Lecture 22: Adversarial Multi-Armed Bandits

22.1 The EXP3 Algorithm ${ }^{1}$

EXP3 was invented in 2001 by Auer, Cesa-Bianchi, Freund, and Schapire [ACBFS02] to handle the nonstochastic, adversarial multi-arm bandit problem. The EXP3 algorithm has an expected regret bound of $\sqrt{2 T n \log n}$. In this lecture, we state the algorithm and derive this regret bound.

22.1.1 Algorithm

Let $\underline{\widetilde{L}}^{t}$ be the cumulative losses up to period t. To be precise, define $\underline{\widetilde{L}}^{t}=\sum_{k=1}^{t} \underline{\widetilde{l}}^{t}$, where $\underline{\underline{l}}^{t}$ is defined in the algorithm description below.

```
for \(\mathrm{t}=1,2, \cdots, \mathrm{~T}-1, \mathrm{~T}\) do
    Sample \(I_{t} \sim \underline{p}^{t}\)
    Observe \(l_{I_{t}}^{t}\)
    Set \(\underline{\underline{l}}^{t}=\left\langle 0, \ldots, 0, \frac{l_{I_{t}}^{t}}{p_{I_{t}}^{t}}, 0, \ldots, 0\right\rangle\)
    Set \(\widetilde{\widetilde{L}}^{t}=\underline{\widetilde{L}}^{t-1}+\underline{\breve{l}}^{t}\)
    for \(\mathrm{i}=1,2, \cdots, \mathrm{n}-1, \mathrm{n}\) do
        Set \(p_{i}^{t+1}=\frac{e^{-\eta \widetilde{L}_{i}^{t}}}{\sum_{j=1}^{n} e^{-\eta \widetilde{L}_{i}^{t}}}\)
    end for
end for
```


22.1.2 EXP3: Expected Regret

There are two facts that enable the following analysis. First, note that $\mathbb{E}_{i \sim p^{t}}\left[\underline{\widetilde{l}^{t}}\right]=\underline{l}^{t}$, so that $\mathbb{E}_{i \sim p^{t}}\left[\widetilde{\underline{L}}^{t}\right]=$ \underline{L}^{t}. Moreover, ${\widetilde{l^{t}}}^{t}$ and p^{t} are uncorrelated.

We analyze the regret of EXP3 by looking at the potential function

$$
\Phi_{t}=-\frac{1}{\eta} \log \left(\sum_{i=1}^{n} e^{-\eta \widetilde{L}_{i}^{t-1}}\right)
$$

and taking the expected increase in potential across iterations.
The increase in potential from iteration t to $t+1$ is

$$
\Phi_{t+1}-\Phi_{t}=-\frac{1}{\eta} \log \left(\frac{\sum_{i=1}^{n} e^{-\eta \widetilde{L}_{i}^{t}}}{\sum_{i=1}^{n} e^{-\eta \widetilde{L}_{i}^{t-1}}}\right)=-\frac{1}{\eta} \log \left(\frac{\sum_{i=1}^{n} e^{-\eta \widetilde{L}_{i}^{t-1}-\eta \tilde{\tau}_{i}^{t}}}{\sum_{i=1}^{n} e^{-\eta \widetilde{L}_{i}^{t-1}}}\right)=-\frac{1}{\eta} \log \left(\mathbb{E}_{i \sim p^{t}}\left[e^{-\eta \tilde{l}_{i}^{t}}\right]\right)
$$

[^0]To proceed, we need the following fact:
Lemma 22.1. For all $x \geq 0$,

$$
e^{-x} \leq 1-x+\frac{1}{2} x^{2}
$$

Using the fact, we see that

$$
\begin{aligned}
\Phi_{t+1}-\Phi_{t} & \geq-\frac{1}{\eta} \log \left(\mathbb{E}_{i \sim p^{t}}\left[1-\eta \widetilde{l}_{i}^{t}+\frac{1}{2} \eta^{2}\left(\widetilde{l_{i}^{t}}\right)^{2}\right]\right) \\
& =-\frac{1}{\eta} \log \left(1-\mathbb{E}_{i \sim p^{t}}\left[\widetilde{l}_{i}^{t}+\frac{1}{2} \eta^{2} \widetilde{\left.\left.\left(l_{i}^{t}\right)^{2}\right]\right)}\right.\right. \\
& \left.\geq \frac{1}{\eta} \mathbb{E}_{i \sim p^{t}}\left[\eta \widetilde{l}_{i}^{t}+\frac{1}{2} \eta^{2}\left(\widetilde{l_{i}^{t}}\right)^{2}\right] \quad \quad \quad \quad \text { (because } \log (1-x) \leq-x\right) \\
& =\sum_{i=1}^{n} p_{i}^{t} \widetilde{l_{i}^{t}}-\frac{\eta}{2} \sum_{i=1}^{n} p_{i}^{t}\left(\widetilde{l_{i}^{t}}\right)^{2}
\end{aligned}
$$

