EECS 598-005: Theoretical Foundations of Machine Learning
 Fall 2015

 Lecture 2: Convex Analysis
 Scribes: Ning Jiang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

2.1 A few concepts

For a differentiable function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^n$, the gradient of f at a point $\mathbf{x} \in \text{dom} f$ is the vector containing the partial derivatives of the function at that point, namely, $\nabla f(\mathbf{x}) = (\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})).$

For a twice differentiable function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^n$, the Hessian of f at a point $\mathbf{x} \in \text{dom} f$ is the matrix containing the second derivatives of the function at that point, namely, $\nabla^2 f(\mathbf{x})$ is the matrix with elements given by

$$H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}), 1 \le i, j \le n$$

We say that a function f is c-Lipschiz with respect to a norm $\|\cdot\|$ for $c \in \mathbb{R}^+$ if

$$|f(\mathbf{x}) - f(\mathbf{y})| \le c \|\mathbf{x} - \mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \text{dom}(f)$$

Claim 2.1. Let f be a real-valued differentiable function. Then, $\|\nabla f(\mathbf{x})\| \leq c$ if and only if f is c-Lipschitz.

Proof: the " \Rightarrow " direction: Assume $\forall \mathbf{x} \in \text{dom}(f), \|\nabla f(\mathbf{x})\| \leq c$. Then for $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$, there exists $t \in [0, 1]$ such that

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\nabla f(\mathbf{y} + t(\mathbf{x} - \mathbf{y}))^T (\mathbf{x} - \mathbf{y})|$$

By the Schwarz's inequality, the equation gives the estimate:

$$\begin{aligned} |f(\mathbf{x}) - f(\mathbf{y})| &\leq \|\nabla f(\mathbf{y} + t(\mathbf{x} - \mathbf{y}))\| \| (\mathbf{x} - \mathbf{y}) \| \\ &\leq c \| (\mathbf{x} - \mathbf{y}) \| \end{aligned}$$

the " \Leftarrow " direction: Assume $\forall \mathbf{x}, \mathbf{y} \in \text{dom}(f), f(\mathbf{x}) - f(\mathbf{y}) \leq c ||\mathbf{x} - \mathbf{y}||$. Then the directional derivative of f along u is:

$$\nabla f(\mathbf{x})^T \mathbf{u} = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta} \le \lim_{\delta \to 0} \frac{c \|\mathbf{x} + \delta \mathbf{u} - \mathbf{x}\|}{\delta} = c \|\mathbf{u}\|$$

Set $\mathbf{u} = \frac{(\nabla f(\mathbf{x}))^T}{\|\nabla f(\mathbf{x})\|}$, then we have $\|\nabla f(\mathbf{x})\| \le c$.

2.2 Convexity

Definition 2.2 (convex set). A set $U \subseteq \mathbb{R}^n$ is convex if for all $\mathbf{x}, \mathbf{y} \in U$ and all α in the interval [0, 1], the point $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}$ also belongs to U.

Definition 2.3 (convex function). Let X be a convex set in \mathbb{R}^n and let $f : X \to \mathbb{R}$ be a function. We say that f is convex if $\forall \mathbf{x}, \mathbf{y} \in X, \forall \alpha \in [0,1] : f(\alpha \mathbf{x} + (1-\alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})$. We say that f is strictly convex if $\forall \mathbf{x} \neq \mathbf{y} \in X, \forall \alpha \in (0,1] : f(\alpha \mathbf{x} + (1-\alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})$.

Here are some alternative characterizations of convexity:

- A function f is convex if and only if it satisfies the Jensen's inequality everywhere: $\forall \mathbf{x} \in \text{dom}(f), \mathbb{E}(f(\mathbf{x})) \ge f(\mathbb{E}(\mathbf{x})).$
- A differentiable function f is convex if and only if $f(\mathbf{x} + \mathbf{u}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{u}$.
- A twice differentiable function f is convex if and only if $\forall \mathbf{x} \in \text{dom}(f), \nabla^2 f(x) \succeq 0$.

Here are some examples of convex functions:

•
$$f(\mathbf{x}) = \|\mathbf{x}\|^2$$

- $f(\mathbf{x}) = \mathbf{x}^T M \mathbf{x}$, when M is positive semidefinite,
- If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} (e.g. $f(\mathbf{x}, \mathbf{y}) = ||\mathbf{x}||^2 ||\mathbf{y}||^2$), then $g_1(x) = \mathbb{E}_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$ and $g_2(x) = \sup_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$ are convex.

