### 18.1 Review: On-line Learning with Experts (Actions)

Setting Given $n$ experts (actions), the general on-line setting involves $T$ rounds. For round $t=1 \ldots T$ :

- The algorithm plays with the distribution $\mathbf{p}^{t}=\frac{\boldsymbol{\omega}^{t}}{\left\|\boldsymbol{\omega}^{t}\right\|_{1}} \in \Delta_{n}$.
- The $i$-th expert (action) suffers the loss $\ell_{i}^{t} \in[0,1]$.
- The algorithm suffers the loss $\mathbf{p}^{t} \cdot \ell^{t}$.

Theorem 18.1 (Regret Bound for EWA).

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} \cdot \boldsymbol{\ell}^{t}}_{\mathcal{L}_{M A}^{t+1}} \leq \underbrace{\min _{i} \frac{1}{T} \sum_{t=1}^{T} \ell_{i}^{t}}_{\mathcal{L}_{I X}^{t+1}}+O\left(\sqrt{\frac{\log N}{T}}\right)=\min _{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot \boldsymbol{\ell}^{t}+O\left(\sqrt{\frac{\log N}{T}}\right)
$$

Note The distribution $\mathbf{p}=\mathbf{e}_{i}$ means the algorithm puts all mass on the $i$-th action.

### 18.2 Two Player Game

Definition 18.2 (Two Player Game). A two player game is defined by a pair of matrices $M, N \in[0,1]^{n \times m}$. Definition 18.3 (Pure Strategy). With a pure strategy in a two player game, P1 chooses an action $i \in[n]$, and P2 chooses an action $j \in[m]$. P1 thus earns $M_{i j}$, and P2 earns $N_{i j}$.
Definition 18.4 (Mixed Strategy). With a mixed strategy in a two player game, P1 plays with a distribution $\mathbf{p} \in \Delta_{n}$, and P2 plays with a distribution $\mathbf{q} \in \Delta_{m}$. P1 thus earns $\mathbf{p}^{\top} M \mathbf{q}=\sum_{i, j} p_{i} q_{j} M_{i j}$, and P2 earns $\mathbf{p}^{\top} N \mathbf{q}=\sum_{i, j} p_{i} q_{j} N_{i j}$.
Definition 18.5 (Zero-sum Game). A zero-sum game is a two player game, where the matrices $M, N$ has the relation $M=-N$.

### 18.3 Nash's Theorem

Definition 18.6 (Nash Equilibrium). In a two player game, a Nash Equilibrium(Neq), in which P1 plays with the distribution $\widetilde{\mathbf{p}} \in \Delta_{n}$, and P2 plays with the distribution $\widetilde{\mathbf{q}} \in \Delta_{m}$, satisfies

- for all $\mathbf{p} \in \Delta_{n}, \widetilde{\mathbf{p}}^{\top} M \widetilde{\mathbf{q}} \geq \mathbf{p}^{\top} M \widetilde{\mathbf{q}}$
- for all $\mathbf{q} \in \Delta_{m}, \widetilde{\mathbf{p}}^{\top} N \widetilde{\mathbf{q}} \geq \widetilde{\mathbf{p}}^{\top} N \mathbf{q}$

Theorem 18.7 (Nash's Theorem). Every two player game has a Nash Equilibrium(Neq). (Not all have pure strategy equilibria.)
Lemma 18.8 (Brouwer's Fixed-point Theorem). Let $B \subseteq \mathcal{R}^{d}$ be a compact convex set, and a function $f: B \rightarrow B$ is continuous. Then there exists $x \in B$, such that $x=f(x)$.

## Proof Sketch of Nash's Theorem

1. Let $c_{i}(\mathbf{p}, \mathbf{q})=\max \left(0, \mathbf{e}_{i}^{\top} M \mathbf{q}-\mathbf{p}^{\top} M \mathbf{q}\right)$, and $d_{i}(\mathbf{p}, \mathbf{q})=\max \left(0, \mathbf{q}^{\top} M \mathbf{e}_{j}-\mathbf{p}^{\top} M \mathbf{q}\right)$.
2. Define a map $f:(\mathbf{p}, \mathbf{q}) \rightarrow\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right), p_{i}^{\prime}=\frac{p_{i}+c_{i}(\mathbf{p}, \mathbf{q})}{1+\sum_{i^{\prime} \in[n]} c_{i^{\prime}}(\mathbf{p}, \mathbf{q})}$, and $q_{i}^{\prime}=\frac{q_{i}+d_{i}(\mathbf{p}, \mathbf{q})}{1+\sum_{i^{\prime} \in[m]} d_{i^{\prime}}(\mathbf{p}, \mathbf{q})}$.
3. By Brouwer's fixed-point theorem, there exists a fixed-point $(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}}), f(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}})=(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}})$.
4. Show the fixed-point $(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}})$ is the Nash Equilibrium.

