EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015

Lecture 1: Course Overview and Linear Algebra Review

Lecturer: Jacob Abernethy

Scribes: Chansoo Lee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Important Information

- Homework must be typeset in IAT_EX .
- No class on October 22nd (Thursday after Fall break) and November 24th (Tuesday before Thanksgiving).
- Mathematical maturity is required.
- Familiarity with at least two of the following topics is recommended: convex analysis, convex optimization, advanced statistics, probability theory, and machine learning.

1.2 Course overview

- Basics
 - Linear algebra
 - Convex analysis
 - Probability and statistics
- Batch Learning
 - PAC learning
 - Generalization error bounds
 - Rademacher complexity
 - VC Dimension
 - Uniform deviation bounds
 - Margin bounds
- Online Learning
 - Prediction with experts advice
 - Exponential Weights algorithm
 - Online convex optimization (OCO)
 - Applications in finance: Online portfolio section, option pricing, and gambling
 - Applications in differential privacy

1.3 Linear Algebra

We will use boldfaced lowercase letters to denote *n*-dimensional vectors, e.g. $\mathbf{x} \in \mathbb{R}^n$. The zero vector is denoted **0**. The *i*-th coordinate of a vector \mathbf{x} is denoted x_i . We use capital letters to denote matrices, e.g. $M \in \mathbb{R}^{n \times m}$.

Definition 1.1 (Norm) A function $\|\cdot\| : \mathbb{R}^n \to [0,\infty)$ is called norm, if it satisfies the following properties:

- 1. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

Definition 1.2 (PSD/PD) A square matrix $M \in \mathbb{R}^{n \times n}$ is Positive Semi Definite (PSD), denoted $M \succeq 0$, if $\mathbf{x}^{\top} M \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$. A square matrix $M \in \mathbb{R}^{n \times n}$ is Positive Definite (PD), denoted $M \succ 0$, if $\mathbf{x}^{\top} M \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$.

Examples

- 2-norm: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm: $\|\mathbf{x}\|_{\infty} = \max_{i=1}^{n} |x_i|$
- *p*-norm: $\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$
- *M*-norm, for $M \succ 0$: $\sqrt{\mathbf{x}^{\top} M \mathbf{x}}$

Definition 1.3 (Dual norm) Given any norm $\|\cdot\|$, its dual norm $\|\cdot\|_*$ is defined as

$$\|\mathbf{x}\|_* = \sup_{\mathbf{y}:\|\mathbf{y}\| \le 1} \mathbf{y}^\top \mathbf{x}.$$

Examples

• The dual of 2-norm is itself:

$$\sup_{v: \|v\|_2 \le 1} v^\top z = \frac{z^\top}{\|z\|_2} z = \|z\|_2.$$

- The dual of *p*-norm is *q*-norm, where $\frac{1}{p} + \frac{1}{q} = 1$. This includes the $p = 1, q = \infty$ pair.
- The dual of *M*-norm is M^{-1} -norm.

Lemma 1.4 (Young's inequality) For all $a, b \ge 0$, $ab \le \frac{a^p}{p} + \frac{b^q}{q}$

Proof: By Jensen's inequality,

$$\log ab = \log a + \log b = \frac{1}{p}\log a^p + \frac{1}{q}\log b^q \le \log\left(\frac{1}{p}a^p + \frac{1}{q}b^q\right)$$

Theorem 1.5 (Hölder's inequality) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $x^\top y \leq \|x\|_p \|y\|_q$ where $\frac{1}{p} + \frac{1}{q} = 1$

Proof: By Young's Inequality,

$$\frac{\mathbf{x}^{\top}\mathbf{y}}{\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}} \le \sum_{i=1}^{n} \frac{|x_{i}y_{i}|}{\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}} \le \sum_{i=1}^{n} \frac{1}{p} \frac{|x_{i}|^{p}}{\|\mathbf{x}\|_{p}^{p}} + \frac{1}{q} \frac{|y_{i}|^{q}}{\|\mathbf{x}\|_{q}^{q}} = \frac{1}{p} + \frac{1}{q} = 1.$$

Corollary 1.6 (Cauchy-Schwarz Inequality) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $x^{\top}y \leq ||x||_2 ||y||_2$.

Proof: It follows from Theorem 1.5. Alternatively, we can prove it by observing

$$0 \le \|(\|\mathbf{x}\|y - \|\mathbf{y}\|\mathbf{x})\|^2$$

$$\le 2\|\mathbf{x}\|^2\|\mathbf{y}\|^2 - 2\|\mathbf{x}\|\|\mathbf{y}\|\mathbf{x}^\top\mathbf{y}.$$

Theorem 1.7 (Generalized Hölder's inequality) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{x}^\top \mathbf{y} \leq \|\mathbf{x}\| \|\mathbf{y}\|_{\star}$ for any norm $\|\cdot\|$. Theorem 1.5 follows as a corollary.

Proof: Using the fact that $\|\frac{\mathbf{x}}{\|\mathbf{x}\|}\| = 1$,

$$\mathbf{x}^{\top}\mathbf{y} = \|\mathbf{x}\| \left(\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)^{\top}\mathbf{y} \right) \le \|\mathbf{x}\| \left(\sup_{\mathbf{z}, \|\mathbf{z}\| \le 1} \mathbf{z}^{\top}\mathbf{y} \right) = \|\mathbf{x}\| \|\mathbf{y}\|_{*}$$

1		2
T	-	J