18.1 Review: On-line Learning with Experts (Actions)

Setting Given *n* experts (actions), the general on-line setting involves *T* rounds. For round $t = 1 \dots T$:

- The algorithm plays with the distribution $\mathbf{p}^t = \frac{\boldsymbol{\omega}^t}{\|\boldsymbol{\omega}^t\|_1} \in \Delta_n$.
- The *i*-th expert (action) suffers the loss $\ell_i^t \in [0, 1]$.
- The algorithm suffers the loss $\mathbf{p}^t \cdot \boldsymbol{\ell}^t$.

Theorem 18.1 (Regret Bound for EWA).

$$\underbrace{\frac{1}{T}\sum_{t=1}^{T} \mathbf{p}^{t} \cdot \boldsymbol{\ell}^{t}}_{\mathcal{L}_{MA}^{t+1}} \leq \underbrace{\min_{i} \frac{1}{T}\sum_{t=1}^{T} \ell_{i}^{t}}_{\mathcal{L}_{IX}^{t+1}} + O\left(\sqrt{\frac{\log N}{T}}\right) = \min_{\mathbf{p} \in \Delta_{n}} \frac{1}{T}\sum_{t=1}^{T} \mathbf{p} \cdot \boldsymbol{\ell}^{t} + O\left(\sqrt{\frac{\log N}{T}}\right)$$

Note The distribution $\mathbf{p} = \mathbf{e}_i$ means the algorithm puts all mass on the *i*-th action.

18.2 Two Player Game

Definition 18.2 (Two Player Game). A two player game is defined by a pair of matrices $M, N \in [0, 1]^{n \times m}$. **Definition 18.3** (Pure Strategy). With a pure strategy in a two player game, P1 chooses an action $i \in [n]$, and P2 chooses an action $j \in [m]$. P1 thus earns M_{ij} , and P2 earns N_{ij} .

Definition 18.4 (Mixed Strategy). With a **mixed strategy** in a two player game, P1 plays with a distribution $\mathbf{p} \in \Delta_n$, and P2 plays with a distribution $\mathbf{q} \in \Delta_m$. P1 thus earns $\mathbf{p}^\top M \mathbf{q} = \sum_{i,j} p_i q_j M_{ij}$, and P2 earns

$$\mathbf{p}^\top N \mathbf{q} = \sum_{i,j} p_i q_j N_{ij}$$

Definition 18.5 (Zero-sum Game). A zero-sum game is a two player game, where the matrices M, N has the relation M = -N.

18.3 Nash's Theorem

Definition 18.6 (Nash Equilibrium). In a two player game, a Nash Equilibrium(Neq), in which P1 plays with the distribution $\tilde{\mathbf{p}} \in \Delta_n$, and P2 plays with the distribution $\tilde{\mathbf{q}} \in \Delta_m$, satisfies

- for all $\mathbf{p} \in \Delta_n$, $\widetilde{\mathbf{p}}^\top M \widetilde{\mathbf{q}} \ge \mathbf{p}^\top M \widetilde{\mathbf{q}}$
- for all $\mathbf{q} \in \Delta_m$, $\widetilde{\mathbf{p}}^\top N \widetilde{\mathbf{q}} \ge \widetilde{\mathbf{p}}^\top N \mathbf{q}$

Theorem 18.7 (Nash's Theorem). Every two player game has a Nash Equilibrium(Neq). (Not all have pure strategy equilibria.)

Lemma 18.8 (Brouwer's Fixed-point Theorem). Let $B \subseteq \mathbb{R}^d$ be a compact convex set, and a function $f: B \to B$ is continuous. Then there exists $x \in B$, such that x = f(x).

Proof Sketch of Nash's Theorem

- 1. Let $c_i(\mathbf{p}, \mathbf{q}) = \max\left(0, \mathbf{e}_i^\top M \mathbf{q} \mathbf{p}^\top M \mathbf{q}\right)$, and $d_i(\mathbf{p}, \mathbf{q}) = \max\left(0, \mathbf{q}^\top M \mathbf{e}_j \mathbf{p}^\top M \mathbf{q}\right)$.
- 2. Define a map $f: (\mathbf{p}, \mathbf{q}) \to (\mathbf{p}', \mathbf{q}'), \ p_i' = \frac{p_i + c_i(\mathbf{p}, \mathbf{q})}{1 + \sum\limits_{i' \in [n]} c_{i'}(\mathbf{p}, \mathbf{q})}, \ \text{and} \ q_i' = \frac{q_i + d_i(\mathbf{p}, \mathbf{q})}{1 + \sum\limits_{i' \in [m]} d_{i'}(\mathbf{p}, \mathbf{q})}.$
- 3. By Brouwer's fixed-point theorem, there exists a fixed-point $(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}}), f(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}}) = (\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}}).$
- 4. Show the fixed-point $(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})$ is the Nash Equilibrium.

