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16.1 Review: the Halving Algorithm

16.1.1 Problem Setting

Last lecture we started our discussion of online learning, and more specifically, prediction with expert advice.
In this problem setting, time proceeds as a sequence of rounds, t = 1, · · · , T . At each round t, the “environ-
ment” reveals an outcome yt ∈ {−1, 1}. We also have a pool of “experts”, i = 1, · · · , N . At each round t,
the i-th expert makes a prediction on the outcome, f ti ∈ {−1, 1}. Our goal is to design an algorithm1 A that
combines the experts’ advice to predict the outcome with as few mistakes as possible. It can be described
as the following process.

Initialize the counter #mistakes[A] = 0. For each round t = 1, · · · , T :

(1) A observes the prediction made by N experts, f ti ∈ {−1, 1} , i = 1, · · · , N ;

(2) A makes prediction on ŷt ∈ {−1, 1};

(3) The environment reveals an outcome yt ∈ {−1, 1};

(4) If ŷt 6= yt, #mistakes[A] += 1.

Here, the “environment” (or “nature”) is a mechanism that generates the sequence of outcome. In
online learning setting, this mechanism can be deterministic, stochastic, or even adversarial (adaptive to A’s
behavior). This is much more general than the “batch learning” setting, where the mechanism is assumed
to be stochastic.

16.1.2 The Halving Algorithm

The Halving Algorithm takes the majority vote of consistent experts up to the current round. Formally,
denote the set of consistent experts up to round t as Ct,

Ct = {i : fτi = yτ ,∀τ = 1, · · · , t− 1} .

On round t, the Halving Algorithm makes its prediction as

ŷt =

{
1, if |{i ∈ Ct : f ti = 1}| ≥ |Ct|

2 ;

−1, otherwise.

Theorem 16.1. (Upper bound on #mistakes[Halving].) If there exists a perfect expert i such that
f ti = yt for all t = 1, · · · , T , then

#mistakes[Halving] ≤ log2N .

1Also called predictor, forecaster, or master algorithm.
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Proof: We have |C1| = N . By the assumption that there is always at least one perfect expert, |CT | ≥ 1.
By the nature of Halving Algorithm, if ŷt 6= yt, then |Ct+1| ≤ 1

2 |Ct|. Together we have

1 ≤ |CT | ≤ |C1|
(

1

2

)#mistakes[Halving]

= N

(
1

2

)#mistakes[Halving]

.

This implies #mistakes[Halving] ≤ log2N . �

Note that the upper bound is also tight. To see this, imagine that the outcomes are generated by an
adversary, who always wants to inflict mistake on A. That is, when ŷt = 1, the adversary will play yt = −1,
and vice versa. Suppose we have N = 2n experts, only one of whom is perfect. At each round, half of
them predict 1, the other half predict −1, which maximally slows down the “shrinking rate” of Ct. Then
the Halving algorithm will make exactly log2N mistakes to discover the perfect expert, and makes no more
mistakes from then on.

The Halving Algorithm works well if there exists a perfect expert, which we call a noise-free setting2.
What if the best expert makes a few mistakes? This is a noisy setting, and we need a better algorithm
than majority vote. The idea is to maintain weights on experts, and reduce an expert’s weight when she
makes mistakes. But before we move on to the noisy setting, let us study another classical algorithm for the
noise-free setting, the Perceptron algorithm for online linear prediction.

16.2 Online Linear Prediction and Perceptron

16.2.1 Problem Setting

As before, we play in rounds t = 1, · · · , T . At each round t, the environment reveals an outcome yt ∈ {−1, 1}.
In online linear prediction, algorithm A observes a feature vector x ∈ Rd before it makes prediction, and its
prediction has the form ŷt = sign(w>x), w ∈ Rd. 3 The prediction protocol can be described as following
process.

Initialize the counter #mistakes[A] = 0. For each round t = 1, · · · , T :

(1) A selects wt ∈ Rd;

(2) A observes xt ∈ Rd, ‖xt‖ ≤ 1;

(3) A predicts ŷt = sign(w>t xt);

(4) The environment reveals an outcome yt ∈ {−1, 1};

(5) If ŷt 6= yt, #mistakes[A] += 1.

