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Abstract

We construct noninteractive statistical zero-knowledge (NISZK) proof systems for a variety of
standard approximation problems on lattices, such as the shortest independent vectors problem
and the complement of the shortest vector problem. Prior proof systems for lattice problems
were either interactive or leaked knowledge (or both).

Our systems are the first known NISZK proofs for any cryptographically useful problems that
are not related to integer factorization. In addition, they are proofs of knowledge, have reasonable
complexity, and generally admit efficient prover algorithms (given appropriate auxiliary input).
In some cases, they even imply the first known interactive statistical zero-knowledge proofs for
certain cryptographically important lattice problems.

We also construct an NISZK proof for a special kind of disjunction (i.e., OR gate) related
to the shortest vector problem. This may serve as a useful tool in potential constructions of
noninteractive (computational) zero knowledge proofs for NP based on lattice assumptions.

1 Introduction

A central idea in computer science is an interactive proof system, which allows a (possibly un-
bounded) prover to convince a computationally-limited verifier that a given statement is true [Bab85,
GMR89, GS86]. The beautiful notion of zero knowledge, introduced by Goldwasser, Micali, and
Rackoff [GMR89], even allows the prover to convince the verifier while revealing nothing more than
the truth of the statement.

Many of the well-known results about zero knowledge, e.g., that NP (and even all of IP) has
zero-knowledge proofs [GMW91, BGG+88], refer to computational zero knowledge, where security
holds only against a bounded cheating verifier (typically under some complexity assumption). Yet
there has also been a rich line of research concerning proof1 systems in which the zero-knowledge
property is statistical. The advantages of such systems include security against even unbounded
cheating verifiers, usually without any need for unproved assumptions. Much is now known about the
∗This material is based upon work supported by the National Science Foundation under Grants CNS-0716786 and

CNS-0749931. Any opinions, findings, and conclusions or recommedations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.
†Part of this work was performed while at SRI International. Supported in part by NSF Grant CNS-0430450.
1In this work, we will be concerned exclusively with proof systems (as opposed to argument systems, in which a

cheating prover is computationally bounded).
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class SZK of problems possessing statistical zero-knowledge proofs; for example, it does not contain
NP unless the polynomial-time hierarchy collapses [For87, AH91], it is closed under complement and
union [Oka00], it has natural complete (promise) problems [SV03, GV99], and it is insensitive to
whether the zero-knowledge condition is defined for arbitrary malicious verifiers, or only for honest
ones [GSV98].

Removing interaction. Zero-knowledge proofs inherently derive their power from interac-
tion [GO94]. In spite of this, Blum, Feldman, and Micali [BFM88] showed how to construct
meaningful noninteractive zero-knowledge proofs (consisting of a single message from the prover
to the verifier) if the parties simply share access to a uniformly random string. Furthermore,
noninteractive computational zero-knowledge proofs exist for all of NP under plausible cryptographic
assumptions [BFM88, BDMP91, FLS99, GOS06].

Just as with interactive proofs (and for the same reasons), it is also interesting to consider
noninteractive proofs where the zero-knowledge condition is statistical. Compared with SZK, much
less is known about the class NISZK of problems admitting such proofs. Clearly, NISZK is a (possibly
proper) subset of SZK. It is also known to have complete (promise) problems [DDPY98, GSV99],
but unlike SZK, it is not known whether NISZK is closed under complement or disjunction (OR).2

Some conditional results are also known, e.g., NISZK = SZK if and only if NISZK is closed under
complement [GSV99] (though it seems far from clear whether this condition is true or not).

Applying NISZK proofs. In cryptographic schemes, the benefits of NISZK proofs are manifold:
they involve a minimal number of messages, they remain secure under parallel and concurrent
composition, and they provide a very strong level of security against unbounded cheating provers and
verifiers alike, typically without relying on any complexity assumptions. However, the only concrete
problems of cryptographic utility known to be in NISZK are all related in some way to integer
factorization, i.e., variants of quadratic residuosity [BFM88, DDP94, DDP97] and the language of
“quasi-safe” prime products [GMR98].3

Another important consideration in applying proof systems (both interactive and noninterative) is
the complexity of the prover. Generally speaking, it is not enough simply to have a proof system; one
also needs to be able to implement the prover efficiently given a suitable witness or auxiliary input.
For interactive SZK, several proof systems for specific problems (e.g., those of [GMR89, MV03])
admit efficient provers, and it was recently shown that every language in SZK ∩ NP has an efficient
prover [NV06]. For noninteractive statistical zero knowledge, prover efficiency is not understood so
well: while the systems relating to quadratic residuosity [BFM88, DDP94, DDP97] have efficient
provers, the language of quasi-safe prime products [GMR98] is known to have an efficient prover
only if interaction is allowed in one component of the proof.

