Lecture 2: Convex Analysis

Lecturer: Jacob Abernethy
Scribes: Ning Jiang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

2.1 A few concepts

For a differentiable function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{n}$, the gradient of f at a point $\mathbf{x} \in \operatorname{dom} f$ is the vector containing the partial derivatives of the function at that point, namely, $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_{n}}(\mathbf{x})\right)$.

For a twice differentiable function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{n}$, the Hessian of f at a point $\mathbf{x} \in \operatorname{dom} f$ is the matrix containing the second derivatives of the function at that point, namely, $\nabla^{2} f(\mathbf{x})$ is the matrix with elements given by

$$
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}), 1 \leq i, j \leq n
$$

We say that a function f is c-Lipschiz with respect to a norm $\|\cdot\|$ for $c \in \mathbb{R}^{+}$if

$$
|f(\mathbf{x})-f(\mathbf{y})| \leq c\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)
$$

Claim 2.1. Let f be a real-valued differentiable function. Then, $\|\nabla f(\mathbf{x})\| \leq c$ if and only if f is c-Lipschitz.
Proof: the $" \Rightarrow "$ direction: Assume $\forall \mathbf{x} \in \operatorname{dom}(f),\|\nabla f(\mathbf{x})\| \leq c$. Then for $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$, there exists $t \in[0,1]$ such that

$$
|f(\mathbf{x})-f(\mathbf{y})|=\left|\nabla f(\mathbf{y}+t(\mathbf{x}-\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})\right|
$$

By the Schwarz's inequality, the equation gives the estimate:

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{y})| & \leq\|\nabla f(\mathbf{y}+t(\mathbf{x}-\mathbf{y}))\|\|(\mathbf{x}-\mathbf{y})\| \\
& \leq c\|(\mathbf{x}-\mathbf{y})\|
\end{aligned}
$$

the $" \Leftarrow "$ direction: Assume $\forall \mathbf{x}, \mathbf{y} \in \operatorname{dom}(f), f(\mathbf{x})-f(\mathbf{y}) \leq c\|\mathbf{x}-\mathbf{y}\|$. Then the directional derivative of f along u is:

$$
\nabla f(\mathbf{x})^{T} \mathbf{u}=\lim _{\delta \rightarrow 0} \frac{f(\mathbf{x}+\delta \mathbf{u})-f(\mathbf{x})}{\delta} \leq \lim _{\delta \rightarrow 0} \frac{c\|\mathbf{x}+\delta \mathbf{u}-\mathbf{x}\|}{\delta}=c\|\mathbf{u}\|
$$

Set $\mathbf{u}=\frac{(\nabla f(\mathbf{x}))^{T}}{\|\nabla f(\mathbf{x})\|}$, then we have $\|\nabla f(\mathbf{x})\| \leq c$.

2.2 Convexity

Definition 2.2 (convex set). A set $U \subseteq \mathbb{R}^{n}$ is convex if for all $\mathbf{x}, \mathbf{y} \in U$ and all α in the interval $[0,1]$, the point $\alpha \mathbf{x}+(1-\alpha) \mathbf{y}$ also belongs to U.

Definition 2.3 (convex function). Let X be a convex set in \mathbb{R}^{n} and let $f: X \rightarrow \mathbb{R}$ be a function. We say that f is convex if $\forall \mathbf{x}, \mathbf{y} \in X, \forall \alpha \in[0,1]: f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})$. We say that f is strictly convex if $\forall \mathbf{x} \neq \mathbf{y} \in X, \forall \alpha \in(0,1): f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})<\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})$.

Here are some alternative characterizations of convexity:

- A function f is convex if and only if it satisfies the Jensen's inequality everywhere: $\forall \mathbf{x} \in \operatorname{dom}(f), \mathbb{E}(f(\mathbf{x})) \geq$ $f(\mathbb{E}(\mathbf{x}))$.
- A differentiable function f is convex if and only if $f(\mathbf{x}+\mathbf{u}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T} \mathbf{u}$.
- A twice differentiable function f is convex if and only if $\forall \mathbf{x} \in \operatorname{dom}(f), \nabla^{2} f(x) \succeq 0$.

Here are some examples of convex functions:

- $f(\mathbf{x})=\|\mathbf{x}\|^{2}$,
- $f(\mathbf{x})=\mathbf{x}^{T} M \mathbf{x}$, when M is positive semidefinite,
- If $f(\mathbf{x}, \mathbf{y})$ is convex in $\mathbf{x}\left(\right.$ e.g. $\left.f(\mathbf{x}, \mathbf{y})=\|\mathbf{x}\|^{2}-\|\mathbf{y}\|^{2}\right)$, then $g_{1}(x)=\mathbb{E}_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$ and $g_{2}(x)=\sup _{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$ are convex.

