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13.1 Rademacher Complexity

Given a function class G : X → R, let σ1, . . . , σm be i.i.d. Rademacher random variables, that is σi ∈ {−1, 1}
with P(σi = 1) = 1/2, and let S = (x1, . . . , xm) be a sample from X . Then the empirical Rademacher
complexity is defined as:

R̂S(G) = Eσ

[
sup
g∈G

1

m

∑
σig(xi)

]
,

and the Rademacher complexity is defined as:

Rm(G) = ES∼Dm

[
R̂S(G)

]
.

We note that the Rademacher complexity is distribution-specific.

Based on Rademacher complexity, we can show the following generalization bound:

Theorem 13.1. Let G be a function class mapping X to [0, 1]. Then, with probability at least 1− δ and for
all g ∈ G,

Ex∼D[g(x)] ≤ 1

m

m∑
i=1

g(xi) + 2Rm(G) +

√
log(1/δ)

2m
,

where S = (x1, . . . , xm) ∼ Dm.

The proof of the above theorem requires McDiarmid’s inequality, which is presented as following:

Theorem 13.2 (McDiarmid’s inequality). Let D be a distribution on X , and let f be a function taking
finite subsets of X as input. Suppose that f satisfies bounded difference condition with the uniform constant
c, i.e.,

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ c

. Then with probability at least 1− δ,

f(S)− ES∼Dm [f(S)] ≤
√
mc2

2
log(1/δ),

where S ∼ Dm.

Proof: (Sketch) Let S = (x1, . . . , xm) ∼ Dm. We define a martingale Zi = E[f(S) − E[f(S)]|x1, . . . , xi−1].
It is easy to see that |Zi−Zi−1| ≤ c for all i. Then applying Azuma’s inequality to the martingale difference
sequence {Zi} yields the desired result. See Appendix D of the textbook Foundation of Machine Learning
for a full proof. �

We are ready to prove Theorem 13.1.
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Proof of Theorem 13.1: To ease some notations, we define: Eg := Ex∼D[g(x)], ÊSg := 1
|S|
∑
xi∈S g(xi),

and Φ(S) := supg∈G(Eg − ÊSg).

The proof is composed of two parts:

1. Φ(S) ≤ ES∼Dm [Φ(S)] +
√

log(1/δ)
2m .

2. ES∼Dm [Φ(S)] ≤ 2Rm(G).

For part 1, we begin with showing that |Φ(S) − Φ(S′)| ≤ 1
m when S and S′ differ by one element (and

let it be the ith one):

Φ(S)− Φ(S′) = sup
g∈G

(Eg − ÊSg)− sup
g∈G

(Eg − ÊS′g)

≤ sup
g∈G

(Eg − ÊSg − Eg + ÊS′g)

= sup
g∈G

g(x′i)− g(xi)

m

≤ 1

m

The first inequality holds since supremum of difference is greater than difference of supremum.
By symmetry, we have |Φ(S) − Φ(S′)| ≤ 1

m . Then, by setting c = 1
m , applying McDiarmid’s inequality

yields the desired inequality.

For part 2, we use the two-sample trick. Let S′ = (x′1, . . . , x
′
n) ∼ Dm.

ES∼Dm [Φ(S)] = ES∼Dm

[
sup
g∈G

(Eg − ÊSg)

]
≤ ES,S′∼Dm

[
sup
g∈G

(ÊS′g − ÊSg)

]
= ES,S′∼Dm

[
sup
g∈G

1

m

m∑
i=1

(g(x′i)− g(xi))

]

= ES,S′∼Dm,σ

[
sup
g∈G

1

m

m∑
i=1

σi(g(x′i)− g(xi))

]

≤ ES′∼Dm,σ

[
sup
g∈G

1

m

m∑
i=1

σig(x′i)

]
+ ES∼Dm,σ

[
sup
g∈G

1

m

m∑
i=1

−σig(xi)

]
= 2Rm(G)

Combining the two parts gives us

Ex∼D[g(x)] ≤ 1

m

m∑
i=1

g(xi) + 2Rm(G) +

√
log(1/δ)

2m
.

The proof is complete. �

13.2 Generalization Bound for Binary Classification

Given a hypothesis class H with functions taking ±1 values, the associated loss class of H is defined as:

G := {gh(x, y) = 1[h(x) 6= y]|h ∈ H}.
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Lemma 13.3. For any sample S = ((x1, y1), . . . , (xm, ym)), we have R̂S(G) = 1
2R̂S�X (H), where S � X =

(x1, . . . , xm).

Proof: The proof is easy. See Lemma 3.1 in the textbook. �

The following theorem demonstrates an application of Rademacher complexity that provides us a gener-
alization bound for binary classification.

Theorem 13.4. For binary classification with 0-1 loss, let H be a class hypothesis mapping X to {−1, 1}.
Then with probability ≥ 1− δ, for any h ∈ H, we have:

R(h) ≤ R̂S(h) + Rm(H) +

√
log(1/δ)

2m
,

where S ∼ Dm.

Proof: This directly follows from Theorem 13.1 and Lemma 13.3. �

13.3 Massart’s Lemma

Lastly, we present Massart’s lemma, which gives us a better expression of Rm(·).

Theorem 13.5 (Massart’s lemma). Let A ⊆ Rm be a finite set of points with r = max
x∈A
‖x‖2. Then we have

Eσ

[
max
x∈A

m∑
i=1

xiσi

]
≤ r
√

2 log(|A|) ,

where (x1, . . . , xn) is a vector in A.

Proof: Let t > 0 be a number to be chosen later.

exp

(
tEσ

[
max
x∈A

x>σ

])
≤ Eσ

[
exp(tmax

x∈A
x>σ)

]
(Jensen’s inequality)

≤ Eσ

[∑
x∈A

exp(tx>σ)

]
(summation ≥ maximum)

=
∑
x∈A

Eσ

[
exp(tx>σ)

]
=
∑
x∈A

Eσ

[
m∏
i=1

exp(txiσi)

]

=
∑
x∈A

m∏
i=1

Eσ [exp(txiσi)]

≤
∑
x∈A

m∏
i=1

exp

(
(2txi)

2

8

)
(applying Hoeffding’s lemma)

=
∑
x∈A

exp

(
t2

2

m∑
i=1

xi
2

)

≤ |A| exp

(
t2r2

2

)
(recall that r = max

x∈A
‖x‖2)

Taking logarithm, and dividing by t on both sides, we get
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Eσ

[
max
x∈A

x>σ

]
≤ log(|A|)

t
+
tr2

2
.

It is minimized when taking t =
√

log(|A|)
r2/2 =

√
2 log(|A|)
r , and it leads to the bound:

Eσ

[
max
x∈A

x>σ

]
≤ r
√

2 log(|A|).

�


