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10.1 Review of Sauer’s Lemma

Sauer’s Lemma says that given a concept class C with VC-dimension d, we have

ΠC(m) ≤
d∑
i=0

(
m

i

)
= O(md)

Proof Sketch: Take C|S with S ⊆ X, |S| = m.

x1 x2 ... xm
n1 0 1 1 0
n2 0 1
... 1 0

0 0

Table 1: Shifting Table for Sauer’s Lemma

Steps:

1. Modify the table using “shifting” until no more shifting possible.

2. Show three claims

(a) The number of unique rows is the same after shifting

(b) The shifting operation did not increase the VC-dim of the table

(c) If a row contains columns i1, ..., ik with 1s, then those columns are shattered in the table.

Conclusion: there are no more than d 1s in any row, hence the number of rows is at least the number of
subsets of [m] of size at most d. �

10.2 Big Theorem

Theorem 10.1. Let C be a class with VC-dim d. Given any consistent learning algorithm A that returns
hS ∈ C on sample S ∼ Dm, there is a constant c0, such that R(hs) ≤ ε with probability at least 1− δ as long
as

m ≥ c0
(
d log(1/ε) + log(1/δ)

ε

)
Proof: Use the two-sample trick. For any class C we have

Pr[R(hS) > ε] ≤ ΠC(2m)e−mε/4 + e−mε/8
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It suffices to bound each term on the right hand side by δ/2. This is achieved when

m ≥ 8 log(2/δ)

ε
(10.1)

for the second term, e−mε/8. Now, Sauer’s lemma says that

ΠC(m) ≤ md

so the first sum term is upper bounded by

(2m)de−mε/4 ≤ δ/2

Taking log on both sides and solving for m here, we get

m ≥ 4

(
d log 2m+ log(2/δ)

ε

)
(10.2)

It is easy to check that the inequalities 10.1 and 10.2 are satisfied when

m = c0
d log(1/ε) + log(1/δ)

ε

for some constant c0, as desired. �

By solving for ε, we establish the following corollary:

Corollary 10.2. When m is fixed, we can guarantee an error rate

ε = 8

(
d logm+ log(1/δ)

m

)

10.3 Lower Bounds

One might ask whether we can get error rate ε with m =
√
d/ε, or possibly log d/ε. The answer is no, and

we can construct “hard” (counter) examples of this. That is, there exist X , C,D, where one needs at least
O(d/ε) sample to even have 50% chance of error ε.

Two tricks:

1. Clearly, if VC-dim(C) = d, you need d samples to learn the target. Let U be the set shattered by C.
Let D be a uniform distribution on U . Let ε = 1

2d (the 2 is somewhat arbitrary). Then to get ε error
we need a sample S to contain all U before R(hs) ≤ ε, |S| ≥ d.

2. Also, to achieve error ε, we also need m ≥ O(1/ε). Let X = {x0, x1}. Let C be all functions X → {0, 1}.
Let D be the distribution on {x0, x1} where Pr[{x0}] = 1− 2ε and Pr[{x1}] = 2ε.

Pr (R(hs) ≥ ε) ≥Pr (x1 not observed after m samples)

= (1− 2ε)m

Set m = 1/(2ε) and we get (1− 2ε)1/(2ε) ≈ 1/e.

Putting it all together Let X = {x0, x1, ..., xd−1}, where the VC-dim of C is d, so that C shatters X .
Construct a distribution D over X such that Pr[{x0}] = 1 − 4ε, and for all i ≥ 1, Pr[{xi}] = 4ε/(d − 1).
Fact: to ensure error rate ≤ ε, need to see half of the d− 1 rare points. So

Pr (R(hs) ≤ ε) ≤ Pr

(
|S − {x0}| ≥

d− 1

2

)
(*)
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Aside Let

Zi =

{
1 w.p. ε

0 w.p. 1− ε

We know that

Pr

(
m∑
i=1

Zi = 0

)
≤ e−mε

and we saw

Pr

(
m∑
i=1

Zi ≤
εm

2

)
≤ e−mε/4

I need

Pr

(
m∑
i=1

Zi ≥ 2εm

)
≤ e−mε/3

(challenge: prove this).
Now, let Zi = 1 if sample i was rare, 0 if not. (So Pr[Zi = 1] = 4ε). Let m = d−1

16ε . So

(∗) ≤ Pr

(∑
Zi ≥

d− 1

2

)
= Pr

(
m∑
i=1

Zi ≥ 2E
∑

Zi

)
≤ e−m(4ε)/3 = e−(d−1)ε/(16ε) = e−(d−1)/16

(since E
∑
Zi = 4εm = 4ε(d−1)

16ε = d−1
4 ).

Given d, this is some constant less that 1− 1
K where you can have K = 100, 1000, etc. This shows that

if you choose m samples for m as above, then you have have a reasonable probability of having a high error
rate.


