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Lecture 13:
Object Detection
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A3 Grades, Midterm Grades
We are working on grading these this week
(Course staff needs spring break too!)
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Big Problem: A4 Not Ready
A4 covers object detection (this week’s lectures);
won’t be ready until ~midweek
This messes up the schedule for the rest of the semester
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Big Problem: A4 Not Ready
A4 covers object detection (this week’s lectures);
won’t be ready until ~midweek
This messes up the schedule for the rest of the semester

Option 1: Push back deadlines for A4, A5, and A6; they will end up 
compressed, with about 1.5 weeks for each of A4, A5, A6, mini-project
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Big Problem: A4 Not Ready
A4 covers object detection (this week’s lectures);
won’t be ready until ~midweek
This messes up the schedule for the rest of the semester

Option 1: Push back deadlines for A4, A5, and A6; they will end up 
compressed, with about 1.5 weeks for each of A4, A5, A6, mini-project

Option 2: Cancel mini-project. Two full weeks for each of A4, A5, and A6. 
Points previously allocated to mini-project will be re-allocated to homework 
and midterm. A6 will become longer.
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Big Problem: A4 Not Ready
A4 covers object detection (this week’s lectures);
won’t be ready until ~midweek
This messes up the schedule for the rest of the semester

Option 1: Push back deadlines for A4, A5, and A6; they will end up 
compressed, with about 1.5 weeks for each of A4, A5, A6, mini-project

Option 2: Cancel mini-project. Two full weeks for each of A4, A5, and A6. 
Points previously allocated to mini-project will be re-allocated to homework 
and midterm. A6 will become longer.

I will send out a poll via Piazza tonight
6
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Lecture Format
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COVID cases have fallen dramatically 
since the start of the semester

How would people feel about in-
person lecture starting next week?

Will include question in the poll to 
be sent tonight

Source: https://www.nytimes.com/interactive/2021/us/michigan-covid-cases.html

https://www.nytimes.com/interactive/2021/us/michigan-covid-cases.html
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Last Time: Deep Learning Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow
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So Far: Image Classification
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Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Computer Vision Tasks
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Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Classification: Transferring to New Tasks
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Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Transfer Learning:
Generalizing to New Tasks
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Transfer Learning
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1. Train on ImageNet
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Transfer Learning: Feature Extraction
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Transfer Learning: Feature Extraction
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Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

2. Extract features with 
CNN, train linear model Classification on Caltech-101
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Transfer Learning: Feature Extraction
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Freeze 
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Remove 
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Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

2. Extract features with 
CNN, train linear model Bird Classification on Caltech-UCSD
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Transfer Learning: Feature Extraction
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Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014
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Transfer Learning: Fine-Tuning
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Transfer Learning: Fine-Tuning
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Transfer Learning: Fine-Tuning
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Transfer Learning: Fine-Tuning
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ImageNet model

Add randomly 
initialized final FC 
layer for new task

Continue training 
entire model for 
new task

Some tricks:
- Train with feature extraction first 

before fine-tuning
- Lower the learning rate: use ~1/10 of 

LR used in original training
- Sometimes freeze lower layers to 

save computation
- Train with BatchNorm in “test” mode
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Transfer Learning: Fine-Tuning
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New FC Layer

Initialize from 
ImageNet model

Add randomly 
initialized final FC 
layer for new task

Continue training 
entire model for 
new task

Compared with Feature 
Extraction, Fine-Tuning:
- Requires more data
- Is more computationally 

expensive
- Can give higher accuracies
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Transfer Learning: Architecture Matters!
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Improvements in CNN 
architectures lead to 
improvements in many 
downstream tasks thanks 
to transfer learning! 
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Transfer Learning: Architecture Matters!
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Object Detection on COCO

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN FPN
(ResNet-101)

Mask R-CNN FPN
(ResNeXt-152)
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Transfer learning is pervasive!
It’s the norm, not the exception
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Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

Object Detection 
(Fast R-CNN)
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Transfer learning is pervasive!
It’s the norm, not the exception
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Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

CNN pretrained 
on ImageNet

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

Object Detection 
(Fast R-CNN)
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Transfer learning is pervasive!
It’s the norm, not the exception
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Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

CNN pretrained 
on ImageNet

Word vectors pretrained 
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 

for Generating Image Descriptions”, CVPR 2015

Object Detection 
(Fast R-CNN)
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Transfer learning is pervasive!
It’s the norm, not the exception
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1. Train CNN on ImageNet
2. Fine-Tune (1) for object detection 

on Visual Genome
3. Train BERT language model on lots 

of text
4. Combine (2) and (3), train for joint 

image / language modeling
5. Fine-tune (5) for image 

captioning, visual question 
answering, etc.

