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17.1 Exponential Weights Algorithm

Given a loss function `(ŷ, y) ∈ [0, 1] that is convex in ŷ, with η > 0. Let w1 = 〈1, . . . , 1〉,

1: for t = 1, 2, . . . , T do
2: Algorithm receives prediction f ti ∈ {0, 1} from expert i

3: Algorithm predicts ŷt =
∑

i w
t
if

t
i∑

j w
t
j

4: Nature reveals yt ∈ {0, 1}
5: Algorithm loss increases: Lt+1

MA = LtMA + `(ŷt, yt)
6: wt+1

i = wti exp(−η`(f ti , yt))
7: end for

NOTE: f ti and yt can be real-valued, but we are assuming for simplicity that they are binary.

Theorem 17.1. For any sequence of {yt}t, {f ti }i,t we have

LMA ≤
ηLt+1

i + logN

1− exp(−η)

for all i where Lt+1
i =

∑t
s=1 `(f

s
i , y

s).

Corollary 17.2. With η tuned appropriately

LMA ≤ LT+1
i∗ + logN +

√
2LTi∗ logN

where i∗ is the index of the ”best expert”. Notice that

LMA

T
≤ LT+1

i∗

T
+ εT

where εT is approaching 0 at a rage of about O
(

1√
T

)
, since LTi∗ is at most T .
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17.2 Hedge Setting

Theorems in this part are proposed by Freund and Schapire, 951.

Assuming that we have N actions (or bets), we do the following algorithm.

1: for t = 1, . . . , T do
2: Alg chooses distribution pt ∈ 4N
3: Alg samples it ∈ pt

4: Nature/adversary reveals `t ∈ [0, 1]N

5: Alg suffers `tit , but in expectation, LMA =
∑
i `
t
ip
t
i

6: end for

Theorem 17.3. The hedge setting gives the same bound as the exponential weights algorithm when you
choose

pt =
wt∑
j w

t
j

.

Proof: For this proof, we will need to call on the following inequality that holds for all s ∈ R:

logE exp(sX) ≤ (es − 1)EX.

Assume X is a random variable taking values in [0, 1] on round t. Let Xt = `(f ti , y
t) w.p.

wt
i∑N

j=1 w
t
j

.

Let

Φt = − log

N∑
i=1

wti = − log

N∑
i=1

exp
(
−ηLti

)
.

Then

Φt+1 − Φt = − log

(∑
i w

t+1
i∑

j w
t
j

)

= − log

(∑
i w

t
i exp(−η`(f ti , yt))∑

j w
t
j

)
= − logE exp(−ηxt)
≥ −(e−η − 1)EXt

= (1− e−η)

∑
i w

t
i`(f

t
i , y

t)∑
j w

t
j

≥ (1− e−η)`(

∑
i w

t
if
t
i∑

j w
t
j

, yt)

= (1− e−η)`(ŷt, yt)

1A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.
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Recall that the loss of the algorithm on t is `(
∑

i w
t
if

t
i∑

j w
t
j
, yt). This is required for the last step of the sequence

of inequalities and equations above.
Whence,

(1− e−η)LT+1
MA =

T∑
t=1

(Φt+1 − Φt)

= − log
∑
i

exp
(
−ηLT+1

i

)
+ logN

≤ − log
(
exp

(
−ηLT+1

i

))
+ logN

= ηLT+1
i + logN,

which implies that

LMA ≤
ηLT+1

i + logN

1− e−η

�

17.3 Zero-sum games

We are given n strategies/actions for P1 and m for P2, and the payoff matrix M ∈ [−1,+1]n×m. Simulta-
neously,

P1 chooses i ∈ [n]

P2 chooses j ∈ [m].

As a result, P1 earns Mij , and P2 earns −Mij .

Example: Rock-Paper-Scissors

M =

 0 −1 +1
+1 0 −1
−1 +1 0


Definition 17.4 (Pure Strategy). With a pure strategy in a two player game, P1 chooses an action i ∈ [n],
and P2 chooses an action j ∈ [m]. P1 thus earns Mij, and P2 earns Nij.

Definition 17.5 (Mixed Strategy). With a mixed strategy in a two player game, P1 plays with a distri-
bution p ∈ ∆n, and P2 plays with a distribution q ∈ ∆m. P1 thus earns p>Mq =

∑
i,j

piqjMij, and P2 earns

p>Nq =
∑
i,j

piqjNij.

17.4 Quick View on Von Neumann’s Minimax Theorem

min
q

max
p

p>Mq = max
p

min
q

p>Mq

The minimizer gets to see the maximizer’s strategy before picking his/her own, so the right side will
clearly be less than or equal to the left. The other way is more difficult.


	Exponential Weights Algorithm
	Hedge Setting
	Zero-sum games
	Quick View on Von Neumann's Minimax Theorem

