13.1 Rademacher Complexity

Given a function class $G: \mathcal{X} \rightarrow \mathbb{R}$, let $\sigma_{1}, \ldots, \sigma_{m}$ be i.i.d. Rademacher random variables, that is $\sigma_{i} \in\{-1,1\}$ with $\mathbb{P}\left(\sigma_{i}=1\right)=1 / 2$, and let $S=\left(x_{1}, \ldots, x_{m}\right)$ be a sample from \mathcal{X}. Then the empirical Rademacher complexity is defined as:

$$
\hat{\mathfrak{R}}_{S}(G)=\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{g \in G} \frac{1}{m} \sum \sigma_{i} g\left(x_{i}\right)\right],
$$

and the Rademacher complexity is defined as:

$$
\mathfrak{R}_{m}(G)=\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[\hat{\mathfrak{R}}_{S}(G)\right]
$$

We note that the Rademacher complexity is distribution-specific.
Based on Rademacher complexity, we can show the following generalization bound:
Theorem 13.1. Let G be a function class mapping \mathcal{X} to $[0,1]$. Then, with probability at least $1-\delta$ and for all $g \in G$,

$$
\mathbb{E}_{x \sim \mathcal{D}}[g(x)] \leq \frac{1}{m} \sum_{i=1}^{m} g\left(x_{i}\right)+2 \Re_{m}(G)+\sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

where $S=\left(x_{1}, \ldots, x_{m}\right) \sim \mathcal{D}^{m}$.
The proof of the above theorem requires McDiarmid's inequality, which is presented as following:
Theorem 13.2 (McDiarmid's inequality). Let \mathcal{D} be a distribution on \mathcal{X}, and let f be a function taking finite subsets of \mathcal{X} as input. Suppose that f satisfies bounded difference condition with the uniform constant c, i.e.,

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c
$$

. Then with probability at least $1-\delta$,

$$
f(S)-\mathbb{E}_{S \sim \mathcal{D}^{m}}[f(S)] \leq \sqrt{\frac{m c^{2}}{2} \log (1 / \delta)}
$$

where $S \sim \mathcal{D}^{m}$.
Proof: (Sketch) Let $S=\left(x_{1}, \ldots, x_{m}\right) \sim \mathcal{D}^{m}$. We define a martingale $Z_{i}=\mathbb{E}\left[f(S)-\mathbb{E}[f(S)] \mid x_{1}, \ldots, x_{i-1}\right]$. It is easy to see that $\left|Z_{i}-Z_{i-1}\right| \leq c$ for all i. Then applying Azuma's inequality to the martingale difference sequence $\left\{Z_{i}\right\}$ yields the desired result. See Appendix D of the textbook Foundation of Machine Learning for a full proof.

We are ready to prove Theorem 13.1.

Proof of Theorem 13.1: To ease some notations, we define: $\mathbb{E} g:=\mathbb{E}_{x \sim \mathcal{D}}[g(x)], \hat{\mathbb{E}}_{S} g:=\frac{1}{|S|} \sum_{x_{i} \in S} g\left(x_{i}\right)$, and $\Phi(S):=\sup _{g \in G}\left(\mathbb{E} g-\hat{\mathbb{E}}_{S} g\right)$.

The proof is composed of two parts:

1. $\Phi(S) \leq \mathbb{E}_{S \sim \mathcal{D}^{m}}[\Phi(S)]+\sqrt{\frac{\log (1 / \delta)}{2 m}}$.
2. $\mathbb{E}_{S \sim \mathcal{D}^{m}}[\Phi(S)] \leq 2 \mathfrak{R}_{m}(G)$.

For part 1, we begin with showing that $\left|\Phi(S)-\Phi\left(S^{\prime}\right)\right| \leq \frac{1}{m}$ when S and S^{\prime} differ by one element (and let it be the $i^{\text {th }}$ one):

$$
\begin{aligned}
\Phi(S)-\Phi\left(S^{\prime}\right) & =\sup _{g \in G}\left(\mathbb{E} g-\hat{\mathbb{E}}_{S} g\right)-\sup _{g \in G}\left(\mathbb{E} g-\hat{\mathbb{E}}_{S^{\prime}} g\right) \\
& \leq \sup _{g \in G}\left(\mathbb{E} g-\hat{\mathbb{E}}_{S} g-\mathbb{E} g+\hat{\mathbb{E}}_{S^{\prime}} g\right) \\
& =\sup _{g \in G} \frac{g\left(x_{i}^{\prime}\right)-g\left(x_{i}\right)}{m} \\
& \leq \frac{1}{m}
\end{aligned}
$$

The first inequality holds since supremum of difference is greater than difference of supremum.
By symmetry, we have $\left|\Phi(S)-\Phi\left(S^{\prime}\right)\right| \leq \frac{1}{m}$. Then, by setting $c=\frac{1}{m}$, applying McDiarmid's inequality yields the desired inequality.

For part 2, we use the two-sample trick. Let $S^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \sim \mathcal{D}^{m}$.

$$
\begin{aligned}
\mathbb{E}_{S \sim \mathcal{D}^{m}}[\Phi(S)] & =\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[\sup _{g \in G}\left(\mathbb{E} g-\hat{\mathbb{E}}_{S} g\right)\right] \\
& \leq \mathbb{E}_{S, S^{\prime} \sim \mathcal{D}^{m}}\left[\sup _{g \in G}\left(\hat{\mathbb{E}}_{S^{\prime}} g-\hat{\mathbb{E}}_{S} g\right)\right] \\
& =\mathbb{E}_{S, S^{\prime} \sim \mathcal{D}^{m}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m}\left(g\left(x_{i}^{\prime}\right)-g\left(x_{i}\right)\right)\right] \\
& =\mathbb{E}_{S, S^{\prime} \sim \mathcal{D}^{m}, \boldsymbol{\sigma}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(g\left(x_{i}^{\prime}\right)-g\left(x_{i}\right)\right)\right] \\
& \leq \mathbb{E}_{S^{\prime} \sim \mathcal{D}^{m}, \boldsymbol{\sigma}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(x_{i}^{\prime}\right)\right]+\mathbb{E}_{S \sim \mathcal{D}^{m}, \boldsymbol{\sigma}}\left[\sup _{g \in G} \frac{1}{m} \sum_{i=1}^{m}-\sigma_{i} g\left(x_{i}\right)\right] \\
& =2 \mathfrak{R}_{m}(G)
\end{aligned}
$$