Zhou et al, “Unified Vision-Language Pre-Training for Image Captioning and VQA”, AAAI 2020
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Transfer Learning can help you converge faster

29

COCO object detection

If you have enough data and 
train for much longer, random 
initialization can sometimes 
do as well as transfer learning

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019
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Classification: Transferring to New Tasks
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Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This Week: Object Detection
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Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Object Detection: Task Definition

Input: Single RGB Image

Output: A set of detected objects;
For each object predict:

1. Category label (from fixed, 
known set of categories)

2. Bounding box (four numbers: 
x, y, width, height)
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Object Detection: Challenges

- Multiple outputs: Need to output 
variable numbers of objects per image

- Multiple types of output: Need to 
predict ”what” (category label) as well 
as “where” (bounding box)

- Large images: Classification works at 
224x224; need higher resolution for 
detection, often ~800x600
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Bounding Boxes

Bounding boxes are 
typically axis-aligned



Justin Johnson March 7, 2022Lecture 13 - 35

Bounding Boxes

Bounding boxes are 
typically axis-aligned

Oriented boxes are 
much less common



Justin Johnson March 7, 2022Lecture 13 - 36

Object Detection: Modal vs Amodal Boxes

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017

Bounding boxes (usually) 
cover only the visible 
portion of the object

This image is CC0 Public Domain

https://www.rawpixel.com/image/3288641/free-photo-image-abyssinian-animal-cat
https://creativecommons.org/publicdomain/zero/1.0/
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Object Detection: Modal vs Amodal Boxes

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017

Bounding boxes (usually) 
cover only the visible 
portion of the object

Amodal detection: 
box covers the entire 
extent of the object, 
even occluded parts

This image is CC0 Public Domain

https://www.rawpixel.com/image/3288641/free-photo-image-abyssinian-animal-cat
https://creativecommons.org/publicdomain/zero/1.0/
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Object Detection: Modal vs Amodal Boxes

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017

“Modal” detection:
Bounding boxes (usually) 
cover only the visible 
portion of the object

Amodal detection: 
box covers the entire 
extent of the object, 
even occluded parts

This image is CC0 Public Domain

https://www.rawpixel.com/image/3288641/free-photo-image-abyssinian-animal-cat
https://creativecommons.org/publicdomain/zero/1.0/
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Comparing Boxes: Intersection over Union (IoU)

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU = 0.51

IoU > 0.5 is “decent”

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU > 0.5 is “decent”,
IoU > 0.7 is “pretty good”,

IoU = 0.72

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU > 0.5 is “decent”,
IoU > 0.7 is “pretty good”,
IoU > 0.9 is “almost perfect”

IoU = 0.91

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Detecting a single object

Vector:
4096

This image is CC0 public domain

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object
Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Softmax
Loss

Correct label:
Cat

This image is CC0 public domain

“What”

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object
Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

This image is CC0 public domain

“Where”

“What”

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object
Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

Multitask 
Loss

“Where”

“What”

Treat localization as a 
regression problem!

𝐿 = 𝐿!"# + 𝜆𝐿$%&

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object
Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

Multitask 
Loss

Often pretrained
on ImageNet
(Transfer learning)

“Where”

“What”

Treat localization as a 
regression problem!

𝐿 = 𝐿!"# + 𝜆𝐿$%&

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object
Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

Multitask 
Loss

Often pretrained
on ImageNet
(Transfer learning)

“Where”

“What”

Problem: Images can have 
more than one object!

Treat localization as a 
regression problem!

𝐿 = 𝐿!"# + 𝜆𝐿$%&

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting Multiple Objects

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers!

