1 = [[e]]
t2 = NOT t1
cjump t2 Lend
[[s]]
jump Lloop
Lend:

or

while-do translation do-while translation
t1 = [[e]]
t2 = NOT t1
cjump t2 Lend
Lloop: [[s]]
t3 = [[e]]
cjump t3 Lloop
Lend:

Which is better and why?

- 23 -

Switch Statements

[[switch (e) case v1:s1, ..., case vN:sN]]

t = [[e]]
L1: c = t != v1
cjump c L2
[[s1]]
jump Lend /* if there is a break */
L2: c = t != v2
cjump c L3
[[s2]]
jump Lend /* if there is a break */
...
Lend:

Can also implement
switch as table lookup.
Table contains target
labels, ie L1, L2, L3.
‘t’ is used to index table.

Benefit: k branches
reduced to 1.
Negative: target of branch
hard to figure out in
hardware

- 24 -

Call and Return Statements

[[call f(e1, e2, ..., eN)]]

[[return e]]

t1 = [[e1]]
t2 = [[e2]]
...
tN = [[eN]]
call f(t1, t2, ..., tN)

t = [[e]]
return t

- 25 -

Nested Expressions

Translation recurses on the expression
structure
Example: t = [[(a – b) * (c + d)]]

t1 = a
t2 = b
t3 = t1 – t2
t4 = c
t5 = d
t5 = t4 + t5
t = t3 * t5

[[(a – b)]]

[[(c + d)]]

[[(a-b) * (c+d)]]

- 26 -

Nested Statements

Same for statements: recursive translation
Example: t = [[if c then if d then a = b]]

t1 = c
t2 = NOT t1
cjump t2 Lend1
t3 = d
t4 = NOT t3
cjump t4 Lend2
t3 = b
a = t3
Lend2:
Lend1:

[[if c ...]]
[[a = b]]

[[if d ...]]

- 27 -

Class Problem

for (i=0; i<100; i++) {
A[i] = 0;

}

if ((a > 0) && (b > 0))
c = 2;

else
c = 3;

Translate the following to the generic assembly code discussed

- 28 -

Issues

These translations are straightforward
But, inefficient:
» Lots of temporaries
» Lots of labels
» Lots of instructions

Can we do this more intelligently?
» Should we worry about it?

	Intermediate Representation I High-Level to Low-Level IR Translation
	Where We Are...
	Intermediate Representation (aka IR)
	What Makes a Good IR?
	Multiple IRs
	High-Level IR
	Low-Level IR
	Alternatives for LIR
	Three-Address Code
	IR Instructions
	IR Operands
	Class Problem
	Translating High IR to Low IR
	Notation
	Translating Expressions
	Translating Array Accesses
	Translating Structure Accesses
	Translating Short-Circuit OR
	Class Problem
	Translating Statements
	Assignment Statements
	Translating If-Then [-Else]
	While Statements
	Switch Statements
	Call and Return Statements
	Nested Expressions
	Nested Statements
	Class Problem
	Issues

