EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015

Lecture 1: Course Overview and Linear Algebra Review
Lecturer: Jacob Abernethy Scribes: Chansoo Lee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Important Information

e Homework must be typeset in ETEX.

e No class on October 22nd (Thursday after Fall break) and November 24th (Tuesday before Thanks-
giving).

e Mathematical maturity is required.

e Familiarity with at least two of the following topics is recommended: convex analysis, convex opti-
mization, advanced statistics, probability theory, and machine learning.

1.2 Course overview
e Basics
— Linear algebra

— Convex analysis

— Probability and statistics

Batch Learning
— PAC learning

— Generalization error bounds
— Rademacher complexity

— VC Dimension

— Uniform deviation bounds

— Margin bounds

e Online Learning

Prediction with experts advice

Exponential Weights algorithm
— Online convex optimization (OCO)
— Applications in finance: Online portfolio section, option pricing, and gambling

— Applications in differential privacy
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1.3 Linear Algebra

We will use boldfaced lowercase letters to denote n-dimensional vectors, e.g. x € R™. The zero vector is
denoted 0. The i-th coordinate of a vector x is denoted z;. We use capital letters to denote matrices, e.g.
M 6 Rnxm.

Definition 1.1 (Norm) A function ||-| : R™ — [0, 00) is called norm, if it satisfies the following properties:
1. ||x|| =0 if and only if x =0
2. Jax|| = |aflIx|
3 I+l < [kl +[lyll

Definition 1.2 (PSD/PD) A square matriz M € R™*"™ is Positive Semi Definite (PSD), denoted M * 0,
if x"Mx > 0 for all x € R". A square matriv M € R™ "™ is Positive Definite (PD), denoted M = 0, if
x"Mx >0 for allx € R", x # 0.

Examples
e 2-norm: [x|l2 = /Y i, 27
e l-norm: x|y = >0 |z
e oo-norm: ||x|leo = maxi; |a;|
e p-norm: x|, = (3", |$z|p)%

e M-norm, for M = 0: vVxTMx

Definition 1.3 (Dual norm) Given any norm || - ||, its dual norm || - ||« is defined as
][« = sup y'x.
yillyll<1
Examples

e The dual of 2-norm is itself:

ST
sup vz = ——z=|zs.
villvf|2<1 lI2ll2

e The dual of p-norm is ¢g-norm, where % + % = 1. This includes the p =1, ¢ = oo pair.
e The dual of M-norm is M ~!-norm.
I X

Lemma 1.4 (Young’s inequality) For all a,b >0, ab < “ + —
p q

Proof: By Jensen’s inequality,

1 1 1 1
logab =loga + logh = — loga®” + —log b? < log <a” + bq>
p q p q

Theorem 1.5 (Hélder’s inequality) For any x,y € R", 2Ty < ||z||,|lyll, where % + % =1
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Proof: By Young’s Inequality,

|1'zyz . 1 |x1|p 1 |yz|q 1 1
- + = =-+=-=1
IXIIpII.vIIq Z | Z b i P q

Xlplylls = & plxle  qlixl
|
Corollary 1.6 (Cauchy-Schwarz Inequality) For any x,y € R, 2Ty < ||z[]2]|y]|2-
Proof: It follows from Theorem 1.5. Alternatively, we can prove it by observing
0 < [I(llxlly = lly =)
< 2[|x|*ly 1> = 2l [y ="y
|

Theorem 1.7 (Generalized Hélder’s inequality) For any x,y € R, x'y < |x|||lyll« for any norm
|- 1|. Theorem 1.5 follows as a corollary.

Proof: Using the fact that ”H%\IH =1

.
X

x'y = x| () y | <Ix|[{ suwp z"y|=x|lyll-
[[x]| 2|z <1