Taking expectations on both sides of the above equation, we have:

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{t+1}-\Phi_{t}\right] & \geq \mathbb{E}\left[\sum_{i=1}^{n} p_{i}^{t} \widetilde{l}_{i}^{t}-\frac{\eta}{2} \sum_{i=1}^{n} p_{i}^{t}\left(\widetilde{l}_{i}^{t}\right)^{2}\right] \\
& =\sum_{i=1}^{n} p_{i}^{t} l_{i}^{t}-\frac{\eta}{2} \mathbb{E}\left[p_{I_{t}}^{t}\left(\frac{l_{I_{t}}^{t}}{p_{I_{t}}^{t}}\right)^{2}\right] \\
& =\underline{p}^{t} \cdot \underline{l}^{t}-\frac{\eta}{2} \mathbb{E}\left[\frac{\left(l_{I_{I_{2}}}^{t}\right)^{2}}{p_{I_{t}}^{t}}\right] \\
& =\underline{p}^{t} \cdot \underline{l}^{t}-\frac{\eta}{2} \sum_{i=1}^{n}\left(l_{i}^{t}\right)^{2} \\
& \geq \underline{p}^{t} \cdot \underline{l}^{t}-\frac{\eta n}{2}
\end{aligned}
$$

Now, we sum the differences in potential to get

$$
\mathbb{E}\left[\Phi_{T+1}-\Phi_{1}\right]=\mathbb{E}\left[\sum_{t=1}^{T}\left(\Phi_{t+1}-\Phi_{t}\right)\right] \geq \sum_{t=1}^{T} \underline{p}^{t} \cdot \underline{l}^{t}-\frac{T \eta n}{2}
$$

Moreover,

$$
\mathbb{E}\left[\Phi_{T+1}-\Phi_{1}\right] \leq \mathbb{E}\left[\widetilde{L}_{i^{*}}^{T}-\left(-\frac{1}{\eta} \log n\right)\right]=L_{i^{*}}^{T}+\frac{1}{\eta} \log n
$$

Combining the two inequalities, we get

$$
\begin{equation*}
\mathbb{E} \operatorname{Regret}_{T}(E X P 3)=\sum_{t=1}^{T} \underline{p}^{t} \cdot \underline{l}^{t}-L_{i^{*}}^{T} \leq \frac{1}{\eta} \log n+\frac{T \eta n}{2} \tag{*}
\end{equation*}
$$

Theorem 22.2.

$$
\mathbb{E} \text { Regret }_{T}(E X P 3) \leq \sqrt{2 T n \log n}
$$

Proof: Choose $\eta=\sqrt{\frac{2 \log n}{T n}}$ in $(*)$.

22.2 Progress after EXP3

22.2.1 Bubeck et al: EXP2 With John's Exploration [BCBK12]

In the title, 'John's Exploration' refers to the 'John Ellipsoid': Given a set of points, we may define their convex hull K. The ellipsoid of maximal volume contained inside K is the John Ellipsoid. John's Theorem characterizes when this ellipsoid is the unit ball in \mathbb{R}^{n}.

Given a learning rate η, mixing coefficient γ, and action set \mathcal{A} with distribution μ, we may define the following algorithm.

Let $n=|\mathcal{A}|$ and X^{+}denote the pseudoinverse of a matrix X.

$$
\text { Set } q_{1}=\left(\frac{1}{n}, \cdots, \frac{1}{n}\right) \in \mathbb{R}^{n}
$$

for $\mathrm{t}=1,2, \cdots, \mathrm{~T}-1$, T do
Let $p_{t}=(1-\gamma) q_{t}+\gamma \mu$
Choose an action $a_{t} \sim p_{t}$
Let P_{t} be the covariance matrix $\mathbb{E}_{a \sim p_{t}}\left[a a^{T}\right]$ and compute P_{T}^{+}
Estimate the loss $\widetilde{l}_{t}=P_{t}^{+}\left(a_{t} a_{t}^{T}\right) l_{t}$
Update $q_{t+1}(a)=\frac{\exp \left(-\eta\left\langle a, \widetilde{l}_{t}\right\rangle\right) q_{t}(a)}{\sum_{b \in \mathcal{A}} \exp \left(-\eta\left\langle b, \tilde{l}_{t}\right\rangle\right) q_{t}(b)}$

end for

When μ, γ, and η are chosen based on the geometry of \mathcal{A}, a regret bound of $O(\sqrt{n T})$ is obtained.

