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Lecture 2: Convex Analysis
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

2.1 A few concepts

For a differentiable function f : X — R, X C R", the gradient of f at a point x € domf is the vector
containing the partial derivatives of the function at that point, namely, V f(x) = (887]01(x)7 cee ;Tf(x)).

For a twice differentiable function f : X — R, X C R", the Hessian of f at a point x € domf is the
matrix containing the second derivatives of the function at that point, namely, V2 f(x) is the matrix with
elements given by

o f
= x),1<i,j<n
4 81'181'] ) - J=
We say that a function f is c¢-Lipschiz with respect to a norm || - || for ¢ € RT if

[f(x) = f(¥)] < cllx —yl,vx,y € dom(f).
Claim 2.1. Let f be a real-valued differentiable function. Then, ||V f(x)|| < ¢ if and only if f is c-Lipschitz.

Proof: the ”=" direction: Assume Vx € dom(f),||Vf(x)| < ¢. Then for x,y € dom(f), there exists
t € [0, 1] such that

[f() = f¥) = [VI(y +tx—y) (x—y)|
By the Schwarz’s inequality, the equation gives the estimate:
1f(x) = fWI < IV +tx—y)ll(x =)l
<c|x=y)ll

the ”<” direction: Assume Vx,y € dom(f), f(x) — f(y) < ¢||lx —y||. Then the directional derivative
of f along u is:

f(x+0u) - f(x)

cl|x + ou — x||

T . .
Vix)'u lim 5 < 5 c|lull
Set u = (vafjgz‘)zgi, then we have ||V f(x)|| <ec. [ ]

2.2 Convexity

Definition 2.2 (convex set). A set U CR"™ is convez if for all x,y € U and all o in the interval [0,1], the
point ax + (1 — a)y also belongs to U.

Definition 2.3 (convex function). Let X be a convex set in R™ and let f : X — R be a function. We say
that f is convex if Vx,y € X,Va € [0,1] : flax+ (1 — a)y) < af(x) + (1 — a)f(y). We say that f is
strictly convez if Vx £y € X,Va € (0,1) : fax+ (1 — a)y) < af(x) + (1 — o) f(y)-
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Here are some alternative characterizations of convexity:

e A function f is convex if and only if it satisfies the Jensen’s inequality everywhere: Vx € dom(f), E(f(x)) >
f(E(x)).

e A differentiable function f is convex if and only if f(x +u) > f(x) + Vf(x)Tu.

e A twice differentiable function f is convex if and only if Vx € dom(f), V2f(z) = 0.

Here are some examples of convex functions:

o £ =[x,

e f(x) = xTMx, when M is positive semidefinite,

o If f(x,y) is convex in x (e.g. f(x,y) = ||x]>—||y||?), then g1 (z) = Ey f(x,y) and g2(z) = sup,, f(x,y)
are convex.

Definition 2.4 (strongly convex). A differentiable function f is c-strongly convex with respect to a norm
I - 1| i for all x,u such that x,x + u € domf, the following inequality holds:

Foe+w) > () + VG Tu+ 3 ul%

Definition 2.5 (strongly smooth). A differentiable function f is c-strongly smooth with respect to a norm
|| - 1| 4f for all x,u such that x,x +u € domf, the following inequality holds:

Fx+0) < £) + V() ut Zlul®

For example, f(x) = %HX||2 is both 1-strongly convex and 1-strongly smooth.

Fact 2.6. When f is twice differentiable, f is c-strongly convex with respect to ||-||2 if and only if V2 f(x) = cI,
and f is c-strongly smooth with respect to || - ||2 if and only if cI = V2 f(z).

Theorem 2.7. To generalize the above notion, a twice-differentiable function f is c-strongly convexr with
respect to a norm || - || if and only if infy.|x=1 x ' V2f(z)x > c.

Similarly, a twice-differentiable function f is c-strongly smooth with respect to a norm || - || if and only if
SUPy: x| =1 x"V2f(z)x <ec.

Proof: Left as exercise. ]

2.3 Bregman divergence

Definition 2.8 (Bregman divergence). The Bregman divergence associated with f is a function Dy :
dom(f) x dom(f) — R defined by D¢(x,y) = f(x) = f(y) = Vf(y)" (x = y).

Here are some examples:

o f(x)=Ix|I* Ds(x,y) =[x - ¥l

e f(p)=> 1 pilogp;, Ds(p,q) =, pilog B: which is the Kullback-Leibler divergence.

Here are some properties of Bregman Divergence:

e If f is convex, Dy(x,y) > 0.

e Vx € dom(f), Ds(x,x) =0.

e In general, Dy (x,y) # Dy(y.x).
Fact 2.9. If f is c-strongly convex, Dy(x,y) > §|x — yl?.
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2.4 convex conjugate

Definition 2.10 (Fenchel conjugate). For a convex function f :R™ — R, its Fenchel conjugate is

f(0) = sup x"0 — f(x).

x€R™
For example, we have
o f(x)=3lx[? f*(0) = 5ll6]>.
e f(x) = ix"Mx and M is positive semidefinite, then f*(x) = 267 M~14.
Fact 2.11 (biconjugate). Under a weak condition®, f = f**.

Fact 2.12. If f is differentiable and strongly convex, ¥x € dom(f),0 € dom(f*)we have V f*(V f(x)) = x
and Vf(Vf*(0)) = 6.

Fact 2.13. If f is strictly convex and differentiable, D(x,y) = D¢ (V f(y), Vf(x)).

1f is closed convex



