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Notations Notations in this lecture are pretty convoluted. In general, quantities with ·̂ indicates the
empirical version of the corresponding quantity without ·̂. Given a loss function `, R` denote the expected
loss under a certain distribution. For example, for 0-1 loss z, Rz is the expected 0-1 loss while R̂z is the
empirical loss with n i.i.d. samples. Sometimes the number of samples n will be implicit and may appear in
the formula without mentioning. d stands for the VC-dimension of an implicit function class F .

In the latter part of the lecture we are going to use R to denote empirical Rademacher complexity, be
careful not to confuse this with the expected loss R.

19.1 Overview and Definitions

19.1.1 Intuition of Fast Rate

In PAC learning setting where there exists a perfect classifier f∗, We know that with probability at least
1− δ,

Rz(fERM)− R̂z(fERM) = O

(
d ln(n/δ)

n

)
= Õ

(
1

n

)
, (19.1)

where fERM = argminf∈F R̂z(f) is a function minimizing the empirical risk, or equivalently, consistent on
the given samples.

On the other hand, however, the upper bound of the difference might become much looser when no
perfect classifier exists. Recall that in Rademacher analysis, the result we get is with probability at least
1− δ,

sup
f∈F
|Rz(f)− R̂z(f)| = O

(√
d ln(n/δ)

n

)
= Õ

(
1√
n

)
. (19.2)

There are two main differences of these two bounds: Firstly, Eqn. (19.1) only holds for the empirical risk
minimizers, but Eqn. (19.2) is a bound for the worst case so it holds for all functions in the class F ; Secondly,
Eqn. (19.1) provides a much faster “convergence” speed when the number of samples increases, thus might be
more feasible for practical use. The phenomenon that for certain learning problems, the difference between
the risk and the empirical risk has a much faster convergence rate than Õ(1/

√
n), is often referred to as “fast

rate”.

19.1.2 What is going on?

To get an intuition of why we can get “fast” rate in the first case, consider the following problem where X
is a random variable in [0, 1]. Then for p := E[X] and p̂ := 1

n

∑n
i=1Xi = Ê[X], we can get two different

deviation bounds for |p − p̂|. First, by Hoeffding’s Inequality, the following holds with probability at least
1− δ:

|p− p̂| ≤
√

2 ln(1/δ)

n
= Õ

(
1√
n

)
.
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Note that this inequality doesn’t depend on the probability p. If we know more about p, then the following
bound by Bernstein might be tighter:

|p− p̂| ≤
√

2p(1− p) ln(n/δ)

n
+

ln(n/δ)

n
.

In particular, when p is sufficiently small (or equivalently, sufficiently large) such that p(1 − p) ≤ 1
n , then

we can get an Õ (1/n) bound. In fact, here’s a somewhat general principle, which holds for almost all cases:
“easy” problems usually have fast rates.

Remark One common proof technique of fast rate is to incorporate the variance term, such as p(1 − p)
term here.

Another approach to look at this problem is to approximate binomial distribution. For a random variable
Y ∈ {0, 1}, we have

Pr
[
Ê[Y ] ≥ ε

]
= Pr[Binomial(n,E[Y ]) ≥ nε]

=
∑
k≥nε

(
n

k

)
(E[Y ])

k
(1− E[Y ])n−k

The rule of thumb to approximate binomial distribution is as follows:

• If nE[Y ] ≤ 1, it can be approximated using Poisson random variable with parameter nE[Y ];

• Otherwise, it can be approximated using Gaussian distribution.

Intuitively, fast rates come when approximation with Poisson random variables is available.

19.1.3 Relative VC bound

A tighter version of VC bound takes in the error rate into consideration, which allows us to get a Bernstein-
like inequality. More specifically, with probability ≥ 1− δ, for all f ∈ F ,

Rz(f)− R̂z(f) = O

(√
R̂z(f)

d ln(n/δ)

n
+
d ln(n/δ)

n

)
.

Remarks

• This equation is asymmetric with respect to Rz(f) and R̂z(f).

• If we know nothing about R̂z(f), then this bound becomes Õ(1/
√
n). However, if R̂z(f) is sufficiently

small, say, if R̂z(f) = 0, then we can directly recover the rate for PAC learning.

• Note that the value R̂z(f) appearing in the right hand side is still a random variable, which means
that sometimes we are not done yet.

We shall not go through the proof in this class, however it is worth mentioning that the main trick applied
in that proof is to control the term

Pr

sup
f∈F

Rz(f)− R̂z(f)√
R̂z(f)

≤ ε


with some fuzz for the corner case R̂z(f) = 0. The corner case is easy to deal with as we can add an
arbitrarily small constant on the denominator to avoid the problem.