Definition 2.4 (strongly convex). A differentiable function f is c-strongly convex with respect to a norm $\|\cdot\|$ if for all \mathbf{x}, \mathbf{u} such that $\mathbf{x}, \mathbf{x} + \mathbf{u} \in \text{dom} f$, the following inequality holds:

$$f(\mathbf{x} + \mathbf{u}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{u} + \frac{c}{2} \|\mathbf{u}\|^2.$$

Definition 2.5 (strongly smooth). A differentiable function f is c-strongly smooth with respect to a norm $\|\cdot\|$ if for all \mathbf{x}, \mathbf{u} such that $\mathbf{x}, \mathbf{x} + \mathbf{u} \in \text{dom} f$, the following inequality holds:

$$f(\mathbf{x} + \mathbf{u}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{u} + \frac{c}{2} \|\mathbf{u}\|^2.$$

For example, $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$ is both 1-strongly convex and 1-strongly smooth.

Fact 2.6. When f is twice differentiable, f is c-strongly convex with respect to $\|\cdot\|_2$ if and only if $\nabla^2 f(x) \succeq cI$, and f is c-strongly smooth with respect to $\|\cdot\|_2$ if and only if $cI \succeq \nabla^2 f(x)$.

Theorem 2.7. To generalize the above notion, a twice-differentiable function f is c-strongly convex with respect to a norm $\|\cdot\|$ if and only if $\inf_{\mathbf{x}:\|\mathbf{x}\|=1} \mathbf{x}^\top \nabla^2 f(x) \mathbf{x} \ge c$.

Similarly, a twice-differentiable function f is c-strongly smooth with respect to a norm $\|\cdot\|$ if and only if $\sup_{\mathbf{x}:\|\mathbf{x}\|=1} \mathbf{x}^\top \nabla^2 f(x) \mathbf{x} \leq c.$

Proof: Left as exercise.

2.3 Bregman divergence

Definition 2.8 (Bregman divergence). The Bregman divergence associated with f is a function D_f : dom $(f) \times \text{dom}(f) \to \mathbb{R}$ defined by $D_f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) - f(\mathbf{y}) - \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}).$

Here are some examples:

- $f(\mathbf{x}) = \|\mathbf{x}\|^2, D_f(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|^2,$
- $f(\mathbf{p}) = \sum_{i=1}^{n} p_i \log p_i, D_f(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$, which is the Kullback-Leibler divergence.

Here are some properties of Bregman Divergence:

- If f is convex, $D_f(\mathbf{x}, \mathbf{y}) \ge 0$.
- $\forall \mathbf{x} \in \operatorname{dom}(f), D_f(\mathbf{x}, \mathbf{x}) = 0.$
- In general, $D_f(\mathbf{x}, \mathbf{y}) \neq D_f(\mathbf{y}, \mathbf{x})$.

Fact 2.9. If f is c-strongly convex, $D_f(\mathbf{x}, \mathbf{y}) \geq \frac{c}{2} \|\mathbf{x} - \mathbf{y}\|^2$.

2.4 convex conjugate

Definition 2.10 (Fenchel conjugate). For a convex function $f : \mathbb{R}^n \to \mathbb{R}$, its **Fenchel conjugate** is

$$f^*(\theta) = \sup_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T \theta - f(\mathbf{x})$$

For example, we have

- $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2, f^*(\theta) = \frac{1}{2} ||\theta||^2.$
- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{M}\mathbf{x}$ and \mathbf{M} is positive semidefinite, then $f^*(\mathbf{x}) = \frac{1}{2}\theta^T \mathbf{M}^{-1}\theta$.

Fact 2.11 (biconjugate). Under a weak condition¹, $f = f^{**}$.

Fact 2.12. If f is differentiable and strongly convex, $\forall \mathbf{x} \in \text{dom}(f), \theta \in \text{dom}(f^*)$ we have $\nabla f^*(\nabla f(\mathbf{x})) = \mathbf{x}$ and $\nabla f(\nabla f^*(\theta)) = \theta$.

Fact 2.13. If f is strictly convex and differentiable, $D_f(\mathbf{x}, \mathbf{y}) = D_{f^*}(\nabla f(\mathbf{y}), \nabla f(\mathbf{x}))$.

 $^{^{1}}f$ is closed convex