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3.1 Fenchel duality review

Definition 3.1. Given a convex function f : Rn → R, its Fenchel dual (conjugate) function f∗ : Rn → R is
defined by

f∗(θ) = sup
x∈dom(f)

{xT θ − f(x)}

Fact 3.2. The function f∗(θ) is convex in θ. (Inside the supremum is a linear function in θ, and the
supremum of convex functions is convex).

Fact 3.3 (Fenchel-Young inequality). The inequality f(x) + f∗(θ) ≥ xT θ holds for all x ∈ dom(f) and
θ ∈ dom(f∗).

Proof: For all x ∈ dom(f) and θ ∈ dom(f∗), we have

f(x) + f∗(θ) = f(x) + sup
x′∈dom(f)

{x′T θ − f(x′)}

≥ f(x) + xT θ − f(x) = xT θ �

Examples

• Compute the dual of f(x) = 1
p |x|

p (p > 1).

Let Φ(x) = xθ − 1
p |x|

p so f∗(θ) = supx Φ(x). Setting ∇xΦ(x) = 0, we get θ = |x|p−1 sgn(x)1. Noting

that x and θ must have the same sign, we conclude x = |θ|
1
p−1 · sgn(θ). Therefore,

f∗(θ) = |θ|
1
p−1 · sgn(θ) · θ − 1

p
|θ|

p
p−1

=

(
1− 1

p

)
|θ|

p
p−1

=
1

q
|θ|q,

where 1/p+ 1/q = 1. In this case, Fenchel-Young inequality reduces to Young’s inequality.

• The Fenchel dual of the function f(x) = 1
p‖x‖

p
p is f∗(θ) = 1

q‖θ‖
q
q, where p and q are nonnegative real

numbers satisfying 1/p+ 1/q = 1.

1sgn(x) =


1 if x > 0;

0 if x = 0;

−1 if x < 0.
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3.2 Random variables and deviation bounds

3.2.1 A few concepts about random variables.

• A random variable (r.v.) is a measurable function X : Ω→ R, where Ω is a sample space.

• For any measurable set A ⊆ R, we have P(X ∈ A), the probability that X belongs to A.

• Every random variable X on R has a cumulative distribution function (CDF): F (t) = P(X ≤ t).

• If F is differentiable, we have probability density function (PDF): f(t) = F ′(t).

• Given a PDF f we have P(a ≤ X ≤ b) =
∫ b
a
f(t)dt.

• Two r.v.s X and Y are independent if for all A,B ⊆ R, P(X ∈ A and Y ∈ B) = P(X ∈ A) · P(Y ∈ B)

• X and Y are independent implies E[XY ] = E[X]E[Y ].

• V ar(X) := E[(X − E[X])2].

Fact 3.4. 1. If X, Y are independent, V ar(X + Y ) = V ar(X) + V ar(Y ).

2. V ar(αX) = α2V ar(X).

Therefore if X1, X2, . . . , Xn are independent and identically distributed random variables (i.i.d. r.v.s), we

have V ar( 1
n

∑n
i=1Xi) = V ar(X1)

n .

3.2.2 Deviation bounds

Theorem 3.5 (Markov’s inequality). Lex X be a r.v. taking only non-negative values. Then for any t > 0,

P(X ≥ t) ≤ E[X]

t
.

Proof: Note that X ≥ t1{X≥t} 2. Therefore, E[X] ≥ E[t1{X≥t}] = tP(X ≥ t). �

Theorem 3.6 (Chebyshev’s inequality). Let X be a r.v. with E[X] = µ, V ar(X) = σ2, then

P(|X − µ| ≥ tσ) ≤ 1

t2
.

Proof: Let Y = (X − E[X])2. Using Markov’s inequality,

P(|X − µ| ≥ tσ) = P((X − µ)2 ≥ t2σ2))

= P(Y ≥ t2 E[Y ])

≤ 1

t2
. �

The Chebyshev deviation bound is much too weak for a specfic case, namely sums/averages of independent
random variables. The Central Limit Theorem tells us that the average of n independent r.v.’s, when scaled
appropriately, looks gaussian and hence the tail of the distribution decays very quickly.

2For any set A, 1A(x) =

{
1 if x ∈ A;

0 if x 6∈ A
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Theorem 3.7 (Central Limit Theorem (CLT)). Let X1, . . . , Xn be i.i.d. r.v.s, with E[X1] = µ, V ar(X1) =
σ2. Define X̄n = 1

n

∑n
i=1Xi. Then,

√
n · X̄n − µ

σ

d−→ N(0, 1),

that is,

P
(√

n · X̄n − µ
σ

≤ t
)
→
∫ t

−∞

1√
2π
e−

x2

2 dx

as n→∞.

By applying Chebyshev’s inequality to the random variable
√
n · X̄n−µσ , we have

P
(√

n · X̄n − µ
σ

≥ t
)
≤ 1

t2
.

Chebyshev’s inequality is tight, in the sense that there exist r.v.s for which Chebyshev’s inequality is tight.
However, the decay rate given by Chebyshev’s for sums of i.i.d. r.v.s is slower than we might expect given
the central limit theorem. That is, it is slower than the decay rate for the tail probability of standard normal
distribution. In fact, we can get a nice and simple expression to control the tail probabilities of sums of
independent random variables (under certain restrictions) by using so-called Chernoff Bounds, one of the
most popular of which is due to Hoeffding.

Theorem 3.8 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent r.v.s, taking values in [0, 1].
X̄n = 1

n

∑n
i=1Xi, µ = E(X̄n), then

P(X̄n − µ ≥ t) ≤ exp(−2nt2).

Lemma 3.9 (Hoeffding’s lemma). Assume X takes values in [a, b], E[X] = 0 then, for all λ ∈ R,

E[eλx] ≤ exp

(
λ2(b− a)2

8

)
.

Using Hoeffding’s lemma and Markov’s inequality, we are able to prove Theorem 3.8. We will finish the
proof of this in the next lecture, but here is a sketch.

P(X̄n > t) = P(eλX̄n > eλt)

≤ E[eλX̄n ]

eλt

=
1

eλt
(
E[e

λX1
n ]
)n

= exp

(
λ2

8n
− λt

)
,

where the first inequality follows from Markov’s inequality, the next lines follows from independence and
the final line follows from Hoeffding’s lemma. The right hand side attains its minimum of exp(−2nt2) when
λ = 4nt.


