
Justin	Johnson October	16,	2019

Lecture	12:
Recurrent	Neural	Networks

Lecture	12	- 1



Justin	Johnson October	16,	2019

Reminder:	A3	was	due	on	Monday	10/14

Lecture	12	- 2



Justin	Johnson October	16,	2019

Reminder:	Midterm

Lecture	11	- 3

• Monday,	October	21	
• Location:	Chrysler	220	(NOT	HERE!)
• Format:
• True	/	False,	Multiple	choice,	short	answer
• Emphasize	concepts	– you	don’t	need	to	memorize	AlexNet!
• Closed-book
• You	can	bring	1	page	”cheat	sheet”	of	handwritten	notes	
(standard	8.5”	x	11”	paper)

• Alternate	exam	times:	Fill	out	this	form:	https://forms.gle/uiMpHdg9752p27bd7

• Conflict	with	EECS	551
• SSD	accommodations
• Conference	travel	for	Michigan



Justin	Johnson October	16,	2019Lecture	12	- 4

Recall:	PyTorch vs	TensorFlow

PyTorch
- My	personal	favorite
- Clean,	imperative	API
- Easy	dynamic	graphs	for	debugging
- JIT	allows	static	graphs	for	production
- Cannot	use	TPUs
- Not	easy	to	deploy	on	mobile

TensorFlow 1.0
- Static	graphs	by	default
- Can	be	confusing	to	debug
- API	a	bit	messy

TensorFlow 2.0
- Dynamic	by	default
- Standardized	on	Keras API
- Just	came	out,	no	consensus	yet



Justin	Johnson October	16,	2019Lecture	12	- 5

Recall:	PyTorch vs	TensorFlow

PyTorch 1.3	(Released	10/10/2019)
- My	personal	favorite
- Clean,	imperative	API
- Easy	dynamic	graphs	for	debugging
- JIT	allows	static	graphs	for	production
- TPU	support	with	pytorch/xla!
- (Experimental)	mobile	support
on	Android	and	iOS!

TensorFlow 1.0
- Static	graphs	by	default
- Can	be	confusing	to	debug
- API	a	bit	messy

TensorFlow 2.0
- Dynamic	by	default
- Standardized	on	Keras API
- Just	came	out,	no	consensus	yet



Justin	Johnson October	16,	2019

Last	Time:	Training	Neural	Networks

Lecture	12	- 6

1.One	time	setup
Activation	functions,	data	preprocessing,	weight	
initialization,	regularization

2.Training	dynamics
Learning	rate	schedules;	
hyperparameter optimization

3.After	training
Model	ensembles,	transfer	learning,	
large-batch	training



Justin	Johnson October	16,	2019

So	far:	“Feedforward”	Neural	Networks

Lecture	12	- 7

e.g.	Image	classification
Image	->	Label



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks:	Process	Sequences

Lecture	12	- 8

e.g.	Image	Captioning:	
Image	->	sequence	of	words



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks:	Process	Sequences

Lecture	12	- 9

e.g.	Video	classification:
Sequence	of	images	->	label



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks:	Process	Sequences

Lecture	12	- 10

e.g.	Machine	Translation:
Sequence	of	words	->	Sequence	of	words



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks:	Process	Sequences

Lecture	12	- 11

e.g.	Per-frame	video	classification:
Sequence	of	images	->	Sequence	of	labels



Justin	Johnson October	16,	2019

Sequential	Processing	of	Non-Sequential	Data

Lecture	12	- 12

Ba,	Mnih,	and	Kavukcuoglu,	“Multiple	Object	Recognition	with	Visual	Attention”,	ICLR	2015.
Gregor et	al,	“DRAW:	A	Recurrent	Neural	Network	For	Image	Generation”,	ICML	2015

Classify	images	by	taking	
a	series	of	“glimpses”



Justin	Johnson October	16,	2019

Sequential	Processing	of	Non-Sequential	Data

Lecture	12	- 13

Gregor et	al,	“DRAW:	A	Recurrent	Neural	Network	For	Image	Generation”,	ICML	2015

Generate	images	one	piece	at	a	time!



