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We present some additional analysis of our results, answering the following questions:
(a) how much does the performance of our technique vary? (Section 1) (b) how does
incorporating the Manhattan-world assumption change our results? (Section 2) (c) how well
can our algorithm predict its own accuracy? (Section 3). Finally, we include a complete set
of precision-vs-coverage curves in Section 4.

1 Statistical Analysis of Results

One important consideration in any technique is its variability. This section addresses how
much our performance varies.

Recall that our methodology is to compute the angle between the predicted surface
normal and the ground truth and then summarize the results over the dataset. Since we
have enormous amounts of data (one error per pixel), checking the the null hypothesis that
two methods have the same error is insufficient. Specifically, it is likely that there is some
difference, albeit minute, between the errors of different models or even instances of the same
model trained on slightly different data. Statistical significance tests with an errors-equal
null hypothesis (the usual one) necessarily conflate small and large performance gains. Thus
with a complex model and a large test set, it seems likely that a t-test would reject the null
hypothesis of errors-equal. The appropriate tests for each statistic1 all yield p-values orders
of magnitude smaller than 0.01 when testing whether 3DP and another method have the
same performance. Frequently, the p-value is close to machine precision, suggesting that
errors-equal is too low a bar to surpass to be a good test.

A better way to do this is bootstrapped confidence intervals, which simultaneously give
an idea of how much performance gains and rankings (i.e., whether there is a gain) vary.
The bootstrap draws a large number of replicates, or equally sized datasets sampled with
replacement from the original dataset, and uses these to compute confidence intervals for
some statistic (e.g., the mean or the % Good Pixels at 11.25◦). This approach makes mild
assumptions, and notably does not assume the statistic follows any particular distribution.
We compute confidence intervals with the Bias Corrected and Accelerated Bootstrap [1].
Because errors within images are correlated, we use block resampling and sample entire
images all at once (i.e., each replicate is created by sampling images with replacement).
Intuitively, our procedure can be viewed as seeing how performance varies as we sampled
datasets.

We report 95% confidence intervals in the below tables. Results where another method’s
estimated statistic overlaps 3DP’s 95% CI are indicated with a ∗. We observe only two
overlaps on the B3DO dataset for methods that are substantially worse on the other metrics.
The only confidence interval overlap on the NYU Dataset is a negligible overlap when
comparing with Singh et al. in RMSE: their RMSE is right at the upper limit of 3DP’s RMSE
confidence interval. This strongly suggests that 3DP is capable of consistently outperforming
the baselines.

1Paired t-tests for mean and RMSE; wilcoxon rank-sum test for median; and equality of proportions test
for % Good Pixels
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NYU Depth v2 Dataset

With Manhattan-world constraints

Summary Stats. (◦)
(Lower Better)

Mean Median RMSE

Lee 42.9 (41.6,44.1) 34.6 (31.4,37.3) 54.8 (53.7,55.9)

Hedau 41.2 (40.0,42.5) 25.5 (23.3,28.0) 55.1 (54.0,56.2)

3DP 33.5 (32.5,34.5) 18.0 (16.5,19.2) 46.6 (45.7,47.6)

% Good Pixels
(Higher Better)

11.25◦ 22.5◦ 30◦

Lee 24.8 (22.9,26.8) 40.5 (38.4,42.6) 46.7 (44.7,48.7)

Hedau 33.2 (31.4,35.0) 47.7 (45.9,49.5) 53.0 (51.4,54.7)

3DP 37.4 (35.6,39.3) 55.0 (53.3,56.7) 61.2 (59.5,62.6)

Without Manhattan-world constraints

Summary Stats. (◦)
(Lower Better)

Mean Median RMSE

Depth Transfer 40.8 (40.0,41.4) 38.2 (37.4,39.3) 46.7 (46.0,47.4)

Make 3D 47.1 (46.1,48.1) 42.3 (40.6,44.1) 56.3 (55.3,57.2)

