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18.1 Review: On-line Learning with Experts (Actions)

Setting Given n experts (actions), the general on-line setting involves T rounds. For round t = 1 . . . T :

• The algorithm plays with the distribution pt = ωt

‖ωt‖1
∈ ∆n.

• The i-th expert (action) suffers the loss `ti ∈ [0, 1].

• The algorithm suffers the loss pt · `t.
Theorem 18.1 (Regret Bound for EWA).
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Note The distribution p = ei means the algorithm puts all mass on the i-th action.

18.2 Two Player Game

Definition 18.2 (Two Player Game). A two player game is defined by a pair of matrices M,N ∈ [0, 1]n×m.

Definition 18.3 (Pure Strategy). With a pure strategy in a two player game, P1 chooses an action i ∈ [n],
and P2 chooses an action j ∈ [m]. P1 thus earns Mij, and P2 earns Nij.

Definition 18.4 (Mixed Strategy). With a mixed strategy in a two player game, P1 plays with a distri-
bution p ∈ ∆n, and P2 plays with a distribution q ∈ ∆m. P1 thus earns p>Mq =

∑
i,j

piqjMij, and P2 earns

p>Nq =
∑
i,j

piqjNij.

Definition 18.5 (Zero-sum Game). A zero-sum game is a two player game, where the matrices M,N
has the relation M = −N .

18.3 Nash’s Theorem

Definition 18.6 (Nash Equilibrium). In a two player game, a Nash Equilibrium(Neq), in which P1
plays with the distribution p̃ ∈ ∆n, and P2 plays with the distribution q̃ ∈ ∆m, satisfies

• for all p ∈ ∆n, p̃>M q̃ ≥ p>M q̃

• for all q ∈ ∆m, p̃>N q̃ ≥ p̃>Nq

Theorem 18.7 (Nash’s Theorem). Every two player game has a Nash Equilibrium(Neq). (Not all have pure
strategy equilibria.)

Lemma 18.8 (Brouwer’s Fixed-point Theorem). Let B ⊆ Rd be a compact convex set, and a function
f : B → B is continuous. Then there exists x ∈ B, such that x = f(x).
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Proof Sketch of Nash’s Theorem

1. Let ci(p,q) = max
(
0, e>i Mq− p>Mq

)
, and di(p,q) = max

(
0,q>Mej − p>Mq

)
.

2. Define a map f : (p,q)→ (p′,q′), p′i = pi+ci(p,q)
1+

∑
i′∈[n]

ci′ (p,q) , and q′i = qi+di(p,q)
1+

∑
i′∈[m]

di′ (p,q) .

3. By Brouwer’s fixed-point theorem, there exists a fixed-point (p̃, q̃), f(p̃, q̃) = (p̃, q̃).

4. Show the fixed-point (p̃, q̃) is the Nash Equilibrium.

18.4 Von Neumann’s Minimax Theorem

Theorem 18.9 (Von Neumann’s Minimax Theorem).

min
p∈∆n

max
q∈∆m
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Proof by Nash’s Theorem

• Exercise

Proof by the Exponential Weighted Average Algorithm

a) The ”≥” direction is straightforward. Let p1 ∈ ∆n, q1 ∈ ∆m be the choices for min
p∈∆n

max
q∈∆m

p>Mq =

p>1 Mq1, and p2 ∈ ∆n, q2 ∈ ∆m be the choices for max
q∈∆m

min
p∈∆n

p>Mq = p>2 Mq2.

min
p∈∆n

max
q∈∆m

p>Mq = p>1 Mq1 ≥ p>1 Mq2 ≥ p>2 Mq2 = max
q∈∆m

min
p∈∆n

p>Mq.

An intuitive explanation for the first inequality is in minp∈∆n maxq∈∆m p>Mq, q is chosen to maximize
p>Mq for any given q, therefore, p>1 Mq1 ≥ p>1 Mq for any q 6= q1. Similar explanation goes for the
second inequality.

b) Show the ”≤” direction holds up to O
(

1√
t

)
approximation.

Setting Imagine playing a T -round game against a really hard adversary. For round t = 1 . . . T :

• Player 1 plays with the distribution pt = ωt

‖ωt‖1
∈ ∆n.

• Player 2 plays with the distribution qt = arg max
q∈∆m

ptMq.

• Let `t = Mqt, and Player 1 suffers the loss pt · `t = pt ·Mqt.

• Let ω1 = (1 . . . 1), and update ωt+1
i = ωt

i exp(−η`ti).

Trick Analyze 1
T

T∑
t=1

pt ·Mqt.

1. By Jensen’s Inequality,
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2. By the exponential weighted average algorithm,
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Putting the results in 1. and 2. together, we have

min
p∈∆n

max
q∈∆m

p>Mq ≤ max
q∈∆m

min
p∈∆n

p>Mq + εT .

T can be chosen as big as we wanted, and thus εT = O
(

1√
T

)
vanishes. It completes the prove of the

”≤” direction

Theorem 18.10 (Generalization of Von Neumann’s Minimax Theorem). Let X ⊆ Rn, Y ⊆ Rm be compact
convex sets. Let f : X × Y → R be some differentiable function with bounded gradients, where f(·,y) is
convex in its first argument for all fixed y, and f(x, ·) is concave for in its second argument for all fixed x.
Then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).