Justin	Johnson October	16,	2019

Sequential	Processing	of	Non-Sequential	Data

Lecture	12	- 14

Ganin et	al,	“Synthesizing	Programs	for	Images	using	Reinforced	Adversarial	Learning”,	ICML	2018
https://twitter.com/yaroslav_ganin/status/1180120687131926528
Reproduced	with	permission

Integrate	with	oil	
paint	simulator	– at	
each	timestep output	
a	new	stroke



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks

Lecture	12	- 15

x

RNN

y

Key	idea:	RNNs	have	an	
“internal	state”	that	is	
updated	as	a	sequence	
is	processed



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks

Lecture	12	- 16

x

RNN

y
We	can	process	a	sequence	of	vectors	x	by	applying	a	
recurrence	formula	at	every	time	step:

new	state old	state input	vector	at	
some	time	step

some	function
with	parameters	W



Justin	Johnson October	16,	2019

Recurrent	Neural	Networks

Lecture	12	- 17

x

RNN

y
We	can	process	a	sequence	of	vectors	x	by	applying	a	
recurrence	formula	at	every	time	step:

new	state old	state input	vector	at	
some	time	step

some	function
with	parameters	W

Notice:	the	same	function	and	
the	same	set	of	parameters	
are	used	at	every	time	step.



Justin	Johnson October	16,	2019

(Vanilla)	Recurrent	Neural	Networks

Lecture	12	- 18

x

RNN

y

The	state	consists	of	a	single	“hidden” vector	h:

Sometimes	called	a	“Vanilla	RNN”	or	an	
“Elman	RNN”	after	Prof.	Jeffrey	Elman

(also	bias	term)



Justin	Johnson October	16,	2019

RNN	Computational	Graph

Lecture	12	- 19

h0

x1

Initial	hidden	state
Either	set	to	all	0,
Or	learn	it



Justin	Johnson October	16,	2019

RNN	Computational	Graph

Lecture	12	- 20

h0 fW h1

x1



Justin	Johnson October	16,	2019

RNN	Computational	Graph

Lecture	12	- 21

h0 fW h1 fW h2

x2x1



Justin	Johnson October	16,	2019

RNN	Computational	Graph

Lecture	12	- 22

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT



Justin	Johnson October	16,	2019

RNN	Computational	Graph

Lecture	12	- 23

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use	the	same	weight	matrix	at	every	time-step



Justin	Johnson October	16,	2019

RNN	Computational	Graph	(Many	to	Many)

Lecture	12	- 24

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1



Justin	Johnson October	16,	2019

RNN	Computational	Graph	(Many	to	Many)

Lecture	12	- 25

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT



Justin	Johnson October	16,	2019

RNN	Computational	Graph	(Many	to	Many)

Lecture	12	- 26

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L



Justin	Johnson October	16,	2019

RNN	Computational	Graph	(Many	to	One)

Lecture	12	- 27

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT



Justin	Johnson October	16,	2019

RNN	Computational	Graph	(One	to	Many)

Lecture	12	- 28

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1



Justin	Johnson October	16,	2019

Sequence	to	Sequence	(seq2seq)
(Many	to	one)	+	(One	to	many)

Lecture	12	- 29

h0 fW h1 fW h2 fW h3

x3

…	

x2x1W1

hT

Many	to	one:	Encode	input	
sequence	in	a	single	vector

Sutskever et	al,	“Sequence	to	Sequence	Learning	with	Neural	Networks”,	NIPS	2014



Justin	Johnson October	16,	2019

Sequence	to	Sequence	(seq2seq)
(Many	to	one)	+	(One	to	many)

Lecture	12	- 30

h0 fW h1 fW h2 fW h3

x3

…	

x2x1W1

hT

y1 y2

…	

Many	to	one:	Encode	input	
sequence	in	a	single	vector

One	to	many:	Produce	
output	sequence	from	
single	input	vector

fW h1 fW h2 fW

W2

Sutskever et	al,	“Sequence	to	Sequence	Learning	with	Neural	Networks”,	NIPS	2014



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 31

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Training	sequence:	”hello”

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 32

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Training	sequence:	”hello”

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 33

Training	sequence:	”hello”

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 34

Training	sequence:	”hello”

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Given	“h”,	predict	“e”

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 35

Training	sequence:	”hello”

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Given	“he”,	predict	“l”

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 36

Training	sequence:	”hello”

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Given	“hel”,	predict	“l”

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 37

Training	sequence:	”hello”

Given	characters	1,	2,	…,	t,	
model	predicts	character	t

Given	“hell”,	predict	“o”

Vocabulary:	[h,	e,	l,	o]



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 38

Vocabulary:	[h,	e,	l,	o]

Training	sequence:	”hello”

At	test-time,	generate new	
text:	sample	characters	one	
at	a	time,	feed	back	to	model