18.4 Von Neumann's Minimax Theorem

Theorem 18.9 (Von Neumann's Minimax Theorem).

$$\min_{\mathbf{p}\in\Delta_n}\max_{\mathbf{q}\in\Delta_m}\mathbf{p}^{\top}M\mathbf{q}=\max_{\mathbf{q}\in\Delta_m}\min_{\mathbf{p}\in\Delta_n}\mathbf{p}^{\top}M\mathbf{q}$$

Proof by Nash's Theorem

• Exercise

Proof by the Exponential Weighted Average Algorithm

a) The " \geq " direction is straightforward. Let $\mathbf{p}_1 \in \Delta_n$, $\mathbf{q}_1 \in \Delta_m$ be the choices for $\min_{\mathbf{p} \in \Delta_n \mathbf{q} \in \Delta_m} \mathbf{p}^\top M \mathbf{q} = \mathbf{p}_1^\top M \mathbf{q}_1$, and $\mathbf{p}_2 \in \Delta_n$, $\mathbf{q}_2 \in \Delta_m$ be the choices for $\max_{\mathbf{q} \in \Delta_m} \min_{\mathbf{p} \in \Delta_n} \mathbf{p}^\top M \mathbf{q} = \mathbf{p}_2^\top M \mathbf{q}_2$.

$$\min_{\mathbf{p}\in\Delta_n}\max_{\mathbf{q}\in\Delta_m}\mathbf{p}^\top M\mathbf{q} = \mathbf{p}_1^\top M\mathbf{q}_1 \ge \mathbf{p}_1^\top M\mathbf{q}_2 \ge \mathbf{p}_2^\top M\mathbf{q}_2 = \max_{\mathbf{q}\in\Delta_m}\min_{\mathbf{p}\in\Delta_n}\mathbf{p}^\top M\mathbf{q}_2.$$

An intuitive explanation for the first inequality is in $\min_{\mathbf{p}\in\Delta_n} \max_{\mathbf{q}\in\Delta_m} \mathbf{p}^\top M\mathbf{q}$, \mathbf{q} is chosen to maximize $\mathbf{p}^\top M\mathbf{q}$ for any given \mathbf{q} , therefore, $\mathbf{p}_1^\top M\mathbf{q}_1 \ge \mathbf{p}_1^\top M\mathbf{q}$ for any $\mathbf{q} \neq \mathbf{q}_1$. Similar explanation goes for the second inequality.

b) Show the " \leq " direction holds up to $O\left(\frac{1}{\sqrt{t}}\right)$ approximation.

Setting Imagine playing a *T*-round game against a really hard adversary. For round $t = 1 \dots T$:

- Player 1 plays with the distribution $\mathbf{p}^t = \frac{\boldsymbol{\omega}^t}{\|\boldsymbol{\omega}^t\|_1} \in \Delta_n$.
- Player 2 plays with the distribution $\mathbf{q}^t = \underset{\mathbf{q} \in \Delta_m}{\operatorname{arg max}} \mathbf{p}^t M \mathbf{q}.$
- Let $\ell^t = M\mathbf{q}^t$, and Player 1 suffers the loss $\mathbf{p}^t \cdot \ell^t = \mathbf{p}^t \cdot M\mathbf{q}^t$.
- Let $\boldsymbol{\omega}^1 = (1 \dots 1)$, and update $\omega_i^{t+1} = \omega_i^t \exp(-\eta \ell_i^t)$.

Trick Analyze
$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^t \cdot M \mathbf{q}^t$$

1. By Jensen's Inequality,

$$\frac{1}{T}\sum_{t=1}^{T}\mathbf{p}^{t}M\mathbf{q}^{t} = \frac{1}{T}\sum_{t=1}^{T}\max_{\mathbf{q}\in\Delta_{m}}\mathbf{p}^{t}M\mathbf{q} \ge \max_{\mathbf{q}\in\Delta_{m}}\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{p}^{t}\right)M\mathbf{q} \ge \min_{\mathbf{p}\in\Delta_{n}}\max_{\mathbf{q}\in\Delta_{m}}\mathbf{p}^{\top}M\mathbf{q}$$

2. By the exponential weighted average algorithm,

$$\begin{aligned} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} M \mathbf{q}^{t} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} \cdot \boldsymbol{\ell}^{t} \\ &\leq \min_{i} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^{t} \cdot \boldsymbol{\ell}_{i}^{t} + \boldsymbol{\epsilon}_{T} (:= \frac{\operatorname{Regret}_{T}}{T}) \\ &= \min_{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot \boldsymbol{\ell}^{t} + \boldsymbol{\epsilon}_{T} \\ &= \min_{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot M \mathbf{q}^{t} + \boldsymbol{\epsilon}_{T} \\ &= \min_{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot M \mathbf{q}^{t} + \boldsymbol{\epsilon}_{T} \\ &= \min_{\mathbf{p} \in \Delta_{n}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{p} \cdot M \mathbf{q}^{t} + \boldsymbol{\epsilon}_{T} \end{aligned}$$

Putting the results in 1. and 2. together, we have

$$\min_{\mathbf{p}\in\Delta_n}\max_{\mathbf{q}\in\Delta_m}\mathbf{p}^\top M\mathbf{q} \le \max_{\mathbf{q}\in\Delta_m}\min_{\mathbf{p}\in\Delta_n}\mathbf{p}^\top M\mathbf{q} + \epsilon_T.$$

T can be chosen as big as we wanted, and thus $\epsilon_T = O\left(\frac{1}{\sqrt{T}}\right)$ vanishes. It completes the prove of the " \leq " direction

Theorem 18.10 (Generalization of Von Neumann's Minimax Theorem). Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$ be compact convex sets. Let $f : X \times Y \to \mathbb{R}$ be some differentiable function with bounded gradients, where $f(\cdot, \mathbf{y})$ is convex in its first argument for all fixed \mathbf{y} , and $f(\mathbf{x}, \cdot)$ is concave for in its second argument for all fixed \mathbf{x} . Then

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) = \sup_{y \in Y} \inf_{x \in X} f(x, y).$$