EECS 598-005: Theoretical Foundations of Machine Learning
 Fall 2015

 Lecture 1: Course Overview and Linear Algebra Review

 Lecture 1: Course Overview and Linear Algebra Review
 Lecturer: Jacob Abernethy Scribes: Chansoo Lee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Important Information

- Homework must be typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$.
- No class on October 22nd (Thursday after Fall break) and November 24th (Tuesday before Thanksgiving).
- Mathematical maturity is required.
- Familiarity with at least two of the following topics is recommended: convex analysis, convex optimization, advanced statistics, probability theory, and machine learning.

1.2 Course overview

- Basics
- Linear algebra
- Convex analysis
- Probability and statistics
- Batch Learning
- PAC learning
- Generalization error bounds
- Rademacher complexity
- VC Dimension
- Uniform deviation bounds
- Margin bounds
- Online Learning
- Prediction with experts advice
- Exponential Weights algorithm
- Online convex optimization (OCO)
- Applications in finance: Online portfolio section, option pricing, and gambling
- Applications in differential privacy

1.3 Linear Algebra

We will use boldfaced lowercase letters to denote n-dimensional vectors, e.g. $\mathbf{x} \in \mathbb{R}^{n}$. The zero vector is denoted $\mathbf{0}$. The i-th coordinate of a vector \mathbf{x} is denoted x_{i}. We use capital letters to denote matrices, e.g. $M \in \mathbb{R}^{n \times m}$.

Definition 1.1 (Norm) A function $\|\cdot\|: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called norm, if it satisfies the following properties:

1. $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
2. $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$

Definition 1.2 (PSD/PD) A square matrix $M \in \mathbb{R}^{n \times n}$ is Positive Semi Definite (PSD), denoted $M \succeq 0$, if $\mathbf{x}^{\top} M \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$. A square matrix $M \in \mathbb{R}^{n \times n}$ is Positive Definite ($P D$), denoted $M \succ 0$, if $\mathbf{x}^{\top} M \mathbf{x}>0$ for all $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$.

Examples

- 2-norm: $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- 1-norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- ∞-norm: $\|\mathbf{x}\|_{\infty}=\max _{i=1}^{n}\left|x_{i}\right|$
- p-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
- M-norm, for $M \succ 0: \sqrt{\mathbf{x}^{\top} M \mathbf{x}}$

Definition 1.3 (Dual norm) Given any norm $\|\cdot\|$, its dual norm $\|\cdot\|_{*}$ is defined as

$$
\|\mathbf{x}\|_{*}=\sup _{\mathbf{y}:\|\mathbf{y}\| \leq 1} \mathbf{y}^{\top} \mathbf{x}
$$

Examples

- The dual of 2-norm is itself:

$$
\sup _{v:\|v\|_{2} \leq 1} v^{\top} z=\frac{z^{\top}}{\|z\|_{2}} z=\|z\|_{2}
$$

- The dual of p-norm is q-norm, where $\frac{1}{p}+\frac{1}{q}=1$. This includes the $p=1, q=\infty$ pair.
- The dual of M-norm is M^{-1}-norm.

Lemma 1.4 (Young's inequality) For all $a, b \geq 0$, $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$
Proof: By Jensen's inequality,

$$
\log a b=\log a+\log b=\frac{1}{p} \log a^{p}+\frac{1}{q} \log b^{q} \leq \log \left(\frac{1}{p} a^{p}+\frac{1}{q} b^{q}\right)
$$

Theorem 1.5 (Hölder's inequality) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, x^{\top} y \leq\|x\|_{p}\|y\|_{q}$ where $\frac{1}{p}+\frac{1}{q}=1$

Proof: By Young's Inequality,

$$
\frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}} \leq \sum_{i=1}^{n} \frac{\left|x_{i} y_{i}\right|}{\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}} \leq \sum_{i=1}^{n} \frac{1}{p} \frac{\left|x_{i}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}+\frac{1}{q} \frac{\left|y_{i}\right|^{q}}{\|\mathbf{x}\|_{q}^{q}}=\frac{1}{p}+\frac{1}{q}=1
$$

Corollary 1.6 (Cauchy-Schwarz Inequality) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, x^{\top} y \leq\|x\|_{2}\|y\|_{2}$.
Proof: It follows from Theorem 1.5. Alternatively, we can prove it by observing

$$
\begin{aligned}
0 & \leq\|(\|\mathbf{x}\| y-\|\mathbf{y}\| \mathbf{x})\|^{2} \\
& \leq 2\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2}-2\|\mathbf{x}\|\|\mathbf{y}\| \mathbf{x}^{\top} \mathbf{y} .
\end{aligned}
$$

Theorem 1.7 (Generalized Hölder's inequality) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{y} \leq\|\mathbf{x}\|\|\mathbf{y}\|_{\star}$ for any norm $\|\cdot\|$. Theorem 1.5 follows as a corollary.

Proof: Using the fact that $\left\|\frac{\mathbf{x}}{\|\mathbf{x}\|}\right\|=1$,

$$
\mathbf{x}^{\top} \mathbf{y}=\|\mathbf{x}\|\left(\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)^{\top} \mathbf{y}\right) \leq\|\mathbf{x}\|\left(\sup _{\mathbf{z},\|\mathbf{z}\| \leq 1} \mathbf{z}^{\top} \mathbf{y}\right)=\|\mathbf{x}\|\|\mathbf{y}\|_{*}
$$