Essentially, A’s prediction ŷt is determined by the hypothesis weight vector wt.

16.2.2 The Perceptron Algorithm

The Perceptron Algorithm initially predicts w1 = 0; at round t = 1, · · · , T ,

wt+1 =

{
wt, if yt

(
w>t xt

)
> 0;

wt + ytxt, otherwise.

2The corresponding scenario in batch learning is to have a finite hypothesis class that contains the target hypothesis.
3sign(·) is the sign function:

sign(x) =

{
1, if x ≥ 0;

−1, otherwise.



Lecture 16: Perceptron and Exponential Weights Algorithm 16-3

Theorem 16.2. (Upper bound on #mistakes[Perceptron].) Suppose there exists a perfect hypothesis
w∗ ∈ Rd such that yt(w∗

>xt) ≥ 1 for all t = 1, · · · , T , then

#mistakes[Perceptron] ≤ ‖w∗‖2 .

Proof: The key (trick) is to define the potential function

Φt := ‖w∗ −wt+1‖2

and look at its change over time.

‖w∗‖2 ≥ ‖w∗ − 0‖2 − ‖w∗ −wT+1‖
= Φ0 − ΦT

=

T∑
t=1

Φt−1 − Φt

=

T∑
t=1

‖w∗ −wt‖2 − ‖w∗ −wt+1‖2

=
∑

t:yt(w>t xt)<0

‖w∗ −wt‖2 − ‖w∗ − (wt + ytxt)‖2

=
∑

t:yt(w>t xt)<0

2

yt(w>∗ xt)︸ ︷︷ ︸
≥1

−yt(w>t xt)︸ ︷︷ ︸
≥0

−y2t ‖xt‖2︸ ︷︷ ︸
≥−1

≥
∑

t:yt(w>t xt)<0

1

= #mistakes[Perceptron] �

Additional notes:

(1) Since a perfect hypothesis w∗ satisfies yt(w∗
>xt) > 0 for all t = 1, · · · , T , we can always scale it such

that yt(w∗
>xt) ≥ 1 as stated in Theorem 16.2.

(2) In this setting, the hypothesis w∗ defines a hyperplane which separates feature vectors into two classes
based on their outcomes. We refer to 1

‖w∗‖ = γ as the margin, because the distance between any feature

vector and the hyperplane is at least γ.

(3) Recall that we have similar upper bound in the support vector machine (SVM) batch learning setting,
where the training examples are assumed i.i.d.. Here, we make no i.i.d. assumption on the sequence
((x1, y1), · · · , (xT , yT )); the upper bound holds for any sequence.

16.3 The Exponential Weights Algorithm

The drawback of Halving Algorithm is the strong assumption that a perfect expert exists. How can we
remove this assumption? What if even the best expert makes mistakes? The answer is to use weights for the
experts, based on past performance. This leads to the Exponential Weights Algorithm (EWA) below.
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16.3.1 Problem Setting

Consider the same problem setting as Section 16.1.1. We assume that the master algorithm A can make
“mixed” predictions ŷt ∈ {−1, 1}. That is, ŷt takes the form

ŷt =

∑N
i=1 w

t
if
t
i∑N

i=1 w
t
i

.

Essentially, A’s prediction ŷt is determined by the weights wt = (wt1, · · · , wti · · · , wtN ) ∈ RN .
In addition, assume that we are given a loss function l(ŷ, y) that is convex in ŷ. Instead of absolute

number of mistakes, we measure the performance of algorithm A by the cumulative loss it suffered after T
rounds relative to the best expert :

RT =

T−1∑
t=1

l(ŷt, yt)− min
1≤i≤N

T−1∑
t=1

l(f ti , yt) .

RT is called the regret. Our goal is to design a master algorithm A with a small regret.

