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2.1 A few concepts

For a differentiable function f : X → R, X ⊆ Rn, the gradient of f at a point x ∈ domf is the vector
containing the partial derivatives of the function at that point, namely, ∇f(x) = ( ∂f∂x1

(x), · · · , ∂f∂xn
(x)).

For a twice differentiable function f : X → R, X ⊆ Rn, the Hessian of f at a point x ∈ domf is the
matrix containing the second derivatives of the function at that point, namely, ∇2f(x) is the matrix with
elements given by

Hij =
∂2f

∂xi∂xj
(x), 1 ≤ i, j ≤ n

We say that a function f is c-Lipschiz with respect to a norm ‖ · ‖ for c ∈ R+ if

|f(x)− f(y)| ≤ c‖x− y‖,∀x,y ∈ dom(f).

Claim 2.1. Let f be a real-valued differentiable function. Then, ‖∇f(x)‖ ≤ c if and only if f is c-Lipschitz.

Proof: the ”⇒” direction: Assume ∀x ∈ dom(f), ‖∇f(x)‖ ≤ c. Then for x,y ∈ dom(f), there exists
t ∈ [0, 1] such that

|f(x)− f(y)| = |∇f(y + t(x− y))T (x− y)|

By the Schwarz’s inequality, the equation gives the estimate:

|f(x)− f(y)| ≤ ‖∇f(y + t(x− y))‖‖(x− y)‖
≤ c‖(x− y)‖

the ”⇐” direction: Assume ∀x,y ∈ dom(f), f(x)− f(y) ≤ c‖x− y‖. Then the directional derivative
of f along u is:

∇f(x)Tu = lim
δ→0

f(x + δu)− f(x)

δ
≤ lim
δ→0

c‖x + δu− x‖
δ

= c‖u‖

Set u = (∇f(x))T
‖∇f(x)‖ , then we have ‖∇f(x)‖ ≤ c. �

2.2 Convexity

Definition 2.2 (convex set). A set U ⊆ Rn is convex if for all x,y ∈ U and all α in the interval [0, 1], the
point αx + (1− α)y also belongs to U .

Definition 2.3 (convex function). Let X be a convex set in Rn and let f : X → R be a function. We say
that f is convex if ∀x,y ∈ X,∀α ∈ [0, 1] : f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). We say that f is
strictly convex if ∀x 6= y ∈ X,∀α ∈ (0, 1) : f(αx + (1− α)y) < αf(x) + (1− α)f(y).
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Here are some alternative characterizations of convexity:

• A function f is convex if and only if it satisfies the Jensen’s inequality everywhere: ∀x ∈ dom(f),E(f(x)) ≥
f(E(x)).

• A differentiable function f is convex if and only if f(x + u) ≥ f(x) +∇f(x)Tu.

• A twice differentiable function f is convex if and only if ∀x ∈ dom(f),∇2f(x) � 0.

Here are some examples of convex functions:

• f(x) = ‖x‖2,

• f(x) = xTMx, when M is positive semidefinite,

• If f(x,y) is convex in x (e.g. f(x,y) = ‖x‖2−‖y‖2), then g1(x) = Eyf(x,y) and g2(x) = supy f(x,y)
are convex.

Definition 2.4 (strongly convex). A differentiable function f is c-strongly convex with respect to a norm
‖ · ‖ if for all x,u such that x,x + u ∈ domf , the following inequality holds:

f(x + u) ≥ f(x) +∇f(x)Tu +
c

2
‖u‖2.

Definition 2.5 (strongly smooth). A differentiable function f is c-strongly smooth with respect to a norm
‖ · ‖ if for all x,u such that x,x + u ∈ domf , the following inequality holds:

f(x + u) ≤ f(x) +∇f(x)Tu +
c

2
‖u‖2.

For example, f(x) = 1
2‖x‖

2 is both 1-strongly convex and 1-strongly smooth.

Fact 2.6. When f is twice differentiable, f is c-strongly convex with respect to ‖·‖2 if and only if ∇2f(x) � cI,
and f is c-strongly smooth with respect to ‖ · ‖2 if and only if cI � ∇2f(x).

Theorem 2.7. To generalize the above notion, a twice-differentiable function f is c-strongly convex with
respect to a norm ‖ · ‖ if and only if infx:‖x‖=1 x>∇2f(x)x ≥ c.

Similarly, a twice-differentiable function f is c-strongly smooth with respect to a norm ‖ · ‖ if and only if
supx:‖x‖=1 x>∇2f(x)x ≤ c.

Proof: Left as exercise. �

2.3 Bregman divergence

Definition 2.8 (Bregman divergence). The Bregman divergence associated with f is a function Df :
dom(f)× dom(f)→ R defined by Df (x,y) = f(x)− f(y)−∇f(y)T (x− y).

Here are some examples:

• f(x) = ‖x‖2, Df (x,y) = ‖x− y‖2,

• f(p) =
∑n
i=1 pi log pi, Df (p,q) =

∑n
i=1 pi log pi

qi
, which is the Kullback-Leibler divergence.

Here are some properties of Bregman Divergence:

• If f is convex, Df (x,y) ≥ 0.

• ∀x ∈ dom(f), Df (x,x) = 0.

• In general, Df (x,y) 6= Df (y,x).

Fact 2.9. If f is c-strongly convex, Df (x,y) ≥ c
2‖x− y‖2.
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2.4 convex conjugate

Definition 2.10 (Fenchel conjugate). For a convex function f : Rn → R, its Fenchel conjugate is

f∗(θ) = sup
x∈Rn

xT θ − f(x).

For example, we have

• f(x) = 1
2‖x‖

2, f∗(θ) = 1
2‖θ‖

2.

• f(x) = 1
2xTMx and M is positive semidefinite, then f∗(x) = 1

2θ
TM−1θ.

Fact 2.11 (biconjugate). Under a weak condition1, f = f∗∗.

Fact 2.12. If f is differentiable and strongly convex, ∀x ∈ dom(f), θ ∈ dom(f∗)we have ∇f∗(∇f(x)) = x
and ∇f(∇f∗(θ)) = θ.

Fact 2.13. If f is strictly convex and differentiable, Df (x,y) = Df∗(∇f(y),∇f(x)).

1f is closed convex