Duck image is free to use under the Pixabay license

Need different numbers 
of outputs per image

https://pixabay.com/photos/duckling-duck-waterbird-chick-3456779/
https://pixabay.com/service/license/
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Detecting Multiple Objects: Sliding Window

Dog? NO
Cat? NO
Background? YES

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Question: How many possible boxes 
are there in an image of size H x W?
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Question: How many possible boxes 
are there in an image of size H x W?

Consider a box of size h x w:
Possible x positions: W – w + 1
Possible y positions: H – h + 1
Possible positions: 
(W – w + 1) * (H – h + 1)
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Question: How many possible boxes 
are there in an image of size H x W?

Consider a box of size h x w:
Possible x positions: W – w + 1
Possible y positions: H – h + 1
Possible positions: 
(W – w + 1) * (H – h + 1)

Total possible boxes:

!
!"#

$

!
%"#

&

(𝑊 − 𝑤 + 1)(𝐻 − ℎ + 1)

=
𝐻(𝐻 + 1)

2
𝑊(𝑊 + 1)

2
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Question: How many possible boxes 
are there in an image of size H x W?

Consider a box of size h x w:
Possible x positions: W – w + 1
Possible y positions: H – h + 1
Possible positions: 
(W – w + 1) * (H – h + 1)

Total possible boxes:

!
!"#

$

!
%"#

&

(𝑊 − 𝑤 + 1)(𝐻 − ℎ + 1)

=
𝐻(𝐻 + 1)

2
𝑊(𝑊 + 1)

2

800 x 600 image 
has ~58M boxes! 
No way we can 
evaluate them all
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Region Proposals

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

● Find a small set of boxes that are likely to cover all objects
● Often based on heuristics: e.g. look for “blob-like” image regions
● Relatively fast to run; e.g. Selective Search gives 2000 region 

proposals in a few seconds on CPU
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R-CNN: Region-Based CNN

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0


Justin Johnson March 7, 2022Lecture 13 - 62

R-CNN: Region-Based CNN

Input 
image

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Input 
image

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Input 
image

Conv
Net

Conv
Net

Conv
Net Warped image 

regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Box Regression

67

(px, py)
ph

pw

Consider a region proposal with 
center 𝑝', 𝑝( , width 𝑝), height 𝑝*

Model predicts a transform 𝑡', 𝑡(, 𝑡), 𝑡*
to correct the region proposal
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Consider a region proposal with 
center 𝑝', 𝑝( , width 𝑝), height 𝑝*

Model predicts a transform 𝑡', 𝑡(, 𝑡), 𝑡*
to correct the region proposal

The output box is defined by:
𝑏' = 𝑝' + 𝑝)𝑡'
𝑏( = 𝑝( + 𝑝*𝑡(
𝑏) = 𝑝) exp 𝑡)
𝑏* = 𝑝* exp 𝑡*

R-CNN: Box Regression

68

(px, py)
ph

pw

Shift center by amount 
relative to proposal size

Scale proposal; exp ensures 
that scaling factor is > 0

(bx, by)
bh

bw
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R-CNN: Box Regression

69

Consider a region proposal with 
center 𝑝', 𝑝( , width 𝑝), height 𝑝*

Model predicts a transform 𝑡', 𝑡(, 𝑡), 𝑡*
to correct the region proposal

The output box is:
𝑏' = 𝑝' + 𝑝)𝑡'
𝑏( = 𝑝( + 𝑝*𝑡(
𝑏) = 𝑝) exp 𝑡)
𝑏* = 𝑝* exp 𝑡*

(px, py)
ph

pw

(bx, by)
bh

bw

When transform is 0, 
output = proposal

L2 regularization 
encourages leaving
proposal unchanged 
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R-CNN: Box Regression

70

Consider a region proposal with 
center 𝑝', 𝑝( , width 𝑝), height 𝑝*

Model predicts a transform 𝑡', 𝑡(, 𝑡), 𝑡*
to correct the region proposal

The output box is:
𝑏' = 𝑝' + 𝑝)𝑡'
𝑏( = 𝑝( + 𝑝*𝑡(
𝑏) = 𝑝) exp 𝑡)
𝑏* = 𝑝* exp 𝑡*

(px, py)
ph

pw

(bx, by)
bh

bw

Scale / Translation invariance:
Transform encodes relative
difference between proposal
and output; important since
CNN doesn’t see absolute size
or position after cropping
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R-CNN: Box Regression

