EECS 598-005: Theoretical Foundations of Machine Learning

Fall 2015

Lecture 4: Hoeffding's Inequality and Martingales

Lecturer: Jacob Abernethy
Scribes: Ruihao Zhu, Editors: Yuan Zhuang
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

4.1 Hoeffding's Inequality

In this section we present Hoeffding's Inequality and its proof. To do so, we first go through the Hoeffding's Lemma.

Lemma 4.1 (Hoeffding's Lemma). For a random variable $a \leq X \leq b$ such that $\mathbf{E}[X]=0$, we have

$$
\mathbf{E}[\exp (\lambda X)] \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

Hoeffding's Lemma is related to the concept of subgaussian.
Definition 4.2 (subgaussian). A random variable X is subgaussian with parameter σ^{2} if

$$
\mathbf{E}[\exp (\lambda X)] \leq \exp \left(\frac{\sigma^{2} \lambda^{2}}{2}\right)
$$

Note 4.3. If a random variable X follows a normal distribution with mean 0 and variance σ^{2}, then

$$
\mathbf{E}[\exp (\lambda X)]=\exp \left(\frac{\sigma^{2} \lambda^{2}}{2}\right)
$$

We are now ready to get into the Hoeffding's Inequality and its proof (Chernoff Technique).
Theorem 4.4 (Hoeffding's Inequality). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that, $a_{i} \leq X_{i} \leq b_{i}$ and $\mathbf{E}\left[X_{i}\right]=0$ for all $i=1,2, \ldots, n$. Then, for all $t>0$

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq t\right] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}\right)
$$

Proof: First note that for all $\lambda>0$, we have

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq t\right]=\operatorname{Pr}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right) \geq \exp (\lambda t)\right]
$$

By Markov's Inequality and the independence of all the $X_{i} \mathrm{~s}$,

$$
\begin{aligned}
\operatorname{Pr}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right) \geq \exp (\lambda t)\right] & \leq \frac{\mathbf{E}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right)\right]}{\exp (\lambda t)} \\
& \leq \exp (-\lambda t) \cdot \mathbf{E}\left[\prod_{i=1}^{n} \exp \left(\lambda X_{i}\right)\right] \\
& =\exp (-\lambda t) \cdot \prod_{i=1}^{n} \mathbf{E}\left[\exp \left(\lambda X_{i}\right)\right] .
\end{aligned}
$$

Applying Hoeffding's Lemma, we have

$$
\begin{aligned}
\exp (-\lambda t) \cdot \prod_{i=1}^{n} \mathbf{E}\left[\exp \left(\lambda X_{i}\right)\right] & \leq \exp (-\lambda t) \cdot \prod_{i=1}^{n}\left(\exp \left(\lambda^{2}\left(a_{i}-b_{i}\right)^{2} / 8\right)\right) \\
& =\exp \left(\frac{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}{8} \lambda^{2}-t \lambda\right)
\end{aligned}
$$

The last term achieves the minimum when $\lambda=4 t /\left(\sum_{i=1}^{n}\left(a_{i}^{2}-b_{i}^{2}\right)\right)$ so we can conclude that

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq t\right] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}\right)
$$

4.2 Martingales

In this section, we introduce the concept of Martingales. Before this, let's first see a motivating example from gambling.

Example Each day a bookie offers a bet: you pay $\$ b$ and you have a 50% chance of receiving $\$ 2 b$ and a 50% chance of losing your money. Let Z_{i} be gambler's net gain on day i and X_{i} can be interpreted as the indicator variable for the outcome of the bet (i.e., the r.v. X takes the values 1 and -1 with equal probability). We analyze the following two strategies:

- Independent betting strategy: always betting $\$ c$, and the gambler's net gain on day n is

$$
Z_{n}=\sum_{i=1}^{n} c X_{i}
$$

- Martingale strategy: On day n, bet δZ_{n-1}, where $\delta \in[0,1]$. The change of wealth on day n can then be expressed recursively as

$$
Z_{n}=Z_{n-1}+\delta Z_{n-1} X_{n-1}
$$

Definition 4.5 (Martingales). A martingale sequence of random variables $Z_{0}, Z_{1}, \ldots, Z_{n}$ satisfies

$$
\mathbf{E}\left[Z_{i+1} \mid Z_{0}, \ldots, Z_{i}\right]=Z_{i}
$$

for all $i=0,1, \ldots, n-1$.
Note 4.6. We call $X_{1}, X_{2}, \ldots, X_{n}$ a martingale difference sequence if $Z_{i}=\sum_{j=1}^{i} X_{j}$ is a martingale sequence of random variables.

