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5.1 Review: Hoeffding’s inequality (simplified)

If x1, . . . , xn ∈ [0, 1] are independent random variables, then Hoeffding’s inequality states that:
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The left hand side dies off exponentially quickly as t increases. Note that if we want to get a bound in terms
of the absolute value of the deviation then we get a probability bound that increases by a multiple of two.
We can also solve for t in terms of a given probability δ:
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Fact 5.1. With probability 1− δ we have:∥∥∥∥∥ 1
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5.2 One more deviation bound

We want to ensure by taking enough random samples that some event does not occur less than than ε.
Formally, let xi ∈ {0, 1} with Pr(xi = 1) ≥ ε. What is the probability that

∑n
i=1 xi = 0? We know that

n∏
i=1

(Pr(xi = 0)) ≤ (1− ε)n = exp(n log(1− ε))

Since log is a concave function, log(1 + x) ≤ x for any x ∈ R. So exp(n log(1− ε)) ≤ e−nε.

Fact 5.2. If n ≥ log(1/δ)
ε then with probability 1− δ,

∑n
i=1 xi 6= 0.

Note that since x2 < x for small, positive values of x, this is a tighter lower bound on n than the one given
by Hoeffding’s inequality for small ε.
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5.3 Sketch of a typical machine learning problem and support
vector machines

In a linear classification problem, we are given data (x1, y1), . . . , (xn, yn) independently and identically from
a distribution D. Here xi ∈ Rd and yi ∈ {−1, 1}. We want to find w ∈ Rd, a weight coefficient vector such
that Pr(sgn(w>x) 6= y) is small for all future (x, y) ∼ D. One way to find w is by solving the following
maximization problem:
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where λ ∈ R is a chosen parameter. The function within the arg min term is the support vector machine’s
loss function, defined as the hinge loss.

Definition 5.3 (Training Error). The training error, written as errn(w), is:
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The hinge loss function is an approximation of the training error. Using the hinge loss function or otherwise,
pick some w ∈ Rd such that errn(w) ≤ ε. How do we measure the performance of the model? First, a
definition:

Definition 5.4 (Ideal Test Error). The test error, written as err(w), is
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where the expectation and probability are taken over distribution D, (x, y) ∼ D.

A good model has small ideal test error. An erroneous approach is as follows. Pick ŵn = arg minw∈Rd 1
[
(w>xi)yi ≤ 0

]
.

Apply Hoeffding’s inequality:
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with probability 1− δ. This argument is false because Ii are intentionally correlated to fit the data. They
are no longer independent, so the bound cannot be used.

5.4 PAC-Learning: “Probably Approximately Correct”

Key pieces:

• X input space

• Output space Y = {0, 1}

• Concept class C, a set of function families taking X to Y .

Here C can be viewed as part of P (X), the power set of X.

Definition 5.5. A learning instance consists of:
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• A distribution D ∈ ∆(X).

• A target concept c ∈ C.

Our goal is to have an algorithm A that maps a collection of learning instances to a hypothesis h : X→ Y ,
hopefully with Prx∼D(h(x) 6= c(x)) ≤ ε.

Definition 5.6 (Risk). Given D ∈ ∆(X) and target c ∈ C, the risk of h, a function from X to Y , is:

R(h) = E [1(h(x) 6= c(x))] = Pr
x∼D

(h(x) 6= c(x))

where R depends on D and c. This is also known as the generalization error.

Definition 5.7 (Empirical Risk). The empirical risk on x1, . . . ,xn is defined as:
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