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7.1 Review: Learning Axis-Aligned Rectangles

X = R2,Y = {0, 1}, C = {[a1, a2]× [b1, b2] : a1 ≤ a2, b1 ≤ b2}
Result: As long as m ≥ 4

ε log 4
δ , where m is the number of samples, then R(r̂) ≤ ε with probability at least

1− δ, where r̂ is called tightest rectangle containing positives, and rs = r̂.

Fact 7.1. The Tightest Rectangle algorithm is not fundamental. Indeed, any consistent hypothesis would

have a similar guarantee.

In fact, a typical PAC learning algorithm outputs any h ∈ C that is consistent with training data.

7.2 Simplest General PAC Guarantee

Theorem 7.2. Let |C| <∞ and S be the sample set. Let hs be any h ∈ C consistent with the target concept

on S: R̂(hs) = 0. As long as |S| = m ≥ 1
ε

(
log |C|+ log 1

δ

)
, we have R(hs) ≤ ε with probability at least 1− δ

Proof: Let ĥ ∈ C be a hypothesis consistent with the target concept c on S.

Pr
S∼Dm

(R(ĥ) > ε) ≤ Pr
S∼Dm

(∃h : h|s = c|s and R(h) > ε)

≤
∑
h∈C

Pr
S∼Dm

(R(h) > ε and h consistent) (Union bound)

≤
∑
h∈C

Pr
S∼Dm

(h consistent|R(h) > ε) (Definition of conditional probability)

≤
∑
h∈C

(1− ε)m

≤
∑
h∈C

e−mε = |C|e−mε ≤ δ

To complete the proof, note that emε ≥ |C|δ is equivalent to m ≥ log |C|+log 1
δ

ε . �

7.3 Revisit the Definition of PAC Learning

Often data objects require descriptions:

• Might require n bits to describe a binary string.

• Might require n real #S to describe n-dimensional vector.

7-1



Lecture 7: General PAC Guarantee 7-2

Also: concepts have description length

Let n = description length of object x ∈ X , size(c) = description length of c ∈ C

Definition 7.3 (Updated PAC Learning Definition). A concept class C is PAC learnable if there is a

polynomial form poly(·, ·, ·, ·) and an algorithm A such that ∀ε, δ ≥ 0, for all distributions D on X , for all

target concept c ∈ C, as long as m ≥ poly( 1
ε ,

1
δ , n, size(c)), then Pr

S∼Dm
[R(hs) > ε] < δ, where hs is an output

of A on S.

Definition 7.4 (Efficiently PAC Learnable). If the algorithm A in Definition 7.3 runs in time poly( 1
ε ,

1
δ , n, size(c)),

then we say C is efficiently PAC learnable. When such an algorithm A exists, it is called a PAC-learning

algorithm for C.

Examples

• Let C be the set of “monotone disjunctions”. Here X = {0, 1}n and c(x) = x(i1) ∨ x(i2) ∨ ... ∨ x(ik)

for any subset {i1, ..., ik} ⊂ [n],∀k ∈ [n]. The sample complexity is m ≥ 1
ε (log |C| + log 1

δ ) =
n+log 1

δ

ε ,

which is efficiently PAC learnable.

• Let C be the universal concept class C = {all functionsX → {0, 1}}
Sample complexity is m ≥ log(#allfunctions) log 1

δ

ε ≥ 2n

ε . Therefore, the universal concept class is not PAC

learnable.

• Let C be the class of “short” boolean expressions c(x) = (x(11) ∨ x(4) ∧ ¬x(3)) ∨ ¬(x(1) ∨ x(2)); let’s

say the length of the expression is no more than s. Then clearly the number of possible hypotheses is

no more than the number of possible expressions, hence

|C| ≤ (n+ s)k.

To PAC learn C requires only:

m = Ω

(
k log n+ log 1

ε

ε

)
,

where k is the description length of the function. However, it is very unlikely that this class can be

efficiently PAC learned, as this problem looks very similar to solving SAT problems (it’s not exactly

SAT, since the inputs are chosen randomly).

7.4 Some Philosophy

William of Occam, a theologian, made a statement known as Occam’s Razor: Plurality should not be posited

without necessity, i.e. we should tend to search for simplest explanations.


