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11.1 Review: Lower Bounds

Theorem 11.1. Given any class C with VC-dimension d, there exists a distribution D such that, for a
sample S of size m = d−1

16ε ,

Pr(R(hS) ≤ ε) ≤ e−(d−1)/48.

For example, if d ≥ 49, the probability is less than or equal to 1/e, which is less than 1/2. In the case
of the distribution used in the proof of this theorem, we have to see more than half of the rare samples to
ensure the error rate. What we can take away from this theorem is that it is hard to learn a hypothesis on
a set you can shatter.

Conclusions

1) We can guarantee that, for some constant c1, if m = c1
d log 1/ε+log 1/δ

ε , then R(hS) ≤ ε with probability
at least 1− δ.

2) We can guarantee that, for some constant c2, if m = c2
d
ε , then there exists a distribution D such that

Pr(R(hS) ≤ 1/2.

These statements are about the distribution-agnostic VC-dimension, but real world distributions often
make the problem nicer. Consider an alternate statement of conclusion 1: with m examples, the error ε ≈ d

m ,
which is very bad for the case when d > m. However, large margins (see Figure 11.1) come to our rescue
and drive the VC-dimension down.
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Figure 11.1: Separation margin (dashed) between classes.

11.2 Margin Theory

Let’s define a hypothesis class. Note: We present margin theory with linear threshold functions today, but it
can be generalized. Also, the need for a bias term in the classifier can be omitted by appending a 1 to each x.

H , {hw(x) = sign(w · x) : w ∈ Rn}
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Definition 11.2 (linearly separable). Examples (x1, y1), . . . , (xm, ym) ∈ Rn × {−1, 1} are linearly sepa-
rable if there exists an hw ∈ H such that hw(xi) = yi for all i = 1, . . . ,m.

Notice that this condition is equivalent to yi(w · xi) > 0, which is, due to the degree of freedom in the
magnitude of w, equivalent to yi(w · xi) ≥ 1 if we rescale w so that mini yi(w · xi) = 1.

Definition 11.3 (margin). Given examples (x1, y1), . . . , (xm, ym) ∈ Rn × {−1, 1}, the margin of w is

min
i

yi(w · xi)
‖w‖2

Using the rescaled version of w, this is simply 1/‖w‖2.
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Figure 11.2: Margin (dashed) of a linear classifier (dotted).

11.3 Support Vector Machine Algorithm (separable case)

The rule the support vector machine takes is, “always make the margin as large as possible.” Specifically,
find the w that solves

max
w∈Rn

1

‖w‖2
s.t. yi(w · xi) ≥ 1 ∀i = 1, . . . ,m

To actually solve this, we can minimize 1
2‖w‖

2
2, which is convex. But why is a large margin what we want?

11.4 Why a Large Margin?

Let S be a sample from X , such that ‖xi‖2 ≤ r for all xi in S. Then let us define a hypothesis class

HS,Λ , {hw(x) = sign(w · x) : min
xi∈S

|w · xi| = 1 ∧ ‖w‖2 ≤ Λ}.

Theorem 11.4. The VC-dimension of HS,Λ is less than or equal to r2Λ2.

Proof: Let d be the VC-dimension of HS,Λ. Then there exists {x1, . . . ,xd} ⊆ S that are shattered by HS,Λ.
Now, we know that for any labeling (y1, . . . , yd) there exists hw ∈ HS,Λ such that yi(w · xi) ≥ 1 for all
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i = 1, . . . , d. Summing across i, we have

d ≤ w ·

(
d∑
i=1

yixi

)

≤ ‖w‖2

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥
2

(Cauchy-Schwarz inequality)

≤ Λ

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥
2

(definition of HS,Λ)

Now, let y1, . . . , yd be independent and random with equal probability of 1 or −1, so that E[yi] = 0. Now,
if we take the expectation of both sides of the bound, the inequality will still hold.

d ≤ ΛE

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥
2

2

1/2

≤ Λ

E

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥
2

2

1/2

(Jensen’s inequality)

= Λ

E
d∑

i,j=1

yiyjxi · xj

1/2

= Λ

 d∑
i,j=1

E[yiyj ](xi · xj)

1/2

= Λ

(
d∑
i

xi · xi

)1/2

(E[yiyi] = 1,E[yiyj 6=i] = 0)

≤ Λrd1/2 (‖xi‖2 ≤ r)

So d ≤ r2Λ2. �

So, smaller Λ forces us to use classifiers with larger margins, but in return the VC-dimension is decreased
significantly.

11.5 Noisy Probabilistic Setting

Typically, the “noise-free” property doesn’t hold. That is, there does not exist a function f such that
Pr(f(x) = y) = 0.

Definition 11.5 (Bayes risk). Given a distribution D on X × Y, the Bayes risk R∗ is defined as

R∗ , inf
f
R(f).

Now, we want to bound R(hS)−R∗. A little algebra lets us rewrite this as

R(hS)− inf
h∈H

R(h)︸ ︷︷ ︸
estimation error

+ inf
h∈H

R(h)−R∗︸ ︷︷ ︸
approximation error

.
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The estimation error measures how poorly we learn the correct classifier of our hypothesis class, and the
approximation error measures how poorly our hypothesis class fits the data. Simpler functions (e.g., linear
classifiers) often have low estimation error and high approximation error, and more complex functions (e.g.,
neural networks) often have high estimation error and low approximation error.

In future lectures, we will see how we can bound the estimation error using

sup
h∈H
|R̂S(h)−R(h)|.