Combining the two parts gives us

$$
\mathbb{E}_{x \sim \mathcal{D}}[g(x)] \leq \frac{1}{m} \sum_{i=1}^{m} g\left(x_{i}\right)+2 \Re_{m}(G)+\sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

The proof is complete.

13.2 Generalization Bound for Binary Classification

Given a hypothesis class \mathcal{H} with functions taking ± 1 values, the associated loss class of \mathcal{H} is defined as:

$$
G:=\left\{g_{h}(x, y)=\mathbf{1}[h(x) \neq y] \mid h \in \mathcal{H}\right\}
$$

Lemma 13.3. For any sample $S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right)$, we have $\hat{\mathfrak{R}}_{S}(G)=\frac{1}{2} \hat{\mathfrak{R}}_{S \upharpoonright \mathcal{X}}(\mathcal{H})$, where $S \upharpoonright \mathcal{X}=$ $\left(x_{1}, \ldots, x_{m}\right)$.
Proof: The proof is easy. See Lemma 3.1 in the textbook.
The following theorem demonstrates an application of Rademacher complexity that provides us a generalization bound for binary classification.

Theorem 13.4. For binary classification with $0-1$ loss, let \mathcal{H} be a class hypothesis mapping \mathcal{X} to $\{-1,1\}$. Then with probability $\geq 1-\delta$, for any $h \in \mathcal{H}$, we have:

$$
R(h) \leq \hat{R}_{S}(h)+\Re_{m}(\mathcal{H})+\sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

where $S \sim \mathcal{D}^{m}$.
Proof: This directly follows from Theorem 13.1 and Lemma 13.3.

13.3 Massart's Lemma

Lastly, we present Massart's lemma, which gives us a better expression of $\mathfrak{R}_{m}(\cdot)$.
Theorem 13.5 (Massart's lemma). Let $A \subseteq \mathbb{R}^{m}$ be a finite set of points with $r=\max _{\mathbf{x} \in A}\|\mathbf{x}\|_{2}$. Then we have

$$
\mathbb{E}_{\boldsymbol{\sigma}}\left[\max _{\mathbf{x} \in A} \sum_{i=1}^{m} x_{i} \sigma_{i}\right] \leq r \sqrt{2 \log (|A|)}
$$

where $\left(x_{1}, \ldots, x_{n}\right)$ is a vector in A.
Proof: Let $t>0$ be a number to be chosen later.

$$
\begin{array}{rlr}
\exp \left(t \mathbb{E}_{\boldsymbol{\sigma}}\left[\max _{\mathbf{x} \in A} \mathbf{x}^{\top} \boldsymbol{\sigma}\right]\right) & \leq \mathbb{E}_{\boldsymbol{\sigma}}\left[\exp \left(t \max _{\mathbf{x} \in A} \mathbf{x}^{\top} \boldsymbol{\sigma}\right)\right] & \text { (Jensen's inequality) } \\
& \leq \mathbb{E}_{\boldsymbol{\sigma}}\left[\sum_{\mathbf{x} \in A} \exp \left(t \mathbf{x}^{\top} \boldsymbol{\sigma}\right)\right] & \\
& =\sum_{\mathbf{x} \in A} \mathbb{E}_{\boldsymbol{\sigma}}\left[\exp \left(t \mathbf{x}^{\top} \boldsymbol{\sigma}\right)\right] \\
& =\sum_{\mathbf{x} \in A} \mathbb{E}_{\boldsymbol{\sigma}}\left[\prod_{i=1}^{m} \exp \left(t x_{i} \sigma_{i}\right)\right] \\
& =\sum_{\mathbf{x} \in A} \prod_{i=1}^{m} \mathbb{E}_{\boldsymbol{\sigma}}\left[\exp \left(t x_{i} \sigma_{i}\right)\right] \\
& \leq \sum_{\mathbf{x} \in A} \prod_{i=1}^{m} \exp \left(\frac{\left(2 t x_{i}\right)^{2}}{8}\right) \\
& =\sum_{\mathbf{x} \in A} \exp \left(\frac{t^{2}}{2} \sum_{i=1}^{m} x_{i}{ }^{2}\right) & \\
& \leq|A| \exp \left(\frac{t^{2} r^{2}}{2}\right) & \\
\text { (applying Hoeffding's lemmaximum) }
\end{array}
$$

Taking logarithm, and dividing by t on both sides, we get

$$
\mathbb{E}_{\boldsymbol{\sigma}}\left[\max _{\mathbf{x} \in A} \mathbf{x}^{\top} \boldsymbol{\sigma}\right] \leq \frac{\log (|A|)}{t}+\frac{t r^{2}}{2}
$$

It is minimized when taking $t=\sqrt{\frac{\log (|A|)}{r^{2} / 2}}=\frac{\sqrt{2 \log (|A|)}}{r}$, and it leads to the bound:

$$
\mathbb{E}_{\boldsymbol{\sigma}}\left[\max _{\mathbf{x} \in A} \mathbf{x}^{\top} \boldsymbol{\sigma}\right] \leq r \sqrt{2 \log (|A|)}
$$