71

Consider a region proposal with 
center 𝑝', 𝑝( , width 𝑝), height 𝑝*

Model predicts a transform 𝑡', 𝑡(, 𝑡), 𝑡*
to correct the region proposal

The output box is:
𝑏' = 𝑝' + 𝑝)𝑡'
𝑏( = 𝑝( + 𝑝*𝑡(
𝑏) = 𝑝) exp 𝑡)
𝑏* = 𝑝* exp 𝑡*

(px, py)
ph

pw

(bx, by)
bh

bw

Given proposal and target output, 
we can solve for the transform the 
network should output:
𝑡' = (𝑏' − 𝑝')/𝑝)
𝑡( = (𝑏( − 𝑝()/𝑝*
𝑡) = log 𝑏)/𝑝)
𝑡* = log 𝑏*/𝑝*
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R-CNN Training

72

Input Image

Ground-Truth boxes
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R-CNN Training

73

Input Image

Ground-Truth boxes

Region Proposals
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R-CNN Training

74

Input Image

Categorize each region proposal as positive, 
negative, or neutral based on overlap with 
ground-truth boxes:

Positive: > 0.5 IoU with a GT box
Negative: < 0.3 IoU with all GT boxes
Neutral: between 0.3 and 0.5 IoU with GT boxes

GT Boxes

Neutral

Positive

Negative
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R-CNN Training

75

Input Image

GT Boxes

Neutral

Positive

Negative

Crop pixels from 
each positive and 
negative proposal, 
resize to 224 x 224



Justin Johnson March 7, 2022Lecture 13 -

R-CNN Training

76

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target: 

Class target: Cat
Box target: 

Class target: Dog
Box target: 

Class target: Background
Box target: None

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class
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R-CNN Test-Time

77

Input Image

Region Proposals

1. Run proposal method
2. Run CNN on each proposal to get class 

scores, transforms
3. Threshold class scores to get a set of

detections

2 problems:
- CNN often outputs overlapping boxes
- How to set thresholds?
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Overlapping Boxes

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7

IoU(■, ■) = 0.78
IoU(■, ■) = 0.05
IoU(■, ■) = 0.07

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.75

P(dog) = 0.7

IoU(■, ■) = 0.74

P(dog) = 0.9

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Puppy image is CC0 Public Domain

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.75P(dog) = 0.9

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Crowd image is free for commercial use under the Pixabay license

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate ”good” 
boxes when objects are highly 
overlapping… no good solution =(

https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 1/1 = 1.0
Recall = 1/3 = 0.33

0.5

Pr
ec

isi
on

Recall 1.0



Justin Johnson March 7, 2022Lecture 13 - 88

Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 2/2 = 1.0
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/3 = 0.67
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/4 = 0.5
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: > 0.5 IoU

Precision = 3/5 = 0.6
Recall = 3/3 = 1.0

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec

isi
on

Recall 1.0

Dog AP = 0.86
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec

isi
on

Recall 1.0

Dog AP = 0.86
How to get AP = 1.0: Hit all GT 
boxes with IoU > 0.5, and have no 
“false positive” detections ranked 
above any “true positives”
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category

Dog AP = 0.86
Cat AP = 0.80
Car AP = 0.65

mAP@0.5 = 0.77
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

mAP@0.5 = 0.77
mAP@0.55 = 0.71
mAP@0.60 = 0.65
…
mAP@0.95 = 0.2

COCO mAP = 0.4

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category
4. For “COCO mAP”: Compute mAP@thresh for each IoU

threshold (0.5, 0.55, 0.6, …, 0.95) and take average
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Summary: Beyond Image Classification
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Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Summary
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Transfer learning allows us to re-use a trained network for new tasks

Object detection is the task of localizing objects with bounding boxes

Intersection over Union (IoU) quantifies differences between bounding boxes

The R-CNN object detector processes region proposals with a CNN

At test-time, eliminate overlapping detections using non-max suppression (NMS)

Evaluate object detectors using mean average precision (mAP)
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Next time: 
Modern Object Detectors
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