.03

.13

.00

.84
Softmax

“e
”Sample



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 39

Vocabulary:	[h,	e,	l,	o]

Training	sequence:	”hello”

At	test-time,	generate new	
text:	sample	characters	one	
at	a	time,	feed	back	to	model

.03

.13

.00

.84
Softmax

“e
”Sample



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 40

Vocabulary:	[h,	e,	l,	o]

Training	sequence:	”hello”

At	test-time,	generate new	
text:	sample	characters	one	
at	a	time,	feed	back	to	model

.03

.13

.00

.84
Softmax

“e
”Sample

.25

.20

.05

.50

“l
”



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 41

Vocabulary:	[h,	e,	l,	o]

Training	sequence:	”hello”

At	test-time,	generate new	
text:	sample	characters	one	
at	a	time,	feed	back	to	model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 42

So	far:	encode	inputs	
as	one-hot-vector

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample

[w11 w12 w13 w14]	[1]						[w11]
[w21 w22 w23 w14]	[0]		=		[w21]
[w31 w32 w33 w14]	[0]						[w31]

[0]
Matrix	multiply	with	a	one-hot	vector	just	
extracts	a	column	from	the	weight	matrix.
Often	extract	this	into	a	separate	
embedding layer



Justin	Johnson October	16,	2019

Example:	Language	Modeling

Lecture	12	- 43

So	far:	encode	inputs	
as	one-hot-vector

[w11 w12 w13 w14]	[1]						[w11]
[w21 w22 w23 w14]	[0]		=		[w21]
[w31 w32 w33 w14]	[0]						[w31]

[0]
Matrix	multiply	with	a	one-hot	vector	just	
extracts	a	column	from	the	weight	matrix.
Often	extract	this	into	a	separate	
embedding layer

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Embedding	
layer



Justin	Johnson October	16,	2019

Backpropagation	Through	Time

Lecture	12	- 44

Loss

Forward	through	entire	sequence	to	
compute	loss,	then	backward	through	
entire	sequence	to	compute	gradient



Justin	Johnson October	16,	2019

Backpropagation	Through	Time

Lecture	12	- 45

Loss

Forward	through	entire	sequence	to	
compute	loss,	then	backward	through	
entire	sequence	to	compute	gradient

Problem:	Takes	a	lot	of	
memory	for	long	sequences!



Justin	Johnson October	16,	2019

Truncated	Backpropagation	Through	Time

Lecture	12	- 46

Loss

Run	forward	and	backward	
through	chunks	of	the	sequence	
instead	of	whole	sequence



Justin	Johnson October	16,	2019

Truncated	Backpropagation	Through	Time

Lecture	12	- 47

Loss

Carry	hidden	states	
forward	in	time	forever,	
but	only	backpropagate	
for	some	smaller	number	
of	steps



Justin	Johnson October	16,	2019

Truncated	Backpropagation	Through	Time

Lecture	12	- 48

Loss



Justin	Johnson October	16,	2019

min-char-rnn.py:	112	lines	of	Python

Lecture	12	- 49

(https://gist.github.com/karp
athy/d4dee566867f8291f086)



Justin	Johnson October	16,	2019Lecture	12	- 50

x

RNN

y



Justin	Johnson October	16,	2019Lecture	12	- 51

at	first:



Justin	Johnson October	16,	2019Lecture	12	- 52

train	more

at	first:



Justin	Johnson October	16,	2019Lecture	12	- 53

train	more

train	more

at	first:



Justin	Johnson October	16,	2019Lecture	12	- 54

train	more

train	more

train	more

at	first:



Justin	Johnson October	16,	2019Lecture	12	- 55



Justin	Johnson October	16,	2019

The	Stacks	Project:	Open-Source	Algebraic	Geometry	Textbook

Lecture	12	- 56

Latex	source
http://stacks.math.columbia.edu/
The	stacks	project	is	licensed	under	the	GNU	Free	Documentation	License



Justin	Johnson October	16,	2019Lecture	12	- 57



Justin	Johnson October	16,	2019Lecture	12	- 58



Justin	Johnson October	16,	2019Lecture	12	- 59



Justin	Johnson October	16,	2019Lecture	12	- 60

Generated	
C	code



Justin	Johnson October	16,	2019Lecture	12	- 61



Justin	Johnson October	16,	2019Lecture	12	- 62



Justin	Johnson October	16,	2019

Searching	for	Interpretable	Hidden	Units

Lecture	12	- 63

Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016



Justin	Johnson October	16,	2019

Searching	for	Interpretable	Hidden	Units

Lecture	12	- 64

Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016
Figures	copyright	Karpathy,	Johnson,	and	Fei-Fei;	reproduced	with	permission