Geometric Context 41.1 (40.2,42.0) 34.9 (33.4,36.6) 49.2 (48.3,50.0)

Singh et al. 35.0 (34.4,35.6) 32.5 (31.8,33.3) ∗ 40.4 (39.9,41.0) ∗
RF + SIFT 36.0 (35.4,36.5) 33.5 (32.9,34.3) 41.5 (41.0,42.1)

SVR + SIFT 36.2 (35.7,36.8) 33.1 (32.5,33.8) 42.1 (41.5,42.7)

3DP 32.7 (32.0,33.4) 27.6 (26.6,28.4) 39.7 (39.0,40.4)

% Good Pixels
(Higher Better)

11.25◦ 22.5◦ 30◦

Depth Transfer 7.6 (6.9,8.3) 25.0 (23.7,26.4) 37.5 (36.1,39.0)

Make 3D 11.2 (10.3,12.2) 28.0 (26.5,29.4) 37.4 (35.8,39.0)

Geometric Context 8.9 (7.8,10.3) 31.3 (29.3,33.5) 43.5 (41.4,45.5)

Singh et al. 11.5 (10.8,12.2) 32.0 (30.8,33.2) 45.7 (44.4,47.0)

RF + SIFT 11.2 (10.7,11.7) 30.9 (30.0,31.8) 44.2 (43.1,45.2)

SVR + SIFT 10.8 (10.4,11.2) 31.0 (30.1,31.9) 44.4 (43.4,45.5)

3DP 19.0 (17.9,20.0) 41.4 (40.0,42.8) 53.4 (52.0,54.8)
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Berkeley 3D Object Dataset

With Manhattan-world constraints

Summary Stats. (◦)
(Lower Better)

Mean Median RMSE

Lee 41.9 (40.7,43.2) 28.4 (25.5,31.1) 56.6 (55.4,57.9)

Hedau 43.5 (42.3,44.9) 30.0 (27.2,33.2) 58.1 (56.8,59.6)

3DP 38.0 (37.0,39.0) 24.5 (22.6,26.7) 51.2 (50.3,52.1)

% Good Pixels
(Higher Better)

11.25◦ 22.5◦ 30◦

Lee ∗ 32.7 (30.9,34.5) ∗ 45.7 (43.8,47.5) 50.8 (49.1,52.5)

Hedau ∗ 32.8 (31.1,34.5) ∗ 45.0 (43.3,46.7) 50.0 (48.4,51.6)

3DP 33.6 (31.9,35.3) 48.5 (46.8,50.2) 54.5 (52.9,56.0)

Without Manhattan-world constraints

Summary Stats. (◦)
(Lower Better)

Mean Median RMSE

Make 3D 45.6 (44.8,46.3) 41.2 (40.0,42.4) 53.5 (52.8,54.3)

Geometric Context 41.9 (41.1,42.8) 37.2 (35.9,38.2) 49.7 (48.9,50.5)

Singh et al. 36.7 (36.2,37.2) 34.0 (33.3,34.6) 42.2 (41.7,42.7)

RF + SIFT 36.8 (36.4,37.3) 34.1 (33.4,34.6) 42.5 (42.0,42.9)

SVR + SIFT 36.9 (36.5,37.3) 33.9 (33.3,34.5) 42.6 (42.1,43.0)

3DP 34.5 (34.0,35.1) 30.5 (29.8,31.4) 41.0 (40.5,41.6)

% Good Pixels
(Higher Better)

11.25◦ 22.5◦ 30◦

Make 3D 8.4 (7.7,9.0) 25.5 (24.1,26.8) 36.1 (34.6,37.6)

Geometric Context 8.3 (7.3,9.6) 25.8 (24.0,27.7) 38.3 (36.3,40.3)

Singh et al. 9.9 (9.5,10.4) 29.4 (28.5,30.4) 43.0 (42.0,44.1)

RF + SIFT 10.2 (9.8,10.6) 29.6 (28.9,30.4) 43.0 (42.1,43.9)

SVR + SIFT 9.7 (9.3,10.1) 29.4 (28.6,30.2) 43.1 (42.2,44.1)

3DP 14.5 (13.7,15.2) 36.0 (34.8,37.2) 49.2 (48.0,50.4)
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Figure 1: Characterization of the distribution of errors before and after rectification.