In the next class, we are going to prove the following theorem:
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Theorem 19.1. Given

• Linear predictors x 7→ 〈w,x〉 with ‖w‖2 ≤ B for some radius B.

• Univariate convex differentiable loss function ` : R→ R

• Excess risk ε`(w) := R`(w)− inf‖w′‖≤B R`(w
′) where R`(w) := E[`(y〈w,x〉)] satisfies

ε`(w) ≥ λ

2
‖w −w‖22

for some λ > 0, where w ∈ argminw R`(w) is the minimizer and y is what nature reveals.

Then we have with probability at least 1− δ

ε`(w) ≤ 2ε̂`(w) +O

(
`′(B) ln(n/δ)

λn

)
,

where ε̂`(w) := R̂`(w)− inf‖w′‖≤B R̂`(w
′) and `′ is the derivative of `.

Remarks

• One may wonder why is there a coefficient 2 in front of ε̂`(w): In fact this doesn’t matter. The goal
of a learning algorithm is to find w such that ε̂`(w) goes to 0. With this in mind, the bound here is
essentially a fast rate bound.

• One research topic that might be interesting is that it is still not fully understood when fast rates are
possible.

• Recall strong convexity: we call that a function f is λ-strongly convex if for all w,w′ we have

f(w) ≥ f(w′) + 〈∇f(w′),w −w′〉+
λ

2
‖w −w′‖22.

The difference between the property of ε`(·) here and strong convexity is that 1) this only holds for
the single point w while strong convexity is a global property and 2) there is no linear term.

However, it is worth mentioning that the fast rate result here is somehow related to the stochastic
gradient descent (SGD) algorithm. Using SGD on a general convex function will have a convergence
rate about Õ(1/

√
t), while if the convex function is required to be strongly convex then the convergence

rate becomes Õ(1/t).

19.2 Lemmas for the Proof of the Theorem

We will not prove this theorem in this course. We are going to go through some lemmas which are used in
the proof. It is also a good chance to get a review of Rademacher complexity.

We use R(V ) := R̂S(V ) here to denote the empirical Rademacher complexity of a certain function class
V on an implicitly given sample S. Denote n := |S|, then each function is represented by only the n values
with input chosen from S, so we can regard V as a subset of Rn. In fact, we are not going to care about what
the function class is or what the sample is, just think of V as a subset of Rn. Note that, the following lemmas
still hold when we take expectation for each empirical Rademacher complexity term, so they automatically
hold for the case where R stands for the Rademacher complexity.
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19.2.1 Lemmas

Lemma 19.2. Given c ≥ 0. For all V ⊆ Rn and v0 ∈ Rn

R(cV + {v0}) = c ·R(V ).

Lemma 19.3. Given countably many sets (Vj)j≥1 with 0 ∈ Vj for all j,

R

( ⋃
j≥1

Vj

)
≤
∑
j≥1

R(Vj).

Lemma 19.4. Given W := {z 7→ 〈w, z〉, ‖w‖2 ≤ B} and inputs ‖zi‖2 ≤ X with some constant X, we have

R(W ) ≤ BX√
n
.

Lemma 19.5. Given g : R→ R L-Lipschitz, then

R(g ◦ V ) ≤ LR(V ).

19.2.2 Proofs of Lemmas

Proof of Lemma 19.2:

R(cV + {v0}) = E
σ

[
sup
v∈V

c

n

∑
i

σi(v)i +
1

n

∑
i

σi(v0)i

]

= E
σ

[
c

n
sup
v∈V

∑
i

σi(v)i

]
+ E

σ

[
1

n

∑
i

σi(v0)i

]
= cR(V ), (observing that Eσ

[
1
n

∑
i σi(v0)i

]
= 0.)

where (v)i is the i-th coordinate of v.
�

Historical Remark The original definition of Rademacher complexity was R(V ) := Eσ[supv∈V | 1nσi(v)i|].
If we are using this definition of Rademacher complexity, then Lemma 19.2 does not hold anymore.

The big problem of this definition is R({v0}) may not be necessarily equal to 0 in general, so it fails
to capture the “complexity” of a function class in some sense. However, there are still papers using this
definition, so be careful not to refer to results using different definitions for Rademacher complexity.