Justin	Johnson October	16,	2019

Searching	for	Interpretable	Hidden	Units

Lecture	12	- 65

Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016
Figures	copyright	Karpathy,	Johnson,	and	Fei-Fei;	reproduced	with	permission

quote	detection	cell



Justin	Johnson October	16,	2019

Searching	for	Interpretable	Hidden	Units

Lecture	12	- 66

Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016
Figures	copyright	Karpathy,	Johnson,	and	Fei-Fei;	reproduced	with	permission

line	length	tracking	cell



Justin	Johnson October	16,	2019Lecture	12	- 67

if	statement	cell

Searching	for	Interpretable	Hidden	Units

Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016
Figures	copyright	Karpathy,	Johnson,	and	Fei-Fei;	reproduced	with	permission



Justin	Johnson October	16,	2019Lecture	12	- 68

Searching	for	Interpretable	Hidden	Units

quote/comment	cell
Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016
Figures	copyright	Karpathy,	Johnson,	and	Fei-Fei;	reproduced	with	permission



Justin	Johnson October	16,	2019Lecture	12	- 69

Searching	for	Interpretable	Hidden	Units

Karpathy,	Johnson,	and	Fei-Fei:	Visualizing	and	Understanding	Recurrent	Networks,	ICLR	Workshop	2016
Figures	copyright	Karpathy,	Johnson,	and	Fei-Fei;	reproduced	with	permission

code	depth	cell



Justin	Johnson October	16,	2019

Example:	Image	Captioning

Lecture	12	- 70

Figure	from	Karpathy et	a,	“Deep	Visual-Semantic	Alignments	
for	Generating	Image	Descriptions”,	CVPR	2015

Mao	et	al,	“Explain	Images	with	Multimodal	Recurrent	Neural	Networks”,	NeurIPS 2014	Deep	Learning	and	Representation	Workshop
Karpathy and	Fei-Fei,	“Deep	Visual-Semantic	Alignments	for	Generating	Image	Descriptions”,	CVPR	2015
Vinyals et	al,	"Show	and	Tell:	A	Neural	Image	Caption	Generator”,	CVPR	2015
Donahue	et	al,	“Long-term	Recurrent	Convolutional	Networks	for	Visual	Recognition	and	Description”,	CVPR	2015
Chen	and	Zitnick,	“Learning	a	Recurrent	Visual	Representation	for	Image	Caption	Generation”,	CVPR	2015



Justin	Johnson October	16,	2019

Example:	Image	Captioning

Lecture	12	- 71

Figure	from	Karpathy et	a,	“Deep	Visual-Semantic	Alignments	
for	Generating	Image	Descriptions”,	CVPR	2015

Convolutional	Neural	Network

Recurrent	
Neural	
Network



Justin	Johnson October	16,	2019Lecture	12	- 72

This	image is	CC0	public	domain

X

Transfer	learning:	Take	
CNN	trained	on	ImageNet,	
chop	off	last	layer



Justin	Johnson October	16,	2019Lecture	12	- 73

This	image is	CC0	public	domain

x0



Justin	Johnson October	16,	2019Lecture	12	- 74

This	image is	CC0	public	domain

h0

x0

y0

Wih

before:
h	=	tanh(Wxh*x	+	Whh*h)

now:
h	=	tanh(Wxh*x +	Whh*h +	Wih*v)



Justin	Johnson October	16,	2019Lecture	12	- 75

This	image is	CC0	public	domain

h0

x0

y0

Wih

before:
h	=	tanh(Wxh*x	+	Whh*h)

now:
h	=	tanh(Wxh*x +	Whh*h +	Wih*v)

Sample	
word	and	
copy	to	
input



Justin	Johnson October	16,	2019Lecture	12	- 76

This	image is	CC0	public	domain

h0

x0

y0

Wih

before:
h	=	tanh(Wxh*x	+	Whh*h)

now:
h	=	tanh(Wxh*x +	Whh*h +	Wih*v)

Sample	
word	and	
copy	to	
input

x1

h1

y1



Justin	Johnson October	16,	2019Lecture	12	- 77

This	image is	CC0	public	domain

h0

x0

y0

Wih

before:
h	=	tanh(Wxh*x	+	Whh*h)

now:
h	=	tanh(Wxh*x +	Whh*h +	Wih*v)