2 How does the Manhattan-world assumption change
the error distribution?

Another natural question is – how does incorporating the Manhattan world assumption by
rectifying the predictions (i.e., snapping them to the nearest vanishing point) change the
distribution of errors? Looking at the tables, the mean error increases mildly and RMSE
increases dramatically; the median goes down equally dramatically. The percent-good-pixels
goes up, although the increase seems to go down quite a bit as we increase the threshold.

We show the distribution of errors viewed from a variety of lenses in Fig. 1. Fig. 1(a),
shows that rectification clears out moderate errors and pushes them towards either accurate
or inaccurate. Thus, the median goes down dramatically, while the RMSE, which stronly
penalizes large errors, is dramatically increased. The mean error, nonetheless goes down a
small amount. The CDF F (x), shown in Fig. 1(b), can also be interpreted as the percent-
good-pixels at each threshold x; the explosive initial growth for the rectified approach levels
off, leading to decreased gains in percent-good-pixels; eventually at about 41◦, the rectified
approach is overtaken by the raw output. Thus, if one only cares about 45◦ accuracy, it is
not clear which approach would be better.

Finally, Fig. 1(c) confirms the interpretation of pushing moderate errors towards larger
or small. This shows the joint histogram of raw and rectified errors (with the square root of
the bin shown), with raw being the rows and rectified the columns. A red line divides the
histogram in half: energy below the line are results where rectification degrades performance;
energy above where it improves. Each row shows the distribution of raw errors for that
particular rectified error. For instance, in the top rows (ones below 10◦), the raw errors
(columns) are largely from above 10◦. The other salient mode is towards the bottom rows,
where there are frequent instances of results with high rectified error (e.g., the rows between
85◦ and 100◦) but with much lower raw error (60◦ − 80◦).

3 Relationship between confidence and performance

In other parts of the supplementary material, we show results ranked according to their
confidence. Specifically, for an image, we use the per-pixel mean normalization Z used during
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Figure 2: Performance vs. algorithm confidence. Here we plot the metric against the
algorithm confidence Z and a line of best fit. We also report a 95% CI for the spearman
rank correlation.

5



dense-transfer as a confidence measure. This is the average sum of calibrated detector scores.
This qualitatively seems to select good results, which we confirm quantitatively here. We
show scatter plots of per-image scores or errors in Fig. 2. These show a relationship between
the normalization and the performance of the approach. We also report the Spearman rank-
correlation ρ for each variable in the form of a bootstrapped 95% confidence intervals. In all
cases, confidence is negatively correlated with errors (i.e., higher confidence is lower error)
and postively correlated with % Good Pixels.

4 Additional Graphs

We now present complete precision-vs-coverage curves for techniques capable of providing
confidence measures (thus enabling a sliding threshold). We again separate techniques into
non-Manhattan-world (Fig. 3) and Manhattan-world (Fig. 4) techniques. In the case of the
room fitting approach of Hedau et al., we show the operating point if pixels predicted as
clutter are ignored.

3DP does as well or beats each method at all considered operating points. The next-best
non-Manhattan technique is the 3DP algorithm with no repeated iterations (i.e., no update
of membership assignment y). Among the Manhattan-world techniques, the room-fitting
approach does competitively with 3DP; however, it can provide only a single operating point
in the very low-recall regime, and does considerably worse in the dense, 100% recall case.

References
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Figure 3: Complete precision-vs-coverage curves for all performance metrics used. Non-
Manhattan-world techniques
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Figure 4: Complete precision-vs-coverage curves for all performance metrics used.
Manhattan-world techniques
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