22.2.2 Abernethy et al: GBPA [ALT15]

Consider the following framework: The Gradient-Based Prediction Algorithm (GBPA) for Multi-Armed Bandits:

Given a differentiable convex function Φ such that $\nabla \Phi \in \Delta^{N}$ with $\nabla_{i} \Phi>0$ for all i,
Initialize $\hat{G}_{0}=0$
for $\mathrm{t}=1,2, \cdots, \mathrm{~T}-1, \mathrm{~T}$ do
Nature (The Adversary) chooses a loss vector $g_{t} \in[-1,0]^{N}$
The Learner chooses i_{t} according to the distribution $p\left(\hat{G}_{t-1}=\nabla \Phi_{t}\left(\hat{G}_{t-1}\right)\right.$
The Learner incurs loss $g_{t, i_{t}}$
The Learner predicts $\hat{g}_{t}=\frac{g_{t, i_{t}}}{p_{i_{t}}\left(\hat{G}_{t-1}\right)} \mathbf{e}_{i_{t}}$
$\hat{G}_{t}=\hat{G}_{t-1}+\hat{g}_{t}$

end for

Note that GBPA includes FTRL and FTPL as special cases.
Recall that the negative Shannon Entropy is defined as $H(p)=\sum_{i} p_{i} \log p_{i}$, and has Fenchel Conjugate $H^{*}(G)=\frac{1}{\eta} \log \left(\sum_{i} e^{\eta G_{i}}\right)$. With these definitions, EXP3 is merely GBPA with Φ chosen as the Fenchel Conjugate of the Shannon Entropy with update rule $p_{t}=\nabla H^{*}(G)$.

Now, define the Tsallis entropy:

$$
S_{\alpha}(p)=\frac{1}{1-\alpha}\left(1-\sum_{i=1}^{N} p_{i}^{\alpha}\right) \quad \forall \alpha \in(0,1)
$$

Note that the Shannon Entropy is recovered as the limit of the Tsallis entropy as $\alpha \rightarrow 1$. If we replace the Shannon Entropy with the Tsallis in GBPA, we have a regret bound

$$
\mathbb{E} \text { Regret } \leq \eta \frac{N^{1-\alpha}-1}{1-\alpha}+\frac{N^{\alpha} T}{2 \eta \alpha}
$$

Choosing $\alpha=\frac{1}{2}$ yields a bound of $O(\sqrt{N T})$.

22.2.3 Shamir: Information-Theoretic Lower Bounds [Sha14]

Shamir analyzed the limitations of online algorithms for statistical learning and estimation. In particular, he analyzed things like memory-sample complexity trade-offs, communication-sample complexity trade-offs, and various information-theoretic characterizations of online learning. In particular, he gives a lower bound on the regret of a partial information set-up in an online learning algorithm. In particular, for n-dimensional loss vectors $\ell_{t} \in[0,1]^{n}$ at every iteration, assume that only $b<n$ bits are available. Then, there exists some constant c such that the regret has lower bound

$$
\min _{i^{*}} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(i_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(i_{t}^{*}\right)\right] \geq c \min \left\{T, \sqrt{\frac{n}{b} T}\right\}
$$

22.2.4 Neu: High Probability Regret Bounds [Neu15]

Neu gives regret bounds for general bandit problems that hold with high probability, i.e., with probability $1-\delta$ for some small δ. In particular, one application given is a modification of EXP3. Define some parameter γ and modify EXP3 as follows: set

$$
\underline{\underline{l}}^{t}=\left\langle 0, \ldots, 0, \frac{l_{I_{t}}^{t}}{\gamma+p_{I_{t}}^{t}}, 0, \ldots, 0\right\rangle
$$

This modification leads to a regret bound of $O\left(\sqrt{N T \log \frac{N}{\delta}}\right)$ with probability $1-\delta$.

References

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48-77, 2002.
[ALT15] Jacob D Abernethy, Chansoo Lee, and Ambuj Tewari. Fighting bandits with a new kind of smoothness. In Advances in Neural Information Processing Systems, pages 2188-2196, 2015.
[BCBK12] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online linear optimization with bandit feedback. arXiv preprint arXiv:1202.3079, 2012.
[Neu15] Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits. In Advances in Neural Information Processing Systems, pages 3150-3158, 2015.
[Sha14] Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning and estimation. In Advances in Neural Information Processing Systems, pages 163-171, 2014.

[^0]: ${ }^{1}$ Credits: The following section is taken in part from Lecture 20 of EECS 598 in 2013 (Prediction and Learning: It's Only a Game): these notes were scribed by Zhihao Chen. The handwritten notes of Anthony Della Pella and Vikas Dhiman were instrumental in the creation of this document.