One important inequality related to Martingales is Azuma's Inequality, which is similar to Hoeffding's Inequality.

Theorem 4.7 (Azuma's Inequality). Let $Z_{0}, Z_{1}, \ldots, Z_{n}$ be a martingale sequence of random variables such that for all i, there exists a constant c_{i} such that $\left|Z_{i}-Z_{i-1}\right|<c_{i}$, then

$$
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Proof: The proof is modelled on that of Hoeffding's Inequality. First, using Markov's inequality and some algebra we have

$$
\begin{aligned}
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] & =\operatorname{Pr}\left[\exp \left(\lambda\left(Z_{n}-Z_{0}\right)\right) \geq \exp (\lambda t)\right] \\
& \leq \exp (-\lambda t) \cdot \mathbf{E}\left[\exp \left(\lambda\left(Z_{n}-Z_{0}\right)\right)\right] \\
& =\exp (-\lambda t) \cdot \mathbf{E}\left[\exp \left(\lambda \sum_{i=1}^{n}\left(Z_{i}-Z_{i-1}\right)\right)\right] \\
& =\exp (-\lambda t) \cdot \mathbf{E}\left[\prod_{i=1}^{n} \exp \left(\lambda\left(Z_{i}-Z_{i-1}\right)\right)\right]
\end{aligned}
$$

We now we can always include additional conditional expectation so it follows that

$$
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] \leq \exp (-\lambda t) \cdot \mathbf{E}\left[\mathbf{E}\left[\prod_{i=1}^{n} \exp \left(\lambda\left(Z_{i}-Z_{i-1}\right)\right) \mid Z_{0}, Z_{1}, \ldots, Z_{n-1}\right]\right]
$$

Since $\prod_{i=1}^{n} \exp \left(\lambda\left(Z_{i}-Z_{i-1}\right)\right)$ is a constant once we condition on Z_{0}, \cdots, Z_{n-1}, we can take it out of the expectation so

$$
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] \leq \exp (-\lambda t) \cdot \mathbf{E}\left[\left(\prod_{i=1}^{n-1} \exp \left(\lambda\left(Z_{i}-Z_{i-1}\right)\right)\right) \mathbf{E}\left[\exp \left(\lambda\left(Z_{n}-Z_{n-1}\right)\right) \mid Z_{0}, Z_{1}, \ldots, Z_{n-1}\right]\right]
$$

Now, since $\left(Z_{i}\right)$ is a Martingale, we know that $\mathbb{E}\left[Z_{n}-Z_{n-1} \mid Z_{0}, \cdots, Z_{n-1}\right]=0$. Also, $\left|Z_{n}-Z_{n-1}\right| \leq c_{n}$ so using Hoeffding's lemma we have

$$
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] \leq \exp (-\lambda t) \exp \left(\lambda^{2} c_{n}^{2} / 2\right) \cdot \mathbf{E}\left[\left(\prod_{i=1}^{n-1} \exp \left(\lambda\left(Z_{i}-Z_{i-1}\right)\right)\right)\right]
$$

It then follows from induction that

$$
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] \leq \exp \left(\frac{\sum_{i=1}^{n} c_{i}^{2}}{2} \lambda^{2}-t \lambda\right)
$$

Finally, letting $\lambda=\frac{t}{\sum_{i=1}^{n} c_{i}^{2}}$ we get

$$
\operatorname{Pr}\left[Z_{n}-Z_{0} \geq t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