Sample	
word	and	
copy	to	
input

x1

h1

y1

x2

h2

y2



Justin	Johnson October	16,	2019Lecture	12	- 78

This	image is	CC0	public	domain

h0

x0

y0

Wih

before:
h	=	tanh(Wxh*x	+	Whh*h)

now:
h	=	tanh(Wxh*x +	Whh*h +	Wih*v)

Sample	
word	and	
copy	to	
input

x1

h1

y1

x2

h2

y2

x3

h3

y3



Justin	Johnson October	16,	2019Lecture	12	- 79

h0

x0

y0

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

This	image is	CC0	public	domain

before:
h	=	tanh(Wxh*x	+	Whh*h)

now:
h	=	tanh(Wxh*x +	Whh*h +	Wih*v)

Wih

Stop	after	sampling	<END>	token



Justin	Johnson October	16,	2019

Image	Captioning:	Example	Results

Lecture	12	- 80

A	cat	sitting	on	a	suitcase	
on	the	floor

A	cat	is	sitting	on	a	tree	
branch

A	dog	is	running	in	the	grass	
with	a	frisbee

A	white	teddy	bear	sitting	in	
the	grass

Two	people	walking	on	the	
beach	with	surfboards

Two	giraffes	standing	in	a	
grassy	field

A	man	riding	a	dirt	bike	on	a	
dirt	track

A	tennis	player	in	action	on	
the	court

Captions	generated	using	neuraltalk2
All	images	are CC0	Public	domain:	cat	
suitcase,	cat	tree,	dog,	bear,	surfers,	
tennis,	giraffe,	motorcycle



Justin	Johnson October	16,	2019

Image	Captioning:	Failure	Cases

Lecture	12	- 81

Captions	generated	using	neuraltalk2
All	images	are CC0	Public	domain:	fur	coat,	
handstand,	spider	web,	baseball

A	woman	is	holding	a	cat	
in	her	hand

A	woman	standing	on	a	beach	
holding	a	surfboard

A	person	holding	a	computer	
mouse	on	a	desk

A	bird	is	perched	on	a	
tree	branch

A	man	in	a	
baseball	uniform	
throwing	a	ball



Justin	Johnson October	16,	2019

Vanilla	RNN	Gradient	Flow

Lecture	12	- 82

Bengio et	al,	“Learning	long-term	dependencies	with	gradient	descent	is	difficult”,	IEEE	Transactions	on	Neural	Networks,	1994
Pascanu et	al,	“On	the	difficulty	of	training	recurrent	neural	networks”,	ICML	2013

ht-1

xt

W

stack

tanh

ht



Justin	Johnson October	16,	2019

Vanilla	RNN	Gradient	Flow

Lecture	12	- 83

Bengio et	al,	“Learning	long-term	dependencies	with	gradient	descent	is	difficult”,	IEEE	Transactions	on	Neural	Networks,	1994
Pascanu et	al,	“On	the	difficulty	of	training	recurrent	neural	networks”,	ICML	2013

ht-1

xt

W

stack

tanh

ht

Backpropagation	from	
ht to	ht-1 multiplies	by	W	
(actually	Whh

T)



Justin	Johnson October	16,	2019

Vanilla	RNN	Gradient	Flow

Lecture	12	- 84

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing	gradient	of	
h0 involves	many	
factors	of	W
(and	repeated	tanh)



Justin	Johnson October	16,	2019

Vanilla	RNN	Gradient	Flow

Lecture	12	- 85

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing	gradient	of	
h0 involves	many	
factors	of	W
(and	repeated	tanh)

Largest	singular	value	>	1:	
Exploding	gradients

Largest	singular	value	<	1:
Vanishing	gradients



Justin	Johnson October	16,	2019

Vanilla	RNN	Gradient	Flow

Lecture	12	- 86

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing	gradient	of	
h0 involves	many	
factors	of	W
(and	repeated	tanh)

Largest	singular	value	>	1:	
Exploding	gradients

Largest	singular	value	<	1:
Vanishing	gradients

Gradient	clipping:	Scale	
gradient	if	its	norm	is	too	big



Justin	Johnson October	16,	2019

Vanilla	RNN	Gradient	Flow

Lecture	12	- 87

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing	gradient	of	
h0 involves	many	
factors	of	W
(and	repeated	tanh)

Largest	singular	value	>	1:	
Exploding	gradients

Largest	singular	value	<	1:
Vanishing	gradients

Change	RNN	architecture!