Proof of Lemma 19.4: Given samples (zi)
n
i=1, set Z =

[
z1 z2 · · · zn

]
∈ Rn×n. Then

nR(W ) = E
σ

[
sup
w∈W

w>Zσ

]
≤ E

σ

[
sup
w∈W

‖w‖2‖Zσ‖2
]

≤ B E
σ

[‖Zσ‖2]

= B E
σ

[√
‖Zσ‖22

]
≤ B

√
E
σ

[‖Zσ‖22],
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where the second line is due to Cauchy-Schwarz, the third line is due to that ‖w‖ ≤ B for all w ∈ W and
the fifth line is due to Jensen’s Inequality. To bound Eσ[‖Zσ‖22], observe that

E
σ

[
‖Zσ‖22

]
= E

σ

∑
i 6=j

σiσj〈zi, zj〉+
∑
i

σ2
i 〈zi, zi〉


=

n∑
i=1

〈zi, zi〉2

≤ nX2.

Plugging this back to the previous inequality leads to the result. �

Remark In general, Hölder’s Inequality tells us

w>Zσ ≤ ‖w‖‖Zσ‖∗

for any norm ‖ · ‖. However, the Jensen Inequality trick cannot apply to general norms, so we may need
another family of tricks when we are not only considering l2-norm. In particular, norms with the form
‖x‖ =

√
x>Mx for some positive definite M is easy to deal with.

Remarks Before mentioning the proof of Lemma 19.5, let’s just talk about some remarks about the proof.

• We are not going to give the whole proof of this lemma. Instead, we are going to show that

E
σ

[
sup
v∈V

1

n

∑
i

g(vi)σi

]
≤ E

σ

sup
v∈V

1

n

σ1Lv1 +
∑
i≥2

σig(vi)

 ,
where we denote v = (v1, v2, · · · , vn). Note that the proof here can be easily turned into an inductive
step in the proof of Lemma 19.5. Also, one may wonder that the left hand side does not look exactly
like R(g ◦ V ), but it can be proved easily that

R(g ◦ V ) = E
σ

[
sup

v′∈g◦V

1

n

∑
i

σiv
′
i

]
= E

σ

[
sup
v∈V

∑
i

1

n
σig(vi)

]
.

• The main idea we are going to use here is symmetrization. We have already seen this technique a
lot of times.

Proof of Lemma 19.5: In the following proof we denote σ−1 the string by truncating the first entry of σ,
v = (v1, . . . , vn) and u = (u1, . . . , un). Then

nR(g ◦ V ) = E
σ

[
sup
v∈V

∑
i

g(vi)σi

]

=
1

2
E
σ−1

sup
v∈V

g(v1) +
∑
i≥2

g(vi)σi

+ sup
u∈V

−g(u1) +
∑
i≥2

g(ui)σi


=

1

2
E
σ−1

 sup
u,v∈V

g(v1)− g(u1) +
∑
i≥2

σig(vi) +
∑
i≥2

σig(ui)


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≤ 1

2
E
σ−1

 sup
u,v∈V

L(v1 − u1) +
∑
i≥2

σig(vi) +
∑
i≥2

σig(ui)


=

1

2
E
σ−1

sup
v∈V

Lv1 +
∑
i≥2

σig(vi)

+ sup
u∈V

−Lu1 +
∑
i≥2

σig(ui)


= E

σ

sup
v∈V

σ1Lv1 +
∑
i≥2

σig(vi)

 .
The second line is just expanding the expectation up to the first term, and the last line is just folding it

back. The only thing worth explaining is the inequality in the fourth line. By Lipschitz condition we have
g(v1) − g(u1) ≤ L|v1 − u1|. The reason that we can replace the absolute value by a pair of parenthesis is
that if v1 < u1, then apparently the whole value is going to increase when we switch v and u. Therefore we
can assume v1 ≥ u1 without loss of generality. �

Remarks

• We haven’t got time to prove Lemma 19.3. Note that the condition 0 ∈ Vj is essential; otherwise for
arbitrary V with finite cardinality we may get

R(V ) ≤
∑
i

R({vi}) = 0,

which is apparently not the case. In fact, if one tries to prove the lemma without 0 ∈ Vj , the approach
could be like

R

(⋃
j

Vj

)
= E

σ

[
sup
j

sup
v∈Vj

1

n

∑
σi(v)i

]
≤
∑
j

E
σ

[
sup
v∈Vj

1

n

∑
σi(v)i

]
=
∑
j

R(Vj).

However, this only makes sense when each single
∑
i
1
nσi(v)i is non-negative. On the other hand, if

we use the original definition of Rademacher complexity where everything is with the absolute value,
then Lemma 19.3 indeed holds without the condition 0 ∈ Vj ,∀j.

• Another way to prove Lemma 19.4 is to use Fenchel duality. Suppose for some convex function F (·) it
holds that F (w) ≤ B for all w ∈W . Then for all λ > 0 we have

w>Zσ ≤ F (w/λ) + F ∗(λZσ).

This can be handy when proving Lemma 19.4. (Exercise: try this).


