Model Selection Sunday, October 5, 2014

MODEL SELECTION

Tuning Parameters

Many machine learning algorithms have parameters that are not determined by the algorithm itself. These parameters influence algorithm performance, and therefore it is important to set them correctly. This problem is called parameter tuning or model selection. A model in this context is a representation of a danifier, regression function, etc.

Examples

- Regularization parameters in regularized logistic regression (1), ridge regression (1), and the support vector machine $(C = \frac{1}{2})$.
- · Kernel parameters, e.g., Gaussian Kernel bandwidth 6), polynomial Kernel degree (p)
- · Polynomial segrel (p) in polynomial least squares

regression

Parameters usually determine the complexity of a model, and therefore model selection amounts to striking the right balance between overfitting and underfitting.

Estimating Risk

Model selection is an issue in all machine learning.

In these notes, we will focus on supervised learning problems in which the performance is measured by a risk.

Let θ denote the parameter(s) to be funed (θ could be a vector). Let $(x_1, y_1), ..., (x_n, y_n)$ be training data, and let f_{θ} denote the learned model. We would ideally like to solve

min $R(\hat{f}_{o})$.

Of course we don't know R so it must be estimated. If R(f) = E[L(Y, f(X))], a natural estimate is the training error,

2 121 1 /m [(m)

 $\hat{R}_{TR}(\hat{f}_0) = \int_{i=1}^{\infty} L(y_i, \hat{f}_0(x_i)),$ also known as the apparent error resubstitution erron. However, if A determines model complexity, then solving min RTR (A) will select a complex model, leading to overfitting.

| Holdout Error |

The holdout error estimate is defined as follows. Partition the training data as

 $(x_i, y_i), \ldots, (x_m, y_m), (x_{m+i}, y_{m+i}), \ldots, (x_n, y_n)$ used to estimate $R(\hat{f}_{\theta})$

used to fit the model for

Assume f_p is learned using (x_i, y_i) , $1 \le i \le m$.

The holdout error estimate is

 $\hat{R}_{Hb}(\hat{f}_{\theta}) = \frac{1}{n-m} \sum_{i=1}^{n} L(y_{i}, f_{\theta}(x_{i}))$

Selecting θ by solving min $\hat{R}_{Hb}(\hat{f}_{\theta})$

avoids overfitting. Indeed, suppose $(X_1,Y_1), \ldots, (X_n,Y_n) \stackrel{iid}{\sim} P$

where P is the joint distribution of (X,Y). I'm using capital letters now to emphasize that these are random variables. Then $\hat{K}_{Ho}(\hat{f}_{\theta})$ is an umbiased estimate in the sense that

 $\begin{aligned} E_{22|2}[\hat{F}_{Ho}(\hat{f}_{\theta})] &= \mathbb{R}(\hat{f}_{\theta}). \\ & \text{ conditional expectation of } \\ & Z_{=}^{=}((X_{m+1},Y_{m+1}),...,(X_{n},Y_{n})) \text{ given } \\ & Z_{1} &=((X_{1},Y_{1}),...,(X_{m},Y_{m})) \end{aligned}$

To see this, observe

 $\mathbb{E}_{z_{z}|z_{i}}\left[\hat{F}_{Ho}\left(\hat{f}_{\theta}\right)\right] = \frac{1}{n-m} \sum_{i=m+1}^{n} \mathbb{E}_{z_{z}|z_{i}}\left[L\left(Y_{i},\hat{f}_{\theta}(X_{i})\right)\right]$ $= \frac{1}{n-m} \sum_{i=m+1}^{n} \mathbb{E}_{\left(X_{i},Y_{i}\right)|z_{i}}\left[L\left(Y_{i},\hat{f}_{\theta}(X_{i})\right)\right]$

Lecture Notes Page

$$=\frac{1}{N-m}\sum_{i=m+1}^{n}R(\hat{f}_{\theta})$$

since (Xi, Yi) - P and for is fixed given Z1.