Justin	Johnson October	16,	2019

Vanilla	RNN

Lecture	12	- 88

Vanilla	RNN

Hochreiter	and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM)

Lecture	12	- 89

Vanilla	RNN LSTM

Hochreiter	and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM)

Lecture	12	- 90

Vanilla	RNN LSTM

Hochreiter	and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

Two	vectors	at	each	timestep:
Cell	state

Hidden	state



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM)

Lecture	12	- 91

Vanilla	RNN LSTM

Hochreiter	and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

Compute	four	gates
at	each	timestep



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM)

Lecture	12	- 92

x

h

Previous	
hidden	
state	(h)

W

i

f

o

g

Input	vector	(x)

sigmoid

sigmoid

tanh

sigmoid

4h	x	2h 4h 4*h

i:	Input	gate,	whether	to	write	to	cell
f:	Forget	gate,	Whether	to	erase	cell
o:	Output	gate,	How	much	to	reveal	cell
g:	Gate	gate (?),	How	much	to	write	to	cell



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM)

Lecture	12	- 93

☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM):	Gradient	Flow

Lecture	12	- 94

☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

Backpropagation	from	ct
to	ct-1 only	elementwise	
multiplication	by	f,	no	
matrix	multiply	by	W



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM):	Gradient	Flow

Lecture	12	- 95

c0 c1 c2 c3

Uninterrupted	gradient	flow!



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM):	Gradient	Flow

Lecture	12	- 96

c0 c1 c2 c3

Uninterrupted	gradient	flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar	to	
ResNet!



Justin	Johnson October	16,	2019

Long	Short	Term	Memory	(LSTM):	Gradient	Flow

Lecture	12	- 97

c0 c1 c2 c3

Uninterrupted	gradient	flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar	to	
ResNet!

In	between: Highway	Networks

Srivastava	et	al,	“Highway	Networks”,	ICML	DL	Workshop	2015



Justin	Johnson October	16,	2019

Single-Layer	RNNs

Lecture	12	- 98

LSTM:

time

x0 x1 x2 x3 x4 x5 x6

h0 h1 h2 h3 h4 h5 h6

y0 y1 y2 y3 y4 y5 y6



Justin	Johnson October	16,	2019

Mutilayer RNNs

Lecture	12	- 99

LSTM:

time

depth x0 x1 x2 x3 x4 x5 x6

h20 h21 h22 h23 h24 h25 h26

y0 y1 y2 y3 y4 y5 y6

h10 h11 h12 h13 h14 h15 h16

Two-layer	RNN:	Pass	hidden	states	from	
one	RNN	as	inputs	to	another	RNN



Justin	Johnson October	16,	2019

Mutilayer RNNs

Lecture	12	- 100

LSTM:

time

depth x0 x1 x2 x3 x4 x5 x6

h20 h21 h22 h23 h24 h25 h26

y0 y1 y2 y3 y4 y5 y6

h10 h11 h12 h13 h14 h15 h16

Three-layer	RNN

h30 h31 h32 h33 h34 h35 h36



Justin	Johnson October	16,	2019

Other	RNN	Variants

Lecture	12	- 101

Gated	Recurrent	Unit	(GRU)
Cho	et	al	“Learning	phrase	representations	
using	RNN	encoder-decoder	for	statistical	
machine	translation”,	2014

10,000	architectures	with	evolutionary	search:
Jozefowicz et	al,	“An	empirical	exploration	of	
recurrent	network	architectures”,	ICML	2015



Justin	Johnson October	16,	2019

RNN	Architectures:	Neural	Architecture	Search

Lecture	12	- 102

LSTM	 Learned	Architecture

Zoph and	Le,	“Neural	Architecture	Search	with	Reinforcement	Learning”,	ICLR	2017



Justin	Johnson October	16,	2019

Summary

Lecture	12	- 103

- RNNs	allow	a	lot	of	flexibility	in	architecture	design
- Vanilla	RNNs	are	simple	but	don’t	work	very	well
- Common	to	use	LSTM	or	GRU:	additive	interactions	improve	gradient	flow
- Backward	flow	of	gradients	in	RNN	can	explode	or	vanish.

- Exploding	is	controlled	with	gradient	clipping.
- Vanishing	is	controlled	with	additive	interactions	(LSTM)

- Better/simpler	architectures	are	a	hot	topic	of	current	research
- Better	understanding	(both	theoretical	and	empirical)	is	needed.



Justin	Johnson October	16,	2019

Next	Time:	Midterm!

Lecture	12	- 104


