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13.1 Rademacher Complexity

Given a function class G : X — R, let 01, ..., 0., be i.i.d. Rademacher random variables, that is o; € {—1,1}
with P(o; = 1) = 1/2, and let S = (z1,...,Z,) be a sample from X. Then the empirical Rademacher
complexity is defined as:

Rs(G) = By [sgg % > Oig(xi)} :

and the Rademacher complexity is defined as:
R (G) = Egpm [z%s(c)} .

We note that the Rademacher complexity is distribution-specific.

Based on Rademacher complexity, we can show the following generalization bound:

Theorem 13.1. Let G be a function class mapping X to [0,1]. Then, with probability at least 1 —§ and for
all g € G,

1 log(1/4)
Exn < — i) 2R, —
w~lg(@)] < m;g(ﬁfH R (G) + 1 =5
where S = (T1,...,Tm) ~ D™.
The proof of the above theorem requires McDiarmid’s inequality, which is presented as following;:

Theorem 13.2 (McDiarmid’s inequality). Let D be a distribution on X, and let f be a function taking
finite subsets of X as input. Suppose that [ satisfies bounded difference condition with the uniform constant
c, i.e.,

If(x1, @iy ey @) — flo, .y )| < e

. Then with probability at least 1 — 9,
mc?
f(S) = Eswpm[f(S)] </ - log(1/9),

Proof: (Sketch) Let S = (x1,...,2m,) ~ D™. We define a martingale Z; = E[f(S) — E[f(9)]|z1, ..., xi—1].
It is easy to see that |Z; — Z;_1| < ¢ for all i. Then applying Azuma’s inequality to the martingale difference
sequence {Z;} yields the desired result. See Appendix D of the textbook Foundation of Machine Learning
for a full proof. |

where S ~ D™,

We are ready to prove Theorem 13.1.
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Proof of Theorem 13.1: To ease some notations, we define: Eg := Eyplg(z)], Egg := W > e,es 9(Ti),
and ®(S) := sup,ea(Eg — Egg).

The proof is composed of two parts:

1. ®(S) < Egupm [®(S)] + /2202

2. Egupm[®(5)] < 2%m(G).

For part 1, we begin with showing that |®(S) — ®(S5")| <
let it be the i*" one):

when S and S’ differ by one element (and

1
m

D(S) — ®(S") = sup(Eg — Esg) — sup(Eg — Eg/g)
geG geG

sup(Eg — Egg — Eg + Egrg)

geG
Y .
IICARIC)
geqG m
1
< =
m

IN

The first inequality holds since supremum of difference is greater than difference of supremum.
By symmetry, we have |®(S) — ®(5")] < T}L Then, by setting ¢ = R’ applying McDiarmid’s inequality
yields the desired inequality.

For part 2, we use the two-sample trick. Let S’ = (x,...,z]) ~ D™,

Egwpm [':I)(S)] Es~pm [Sgp(Eg ]ESg):|

< Eg,g~pm {Sup(]@s'g - fES!])]
9€G

m

~ Es5pm [sup LS (ol - g<wi>>]

m
9€¢ ™ im1

=Egs~npm o [sup — Z oi(g(x)) — 9(552))]

9eG m =1
1 m
<IES/~DT”0' [suchrzg +ES~'D7”0' [supng O'Zg ]
1=

egm
=2R,,(G)
Combining the two parts gives us
1 & log(1/6)
E,. < — i 2R/, _—
o~lg(@)] < m;g(xH R (G) + 1\ =5
The proof is complete. |

13.2 Generalization Bound for Binary Classification

Given a hypothesis class H with functions taking £1 values, the associated loss class of H is defined as:

G = {gn(x,y) = 1[h(z) # yl|h € H}.
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Lemma 13.3. For any sample S = ((21,11), - -, (Tm, ym)), we have Rg(G) = %ff{sp((?-l), where S | X =
(‘/L‘h s ,.'lfm)-

Proof: The proof is easy. See Lemma 3.1 in the textbook. ]

The following theorem demonstrates an application of Rademacher complexity that provides us a gener-
alization bound for binary classification.

Theorem 13.4. For binary classification with 0-1 loss, let H be a class hypothesis mapping X to {—1,1}.
Then with probability > 1 — 9§, for any h € H, we have:

A log(1/6
R() < Res(h) + 9, () + 2B,
where S ~ D™,

Proof: This directly follows from Theorem 13.1 and Lemma 13.3. ]

13.3 Massart’s Lemma

Lastly, we present Massart’s lemma, which gives us a better expression of R, ().

Theorem 13.5 (Massart’s lemma). Let A C R™ be a finite set of points with r = max |x||,. Then we have
xE

m

oi | <ry/
I}{leagiz_;mzaz] < rv/2log(|A]),

Eo

where (z1,...,2y) is a vector in A.

Proof: Let t > 0 be a number to be chosen later.

exp (ﬂ[ﬂa [max XTO':|> <E, [exp(t max XTU)] (Jensen’s inequality)
x€EA xEA
< E, Z exp(tha)] (summation > maximum)
xX€A

= Z Ey [exp(tx'o)]

xEA
= Z Eo ﬁexp(twiai)]
i=1

x€A

— Z H Ey [exp(tz;o;)]

xEAi=1
5 (2tx;)° : .
< 1 Hoeffding’s 1
< Z Hexp ( 3 (applying Hoeffding’s lemma)
x€Ai1=1
2 o= o
-Sen (S5
xEA i=1
t2,r,2
< |A]exp (2> (recall that r = max lxll,)

Taking logarithm, and dividing by ¢ on both sides, we get
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log(|A tr2
E, |maxxTo| < 280AD |t
x€A t 2

It is minimized when taking ¢ = 10;5,2(‘/’3‘) = Y QIOE(MD, and it leads to the bound:

Es {meaj‘(xTa'} < ry/2log(|A]).