Is the training enor also imbiased? What does this even mean? To ask whether

$$\mathbb{E}_{\mathbb{Z}}[\hat{\mathcal{R}}_{TR}(\hat{f}_{\theta})] = R(\hat{f}_{\theta}),$$

where

duen't even make sense because the LHS is deterministic and the RHS is random. Instead, we could ask whether

$$\mathbb{E}_{\mathbf{z}} [\hat{f}_{\mathbf{r}}(\hat{f}_{\theta})] = \mathbb{E}_{\mathbf{z}} [R(\hat{f}_{\theta})].$$

So is this true? No, because

$$\mathbb{E}_{2}\left[\hat{R}_{TR}\left(\hat{f}_{\theta}\right)\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{2}\left[L(Y_{i}, \hat{f}_{\theta}(X_{i}))\right]$$

and

$$\mathbb{E}_{2} \lceil L(Y_{i}, \hat{f}_{a}(X_{i})) \rceil \neq \mathbb{E}_{1} \lceil (Y_{i}, \hat{f}_{a}(X_{i})) \rceil$$

Lecture Notes Page 5

$$E_{Z}[L(Y_{i},\hat{f}_{\theta}(X_{i}))] \neq E_{Z,(X',Y')}[L(Y',\hat{f}_{\theta}(X'))]$$

$$= E_{Z}[R(\hat{f}_{\theta})]$$

$$= (X',Y') \text{ is an independent draw from } P.$$

where (x', y') is an independent draw from P.

[Cross Validation]

If data are scarce, the holdont error has the disadvantage that it limits the training examples that are used for learning the model. Cross-validation attempts to improve the sample size used for model bitting while still estimating the error accurately. Let K be an integer, 1 ≤ K ≤ n. Let I,..., Ik be a partition of \$1,2,..., n 3 such that | I; | ~ n × j.

Example
$$J = \{2, 6, 7\}$$

$$J_{2} = \{1, 3, 5, 10\}$$

Define

$$\hat{f}_{\theta}^{(j)} := \text{model based on } \{(x_i, y_i)\} i \notin \mathcal{I}_j$$

and

$$\hat{\mathcal{R}}^{(j)}(\hat{f}_{\phi}^{(j)}) = \frac{1}{|\mathcal{I}_{j}|} \sum_{i \in \mathcal{I}_{j}} L(y_{i}, \hat{f}_{\phi}^{(j)}(x_{i}))$$

Each R(j) is like a different holdont estimate.

The K-fold cross-validation even estimate is $\hat{R}_{cv}(\hat{f}_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \hat{R}^{(i)}(\hat{f}_{\theta}^{(i)}).$

Remarks /

- 1. Common choices of K are 5,10, and n. When K=n it's called leave-one-out cross-validation (LOOCV).
- 2. To reduce the variance of the estimate, and it you have the time/resources, it is good to compute several CV estimates based on different random partitions and average them.

3. In classification, the sets Ik should be chosen so that the proportions of different classes in each fold are the same as in the full sample.

The Bootstrap

Let B>1 be an integer. For b=1,...,B, let Ib be a subset of \$1,2,..., n 3 of size n obtained by sampling with replacement.

Example
$$\int n=6$$

$$T_1 = \{3,4,5,4,1,2\}$$

$$T_2 = \{1,2,6,6,2,5\}$$

Define
$$\hat{f}_b^{(b)} = \text{model based on } \{(x_{i,1}y_i)\}_{i \in I_b}$$

and
$$\hat{\mathcal{R}}^{(6)}\left(\hat{f}_{\theta}^{(6)}\right) = \frac{1}{n-|\mathcal{I}_b|} \sum_{i \notin \mathcal{I}_b} L\left(y_i, \hat{f}_{\theta}^{(6)}(\chi_i)\right).$$

The bootstrap error estimate is

$$\hat{R}_{BS}(\hat{f}_{b}) = \frac{1}{12} \hat{R}^{(b)}(\hat{f}_{b}^{(b)})$$

$$\hat{R}_{BS}(\hat{f}_{b}) = \frac{1}{13} \sum_{b=1}^{12} \hat{R}^{(b)}(\hat{f}_{b}^{(b)})$$

Remarks (

1. The larger B, the better. B=200 is a recommended minimum. That's a lot of training, so the bootstrap can be computationally demanding.

2. \hat{R}_{135} tends to be pessionistic, so it is common to combine the bootstrap and training error estimates.

A recommendation is

0.632 $\hat{R}_{Bs}(\hat{f}_{\theta})$ + 0.368 $\hat{R}_{TR}(\hat{f}_{\theta})$, called the "0.632 bootstrap."

3. The balanced bookstrap chooses $I_{1,...,}I_{B}$ such that each $i \in \{1,2,...,n\}$ occurs exactly n times.

4. Reference: Efron and Tibshirani, An Jutroduction to the Bootstrap.

Final Fiffing

With all of the above approaches, once & is set,

Lecture Notes Page

For is recomputed using all of the training data.