5.1 Review: Hoeffding's inequality (simplified)

If $x_{1}, \ldots, x_{n} \in[0,1]$ are independent random variables, then Hoeffding's inequality states that:

$$
\operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}-E\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq t\right) \leq \exp \left(-2 t^{2} n\right)
$$

The left hand side dies off exponentially quickly as t increases. Note that if we want to get a bound in terms of the absolute value of the deviation then we get a probability bound that increases by a multiple of two. We can also solve for t in terms of a given probability δ :

$$
\begin{aligned}
& \delta \geq 2 \exp \left(-2 t^{2} n\right) \\
\Longrightarrow & \log \left(\frac{2}{\delta}\right) \leq 2 t^{2} n \\
\Longrightarrow & t \geq \sqrt{\frac{\log (2 / \delta)}{2 n}}
\end{aligned}
$$

Fact 5.1. With probability $1-\delta$ we have:

$$
\left\|\frac{1}{n} \sum_{i} x_{i}-E\left(\frac{1}{n} \sum_{i} x_{i}\right)\right\| \leq \sqrt{\frac{\log (2 / \delta)}{2 n}}
$$

5.2 One more deviation bound

We want to ensure by taking enough random samples that some event does not occur less than than ϵ. Formally, let $x_{i} \in\{0,1\}$ with $\operatorname{Pr}\left(x_{i}=1\right) \geq \epsilon$. What is the probability that $\sum_{i=1}^{n} x_{i}=0$? We know that

$$
\prod_{i=1}^{n}\left(\operatorname{Pr}\left(x_{i}=0\right)\right) \leq(1-\epsilon)^{n}=\exp (n \log (1-\epsilon))
$$

Since \log is a concave function, $\log (1+x) \leq x$ for any $x \in \mathbb{R}$. So $\exp (n \log (1-\epsilon)) \leq e^{-n \epsilon}$.
Fact 5.2. If $n \geq \frac{\log (1 / \delta)}{\epsilon}$ then with probability $1-\delta, \sum_{i=1}^{n} x_{i} \neq 0$.
Note that since $x^{2}<x$ for small, positive values of x, this is a tighter lower bound on n than the one given by Hoeffding's inequality for small ϵ.

5.3 Sketch of a typical machine learning problem and support vector machines

In a linear classification problem, we are given data $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ independently and identically from a distribution D. Here $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$. We want to find $\mathbf{w} \in \mathbb{R}^{d}$, a weight coefficient vector such that $\operatorname{Pr}\left(\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}\right) \neq y\right)$ is small for all future $(\mathbf{x}, y) \sim D$. One way to find \mathbf{w} is by solving the following maximization problem:

$$
\underset{\mathbf{w} \in \mathbb{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right)+\lambda \frac{\|\mathbf{w}\|^{2}}{2}
$$

where $\lambda \in \mathbb{R}$ is a chosen parameter. The function within the \arg min term is the support vector machine's loss function, defined as the hinge loss.

Definition 5.3 (Training Error). The training error, written as $\operatorname{err}_{n}(\mathbf{w})$, is:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left[\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right) \neq y_{i}\right]
$$

The hinge loss function is an approximation of the training error. Using the hinge loss function or otherwise, pick some $\mathbf{w} \in \mathbb{R}^{d}$ such that $\operatorname{err}_{n}(\mathbf{w}) \leq \epsilon$. How do we measure the performance of the model? First, a definition:

Definition 5.4 (Ideal Test Error). The test error, written as $\overline{\operatorname{err}(\mathbf{w}) \text {, is }}$

$$
\mathbb{E}\left(\mathbb{1}\left[\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}\right) \neq y\right]\right)=\operatorname{Pr}\left(\left(\mathbf{w}^{\top} \mathbf{x}\right) y \leq 0\right)
$$

where the expectation and probability are taken over distribution $D,(\mathbf{x}, y) \sim D$.
A good model has small ideal test error. An erroneous approach is as follows. Pick $\hat{\mathbf{w}}_{n}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d}} \mathbb{1}\left[\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right) y_{i} \leq 0\right]$. Apply Hoeffding's inequality:

$$
\begin{aligned}
& I_{i}=\mathbb{1}\left[\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right) y \leq 0\right] \\
& \left|\operatorname{err}_{n}(\mathbf{w})-\overline{\operatorname{err}}(\mathbf{w})\right|=\left|\frac{1}{n} \sum_{i=1}^{n} I_{i}-\mathbb{E}(\mathbf{I})\right| \leq \sqrt{\frac{\log (2 / \delta)}{2 n}}
\end{aligned}
$$

with probability $1-\delta$. This argument is false because I_{i} are intentionally correlated to fit the data. They are no longer independent, so the bound cannot be used.

5.4 PAC-Learning: "Probably Approximately Correct"

Key pieces:

- \mathbb{X} input space
- Output space $Y=\{0,1\}$
- Concept class \mathbb{C}, a set of function families taking \mathbb{X} to Y.

Here \mathbb{C} can be viewed as part of $P(\mathbb{X})$, the power set of \mathbb{X}.
Definition 5.5. A learning instance consists of:

- A distribution $D \in \Delta(\mathbb{X})$.
- A target concept $c \in \mathbb{C}$.

Our goal is to have an algorithm \mathbb{A} that maps a collection of learning instances to a hypothesis $h: \mathbb{X} \rightarrow Y$, hopefully with $\mathbf{P r}_{x \sim D}(h(\mathbf{x}) \neq c(\mathbf{x})) \leq \epsilon$.

Definition 5.6 (Risk). Given $D \in \Delta(\mathbb{X})$ and target $c \in \mathbb{C}$, the risk of h, a function from \mathbb{X} to Y, is:

$$
R(h)=\mathbb{E}[\mathbb{1}(h(\mathbf{x}) \neq c(\mathbf{x}))]=\underset{x \sim D}{\operatorname{Pr}}(h(\mathbf{x}) \neq c(\mathbf{x}))
$$

where R depends on D and c. This is also known as the generalization error.
Definition 5.7 (Empirical Risk). The empirical risk on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ is defined as:

$$
\hat{R}(h)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left[h\left(\mathbf{x}_{i}\right) \neq c\left(\mathbf{x}_{i}\right)\right]
$$