Definition 2.4 (strongly convex). A differentiable function f is c-strongly convex with respect to a norm $\|\cdot\|$ if for all \mathbf{x}, \mathbf{u} such that $\mathbf{x}, \mathbf{x}+\mathbf{u} \in \operatorname{dom} f$, the following inequality holds:

$$
f(\mathbf{x}+\mathbf{u}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T} \mathbf{u}+\frac{c}{2}\|\mathbf{u}\|^{2} .
$$

Definition 2.5 (strongly smooth). A differentiable function f is c-strongly smooth with respect to a norm $\|\cdot\|$ if for all \mathbf{x}, \mathbf{u} such that $\mathbf{x}, \mathbf{x}+\mathbf{u} \in \operatorname{dom} f$, the following inequality holds:

$$
f(\mathbf{x}+\mathbf{u}) \leq f(\mathbf{x})+\nabla f(\mathbf{x})^{T} \mathbf{u}+\frac{c}{2}\|\mathbf{u}\|^{2}
$$

For example, $f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}$ is both 1-strongly convex and 1-strongly smooth.
Fact 2.6. When f is twice differentiable, f is c-strongly convex with respect to $\|\cdot\|_{2}$ if and only if $\nabla^{2} f(x) \succeq c I$, and f is c-strongly smooth with respect to $\|\cdot\|_{2}$ if and only if $c I \succeq \nabla^{2} f(x)$.

Theorem 2.7. To generalize the above notion, a twice-differentiable function f is c-strongly convex with respect to a norm $\|\cdot\|$ if and only if $\inf _{\mathbf{x}:\|\mathbf{x}\|=1} \mathbf{x}^{\top} \nabla^{2} f(x) \mathbf{x} \geq c$.

Similarly, a twice-differentiable function f is c-strongly smooth with respect to a norm $\|\cdot\|$ if and only if $\sup _{\mathbf{x}:\|\mathbf{x}\|=1} \mathbf{x}^{\top} \nabla^{2} f(x) \mathbf{x} \leq c$.
Proof: Left as exercise.

2.3 Bregman divergence

Definition 2.8 (Bregman divergence). The Bregman divergence associated with f is a function D_{f} : $\operatorname{dom}(f) \times \operatorname{dom}(f) \rightarrow \mathbb{R}$ defined by $D_{f}(\mathbf{x}, \mathbf{y})=f(\mathbf{x})-f(\mathbf{y})-\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})$.

Here are some examples:

- $f(\mathbf{x})=\|\mathbf{x}\|^{2}, D_{f}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|^{2}$,
- $f(\mathbf{p})=\sum_{i=1}^{n} p_{i} \log p_{i}, D_{f}(\mathbf{p}, \mathbf{q})=\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}}$, which is the Kullback-Leibler divergence.

Here are some properties of Bregman Divergence:

- If f is convex, $D_{f}(\mathbf{x}, \mathbf{y}) \geq 0$.
- $\forall \mathbf{x} \in \operatorname{dom}(f), D_{f}(\mathbf{x}, \mathbf{x})=0$.
- In general, $D_{f}(\mathbf{x}, \mathbf{y}) \neq D_{f}(\mathbf{y}, \mathbf{x})$.

Fact 2.9. If f is c-strongly convex, $D_{f}(\mathbf{x}, \mathbf{y}) \geq \frac{c}{2}\|\mathbf{x}-\mathbf{y}\|^{2}$.

2.4 convex conjugate

Definition 2.10 (Fenchel conjugate). For a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its Fenchel conjugate is

$$
f^{*}(\theta)=\sup _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{x}^{T} \theta-f(\mathbf{x})
$$

For example, we have

- $f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}, f^{*}(\theta)=\frac{1}{2}\|\theta\|^{2}$.
- $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{M} \mathbf{x}$ and \mathbf{M} is positive semidefinite, then $f^{*}(\mathbf{x})=\frac{1}{2} \theta^{T} \mathbf{M}^{-1} \theta$.

Fact 2.11 (biconjugate). Under a weak condition ${ }^{1}$, $f=f^{* *}$.
Fact 2.12. If f is differentiable and strongly convex, $\forall \mathbf{x} \in \operatorname{dom}(f), \theta \in \operatorname{dom}\left(f^{*}\right)$ we have $\nabla f^{*}(\nabla f(\mathbf{x}))=\mathbf{x}$ and $\nabla f\left(\nabla f^{*}(\theta)\right)=\theta$.

Fact 2.13. If f is strictly convex and differentiable, $D_{f}(\mathbf{x}, \mathbf{y})=D_{f^{*}}(\nabla f(\mathbf{y}), \nabla f(\mathbf{x}))$.

[^0]
[^0]: ${ }^{1} f$ is closed convex