16.3.2 Exponential Weights Algorithm

To ease notation, let us denote the cumulative loss of expert i up to round t as Lti =
∑t−1
s=1 l(f

s
i , ys), and the

cumulative loss of algorithm A up to round t as LtA =
∑t−1
s=1 l(ŷs, ys). The regret of A after T rounds is then

LTA −mini L
T
i .

The Exponential Weights Algorithm (EWA) initially sets w1 = 1; at round t = 1, · · · , T , it sets

wti = exp(−ηLti) ,

where η > 0 is a constant (hyperparameter). Intuitively, EWA says that the (unnormalized) weight of expert
i decays exponentially with her cumulative loss.

Theorem 16.3. (Upper bound on LTEWA.) Assume the loss function takes value in [0, 1], then the
T -round cumulative loss of Exponential Weights Algorithm satisfies that for all i,

LTEWA ≤
ηLTi + logN

1− e−η
.

Corollary 16.4. (Regret upper bound after tuning η.) For some optimal η > 0,

LTEWA ≤ LTi∗ + logN +
√

2LTi∗ logN ,

where i∗ = arg min1≤i≤N L
T
i is the “best expert” in hindsight.

Lemma 16.5. Let X be a random variable in [0, 1]. For all s ∈ R,

logE
[
esX

]
≤ (es − 1)E [X] .

Proof: First, for x ∈ [0, 1],
esx ≤ 1 + (es − 1)x .

This can be seen by drawing the graph of convex function f(x) = esx and line segment g(x) = 1+(es − 1)x =

f(0)+ f(1)−f(0)
1−0 x on the interval x ∈ [0, 1]. In fact, g(x) is a “chord” of f(x) connecting (0, f(0)) and (1, f(1)).

Since f(x) is convex, its graph is always below its chord g(x). This holds for all s ∈ R.
Taking expectation on both sides when x = X is a random variable in [0, 1], we have:

E
[
esX

]
≤ 1 + (es − 1)E [X] .
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Since log(·) is monotonic, taking log on both sides preserves the inequality sign (both sides are strictly
positive):

logE
[
esX

]
≤ log (1 + (es − 1)E [X]) .

Finally, notice that ∀x ∈ R, log(1 + x) < x, we have

logE
[
esX

]
≤ (es − 1)E [X] .

�

Proof: (Theorem 16.3.) Let wt =
∑N
i=1 w

t
i . Define the potential function Φt = − logwt. Observe the

change of the potential function over time:

Φt+1 − Φt = − log
wt+1

wt

= − log

∑N
i=1 w

t
i exp (−ηl(f ti , yt))∑N

i=1 w
t
i

.

By defining the random variable X ∈ [0, 1], Pr [X = l(f ti , yt)] =
wt

i∑N
i=1 w

t
i

, i = 1, · · · , N , we have

Φt+1 − Φt = − logEX [−ηX]

≥
(
1− e−η

)
EX [X] (Lemma 16.5)

=
(
1− e−η

) N∑
i=1

wti l(f
t
i , yt)∑N

i=1 w
t
i

≥
(
1− e−η

)
l

(∑N
i=1 w

t
if
t
i∑N

i=1 w
t
i

, yt

)
(l convex + Jensen’s inequality)

=
(
1− e−η

)
l(ŷt, yt) .

Summing from t = 1 to T − 1:

ΦT − Φ1 =

T−1∑
t=1

Φt+1 − Φt

≥
(
1− e−η

) T−1∑
t=1

l(ŷt, yt)

=
(
1− e−η

)
LTEWA . (16.1)

By nature of Exponential Weights Algorithm and the definition of the potential function Φt,

Φ1 = − log

N∑
i=1

w1
i = − logN ; (16.2)

ΦT = − log

N∑
i=1

wTi ≤ − logwTi = ηLTi , for all i . (16.3)

Combining (16.1), (16.2), and (16.3), we have that for all i,

ηLTi + logN ≥
(
1− e−η

)
LTEWA .

Since η > 0, 1− e−η > 0. Dividing both ends by (1− e−η) will reveal the inequality in the theorem. �


