EECS 598-005: Theoretical Foundations of Machine LearningFall 2015Lecture 17: Online learning with EWA and introduction to game theoryLecturer: Jacob AbernethyScribes: Henry Oskar Singer, Editors: Weiging Yu and Andrew Melfi

17.1 Exponential Weights Algorithm

Given a loss function $\ell(\hat{y}, y) \in [0, 1]$ that is convex in \hat{y} , with $\eta > 0$. Let $\mathbf{w}^1 = \langle 1, \ldots, 1 \rangle$,

1: for t = 1, 2, ..., T do 2: Algorithm receives prediction $f_i^t \in \{0, 1\}$ from expert i3: Algorithm predicts $\hat{y}^t = \frac{\sum_i w_i^t f_i^t}{\sum_j w_j^t}$ 4: Nature reveals $y^t \in \{0, 1\}$ 5: Algorithm loss increases: $L_{MA}^{t+1} = L_{MA}^t + \ell(\hat{y}^t, y^t)$ 6: $w_i^{t+1} = w_i^t \exp(-\eta \ell(f_i^t, y^t))$ 7: end for

NOTE: f_i^t and y^t can be real-valued, but we are assuming for simplicity that they are binary.

Theorem 17.1. For any sequence of $\{y^t\}_t$, $\{f_i^t\}_{i,t}$ we have

$$L_{MA} \le \frac{\eta L_i^{t+1} + \log N}{1 - \exp(-\eta)}$$

for all *i* where $L_i^{t+1} = \sum_{s=1}^t \ell(f_i^s, y^s)$.

Corollary 17.2. With η tuned appropriately

$$L_{MA} \le L_{i^*}^{T+1} + \log N + \sqrt{2L_{i^*}^T \log N}$$

where i^* is the index of the "best expert". Notice that

$$\frac{L_{MA}}{T} \le \frac{L_{i^*}^{T+1}}{T} + \epsilon_T$$

where ϵ_T is approaching 0 at a rage of about $O\left(\frac{1}{\sqrt{T}}\right)$, since $L_{i^*}^T$ is at most T.

17.2 Hedge Setting

Theorems in this part are proposed by Freund and Schapire, 95^1 .

Assuming that we have N actions (or bets), we do the following algorithm.

1: for t = 1, ..., T do 2: Alg chooses distribution $\mathbf{p}^t \in \Delta_N$ 3: Alg samples $i_t \in \mathbf{p}^t$ 4: Nature/adversary reveals $\ell^t \in [0, 1]^N$ 5: Alg suffers $\ell^t_{i_t}$, but in expectation, $L_{MA} = \sum_i \ell^t_i p^t_i$ 6: end for

Theorem 17.3. The hedge setting gives the same bound as the exponential weights algorithm when you choose

$$\mathbf{p}^t = \frac{\mathbf{w}^t}{\sum_j w_j^t}.$$

Proof: For this proof, we will need to call on the following inequality that holds for all $s \in \mathbb{R}$:

$$\log \mathbb{E} \exp(sX) \le (e^s - 1) \mathbb{E}X.$$

Assume X is a random variable taking values in [0, 1] on round t. Let $X^t = \ell(f_i^t, y^t)$ w.p. $\frac{w_i^t}{\sum_{j=1}^N w_j^t}$. Let

$$\Phi_t = -\log \sum_{i=1}^N w_i^t = -\log \sum_{i=1}^N \exp\left(-\eta L_i^t\right).$$

Then

$$\Phi_{t+1} - \Phi_t = -\log\left(\frac{\sum_i w_i^{t+1}}{\sum_j w_j^t}\right)$$
$$= -\log\left(\frac{\sum_i w_i^t \exp(-\eta \ell(f_i^t, y^t))}{\sum_j w_j^t}\right)$$
$$= -\log \mathbb{E} \exp(-\eta x^t)$$
$$\geq -(e^{-\eta} - 1) \mathbb{E} X^t$$
$$= (1 - e^{-\eta}) \frac{\sum_i w_i^t \ell(f_i^t, y^t)}{\sum_j w_j^t}$$
$$\geq (1 - e^{-\eta}) \ell(\frac{\sum_i w_i^t f_i^t}{\sum_j w_j^t}, y^t)$$
$$= (1 - e^{-\eta}) \ell(\hat{y}^t, y^t)$$

 $^1\mathrm{A}$ Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.

Recall that the loss of the algorithm on t is $\ell(\frac{\sum_i w_i^t f_i^t}{\sum_j w_j^t}, y^t)$. This is required for the last step of the sequence of inequalities and equations above.

Whence,

$$(1 - e^{-\eta})L_{MA}^{T+1} = \sum_{t=1}^{T} (\Phi_{t+1} - \Phi_t)$$

= $-\log \sum_i \exp(-\eta L_i^{T+1}) + \log N$
 $\leq -\log(\exp(-\eta L_i^{T+1})) + \log N$
= $\eta L_i^{T+1} + \log N$,

which implies that

$$L_{MA} \le \frac{\eta L_i^{T+1} + \log N}{1 - e^{-\eta}}$$

17.3 Zero-sum games

We are given n strategies/actions for P1 and m for P2, and the payoff matrix $M \in [-1, +1]^{n \times m}$. Simultaneously,

P1 chooses
$$i \in [n]$$

P2 chooses $j \in [m]$.

As a result, P1 earns M_{ij} , and P2 earns $-M_{ij}$.

Example: Rock-Paper-Scissors

$$M = \begin{bmatrix} 0 & -1 & +1 \\ +1 & 0 & -1 \\ -1 & +1 & 0 \end{bmatrix}$$

Definition 17.4 (Pure Strategy). With a **pure strategy** in a two player game, P1 chooses an action $i \in [n]$, and P2 chooses an action $j \in [m]$. P1 thus earns M_{ij} , and P2 earns N_{ij} .

Definition 17.5 (Mixed Strategy). With a mixed strategy in a two player game, P1 plays with a distribution $\mathbf{p} \in \Delta_n$, and P2 plays with a distribution $\mathbf{q} \in \Delta_m$. P1 thus earns $\mathbf{p}^\top M \mathbf{q} = \sum_{i,j} p_i q_j M_{ij}$, and P2 earns

$$\mathbf{p}^\top N \mathbf{q} = \sum_{i,j} p_i q_j N_{ij}.$$

17.4 Quick View on Von Neumann's Minimax Theorem

$$\min_{\mathbf{q}} \max_{\mathbf{p}} \mathbf{p}^{\top} M \mathbf{q} = \max_{\mathbf{p}} \min_{\mathbf{q}} \mathbf{p}^{\top} M \mathbf{q}$$

The minimizer gets to see the maximizer's strategy before picking his/her own, so the right side will clearly be less than or equal to the left. The other way is more difficult.