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Lecture 1: Course Overview and Linear Algebra Review
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Important Information

• Homework must be typeset in LATEX.

• No class on October 22nd (Thursday after Fall break) and November 24th (Tuesday before Thanks-
giving).

• Mathematical maturity is required.

• Familiarity with at least two of the following topics is recommended: convex analysis, convex opti-
mization, advanced statistics, probability theory, and machine learning.

1.2 Course overview

• Basics

– Linear algebra

– Convex analysis

– Probability and statistics

• Batch Learning

– PAC learning

– Generalization error bounds

– Rademacher complexity

– VC Dimension

– Uniform deviation bounds

– Margin bounds

• Online Learning

– Prediction with experts advice

– Exponential Weights algorithm

– Online convex optimization (OCO)

– Applications in finance: Online portfolio section, option pricing, and gambling

– Applications in differential privacy
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1.3 Linear Algebra

We will use boldfaced lowercase letters to denote n-dimensional vectors, e.g. x ∈ Rn. The zero vector is
denoted 0. The i-th coordinate of a vector x is denoted xi. We use capital letters to denote matrices, e.g.
M ∈ Rn×m.

Definition 1.1 (Norm) A function ‖·‖ : Rn → [0,∞) is called norm, if it satisfies the following properties:

1. ‖x‖ = 0 if and only if x = 0

2. ‖αx‖ = |α|‖x‖

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖

Definition 1.2 (PSD/PD) A square matrix M ∈ Rn×n is Positive Semi Definite (PSD), denoted M � 0,
if x>Mx ≥ 0 for all x ∈ Rn. A square matrix M ∈ Rn×n is Positive Definite (PD), denoted M � 0, if
x>Mx > 0 for all x ∈ Rn, x 6= 0.

Examples

• 2-norm: ‖x‖2 =
√∑n

i=1 x
2
i

• 1-norm: ‖x‖1 =
∑n

i=1 |xi|

• ∞-norm: ‖x‖∞ = maxn
i=1 |xi|

• p-norm: ‖x‖p = (
∑n

i=1 |xi|p)
1
p

• M -norm, for M � 0:
√

x>Mx

Definition 1.3 (Dual norm) Given any norm ‖ · ‖, its dual norm ‖ · ‖∗ is defined as

‖x‖∗ = sup
y:‖y‖≤1

y>x.

Examples

• The dual of 2-norm is itself:

sup
v:‖v‖2≤1

v>z =
z>

‖z‖2
z = ‖z‖2.

• The dual of p-norm is q-norm, where 1
p + 1

q = 1. This includes the p = 1, q =∞ pair.

• The dual of M -norm is M−1-norm.

Lemma 1.4 (Young’s inequality) For all a, b ≥ 0, ab ≤ ap

p
+
bq

q

Proof: By Jensen’s inequality,

log ab = log a+ log b =
1

p
log ap +

1

q
log bq ≤ log

(
1

p
ap +

1

q
bq
)

Theorem 1.5 (Hölder’s inequality) For any x,y ∈ Rn, x>y ≤ ‖x‖p‖y‖q where 1
p + 1

q = 1
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Proof: By Young’s Inequality,

x>y

‖x‖p‖y‖q
≤

n∑
i=1

|xiyi|
‖x‖p‖y‖q

≤
n∑

i=1

1

p

|xi|p

‖x‖pp
+

1

q

|yi|q

‖x‖qq
=

1

p
+

1

q
= 1.

Corollary 1.6 (Cauchy-Schwarz Inequality) For any x,y ∈ Rn, x>y ≤ ‖x‖2‖y‖2.

Proof: It follows from Theorem 1.5. Alternatively, we can prove it by observing

0 ≤ ‖(‖x‖y − ‖y‖x)‖2

≤ 2‖x‖2‖y‖2 − 2‖x‖‖y‖x>y.

Theorem 1.7 (Generalized Hölder’s inequality) For any x,y ∈ Rn, x>y ≤ ‖x‖‖y‖? for any norm
‖ · ‖. Theorem 1.5 follows as a corollary.

Proof: Using the fact that ‖ x
‖x‖‖ = 1,

x>y = ‖x‖

((
x

‖x‖

)>
y

)
≤ ‖x‖

(
sup

z,‖z‖≤1
z>y

)
= ‖x‖‖y‖∗