### 18.4 Von Neumann's Minimax Theorem

Theorem 18.9 (Von Neumann's Minimax Theorem).

$$
\min _{\mathbf{p} \in \Delta_{n}} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{\top} M \mathbf{q}=\max _{\mathbf{q} \in \Delta_{m}} \min _{\mathbf{p} \in \Delta_{n}} \mathbf{p}^{\top} M \mathbf{q}
$$

## Proof by Nash's Theorem

- Exercise


## Proof by the Exponential Weighted Average Algorithm

a) The " $\geq$ " direction is straightforward. Let $\mathbf{p}_{1} \in \Delta_{n}, \mathbf{q}_{1} \in \Delta_{m}$ be the choices for $\min _{\mathbf{p} \in \Delta_{n}} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{\top} M \mathbf{q}=$ $\mathbf{p}_{1}^{\top} M \mathbf{q}_{1}$, and $\mathbf{p}_{2} \in \Delta_{n}, \mathbf{q}_{2} \in \Delta_{m}$ be the choices for $\max _{\mathbf{q} \in \Delta_{m}} \min _{\mathbf{p} \in \Delta_{n}} \mathbf{p}^{\top} M \mathbf{q}=\mathbf{p}_{2}^{\top} M \mathbf{q}_{2}$.

$$
\min _{\mathbf{p} \in \Delta_{n}} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{\top} M \mathbf{q}=\mathbf{p}_{1}^{\top} M \mathbf{q}_{1} \geq \mathbf{p}_{1}^{\top} M \mathbf{q}_{2} \geq \mathbf{p}_{2}^{\top} M \mathbf{q}_{2}=\max _{\mathbf{q} \in \Delta_{m}} \min _{\mathbf{p} \in \Delta_{n}} \mathbf{p}^{\top} M \mathbf{q}
$$

An intuitive explanation for the first inequality is in $\min _{\mathbf{p} \in \Delta_{n}} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{\top} M \mathbf{q}, \mathbf{q}$ is chosen to maximize $\mathbf{p}^{\top} M \mathbf{q}$ for any given $\mathbf{q}$, therefore, $\mathbf{p}_{1}^{\top} M \mathbf{q}_{1} \geq \mathbf{p}_{1}^{\top} M \mathbf{q}$ for any $\mathbf{q} \neq \mathbf{q}_{1}$. Similar explanation goes for the second inequality.
b) Show the " $\leq$ " direction holds up to $O\left(\frac{1}{\sqrt{t}}\right)$ approximation.

Setting Imagine playing a $T$-round game against a really hard adversary. For round $t=1 \ldots T$ :

- Player 1 plays with the distribution $\mathbf{p}^{t}=\frac{\boldsymbol{\omega}^{t}}{\left\|\boldsymbol{\omega}^{t}\right\|_{1}} \in \Delta_{n}$.
- Player 2 plays with the distribution $\mathbf{q}^{t}=\underset{\mathbf{q} \in \Delta_{m}}{\arg \max } \mathbf{p}^{t} M \mathbf{q}$.
- Let $\boldsymbol{\ell}^{t}=M \mathbf{q}^{t}$, and Player 1 suffers the loss $\mathbf{p}^{t} \cdot \boldsymbol{\ell}^{t}=\mathbf{p}^{t} \cdot M \mathbf{q}^{t}$.
- Let $\boldsymbol{\omega}^{1}=(1 \ldots 1)$, and update $\omega_{i}^{t+1}=\omega_{i}^{t} \exp \left(-\eta \ell_{i}^{t}\right)$.

Trick Analyze $\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} \cdot M \mathbf{q}^{t}$.

1. By Jensen's Inequality,

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} M \mathbf{q}^{t}=\frac{1}{T} \sum_{t=1}^{T} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{t} M \mathbf{q} \geq \max _{\mathbf{q} \in \Delta_{m}}\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t}\right) M \mathbf{q} \geq \min _{\mathbf{p} \in \Delta_{n}} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{\top} M \mathbf{q}
$$

2. By the exponential weighted average algorithm,

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} M \mathbf{q}^{t} & =\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} \cdot \ell^{t} \\
& \leq \min _{i} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} \cdot \ell_{i}^{t}+\epsilon_{T}\left(:=\frac{\operatorname{Regret}_{T}}{T}\right) \\
& =\min _{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot \ell^{t}+\epsilon_{T} \\
& =\min _{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot M \mathbf{q}^{t}+\epsilon_{T} \\
& =\min _{\mathbf{p} \in \Delta_{n}} \mathbf{p} \cdot M\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{q}^{t}\right)+\epsilon_{T} \\
& \leq \max _{\mathbf{q} \in \Delta_{m}} \min _{\mathbf{p} \in \Delta_{n}} \mathbf{p}^{\top} M \mathbf{q}+\epsilon_{T}
\end{aligned}
$$

Putting the results in 1. and 2. together, we have

$$
\min _{\mathbf{p} \in \Delta_{n}} \max _{\mathbf{q} \in \Delta_{m}} \mathbf{p}^{\top} M \mathbf{q} \leq \max _{\mathbf{q} \in \Delta_{m}} \min _{\mathbf{p} \in \Delta_{n}} \mathbf{p}^{\top} M \mathbf{q}+\epsilon_{T}
$$

$T$ can be chosen as big as we wanted, and thus $\epsilon_{T}=O\left(\frac{1}{\sqrt{T}}\right)$ vanishes. It completes the prove of the $" \leq "$ direction
Theorem 18.10 (Generalization of Von Neumann's Minimax Theorem). Let $X \subseteq \mathcal{R}^{n}, Y \subseteq \mathcal{R}^{m}$ be compact convex sets. Let $f: X \times Y \rightarrow \mathcal{R}$ be some differentiable function with bounded gradients, where $f(\cdot, \mathbf{y})$ is convex in its first argument for all fixed $\mathbf{y}$, and $f(\mathbf{x}, \cdot)$ is concave for in its second argument for all fixed $\mathbf{x}$. Then

$$
\inf _{x \in X} \sup _{y \in Y} f(x, y)=\sup _{y \in Y} \inf _{x \in X} f(x, y)
$$