1.1 Lattices and Proof Systems

Ever since the foundational work of Ajtai [Ajt04] on constructing hard-on-average cryptographic
functions from worst-case assumptions relating to lattices, there has been significant interest in

2An earlier version of [DDPY98] claimed that NISZK was closed under complement and disjunction, but the claims
have since been retracted.

3The language of graphs having trivial automorphism group is in NISZK, as are the (NISZK-complete) “image
density” [DDPY98] and “entropy approximation” [GSV99] problems, but these problems do not seem to have any
immediate applications to cryptographic schemes.
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characterizing the complexity of lattice problems. Proof systems have provided an excellent means
of making progress in this endeavor. We review some recent results below, after introducing the
basic notions.

An n-dimensional lattice in Rn is a periodic “grid” of points consisting of all integer linear
combinations of some set of linearly independent vectors B = {b1, . . . ,bn} ⊂ Rn, called a basis of
the lattice. Two of the central computational problems on lattices are the shortest vector problem
SVP and the closest vector problem CVP. The goal of SVP is to find a (nonzero) lattice point whose
length is minimal, given an arbitrary basis of the lattice. The goal of CVP, given an arbitrary
basis and some target point t ∈ Rn, is to find a lattice point closest to t. Another problem, whose
importance to cryptography was first highlighted in Ajtai’s work [Ajt04], is the shortest independent
vectors problem SIVP. Here the goal (given a basis) is to find n linearly independent lattice vectors,
the longest of which is as short as possible. All of these problems are known to be NP-complete in
the worst case (in the case of SVP, under randomized reductions) [Ajt98, vEB81, BS99], so we do
not expect to obtain NISZK (or even SZK) proof systems for them.

In this work, we are primarily concerned with the natural approximation versions of lattice
problems, phrased as promise (or “gap”) problems with some approximation factor γ ≥ 1. For
example, the goal of GapSVPγ is to accept any basis for which the shortest nonzero lattice vector
has length at most 1, and to reject those for which it has length at least γ. One typically views the
approximation factor as a function γ(n) of the dimension of the lattice; problems become easier
(or at least no harder) for increasing values of γ. Known polynomial-time algorithms for lattice
problems obtain approximation factors γ(n) that are only slightly subexponential in n [LLL82,
Sch87, AKS01, AKS02]. Moreover, obtaining a γ(n) = poly(n) approximation requires exponential
time and space using known algorithms [AKS01, AKS02, BN07]. Therefore, lattice problems appear
quite difficult to approximate to within even moderately-large factors.

Proof systems. We now review several proof systems for the above-described lattice problems
and their complements. Every known system falls into one of two categories: interactive proofs that
generally exhibit some form of statistical zero knowledge, or noninteractive proofs that are not zero
knowledge (unless, of course, the associated lattice problems are trivial).

First of all, it is apparent that GapSVPγ , GapCVPγ , and GapSIVPγ have trivial NP proof systems
for any γ ≥ 1. (E.g., for GapSVPγ one can simply give a nonzero lattice vector of length at most 1.)
Of course, the proofs clearly leak knowledge.

Goldreich and Goldwasser [GG00] initiated the study of interactive proof systems for lattice
problems, showing that the complement problems coGapSVPγ and coGapCVPγ have AM proof
systems for γ(n) = O(

√
n/ log n) factors. In other words, there are interactive proofs that all

nonzero vectors in a given lattice are long, and that a given point in Rn is far from a given lattice.4

Moreover, the protocols are perfect zero knowledge for honest verifiers, but they are not known to
have efficient provers. Aharonov and Regev [AR05] showed that for slightly looser γ(n) = O(

√
n)

factors, the same two problems are even in NP. In other words, for such γ the interactive proofs
of [GG00] can be replaced by a noninteractive witness, albeit one that leaks knowledge. Building
upon [GG00, AR05], Guruswami, Micciancio, and Regev [GMR05] showed analogous AM and NP
proof systems for coGapSIVPγ .

4Because GapSVPγ and GapCVPγ are in NP ∩ coAM for γ(n) = O(
p
n/ logn), the main conclusion of [GG00] is

that these problems are not NP-hard, unless the polynomial-time hierarchy collapses.
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Micciancio and Vadhan [MV03] gave (malicious verifier) SZK proofs with efficient provers
for GapSVPγ and GapCVPγ , where γ(n) = O(

√
n/ log n). To our knowledge, there is no known

zero-knowledge proof system for the cryptographically important GapSIVPγ problem (even an
interactive one), except by a reduction to coGapSVP using so-called “transference theorems” for
lattices [Ban93]. This reduction introduces an extra n factor in the approximation, resulting in
fairly loose γ(n) = O(n1.5/

√
log n) factors. The same applies for the covering radius problem

GapCRP [GMR05], where the goal is to estimate the maximum distance from the lattice over all
points in Rn, and for the GapGSMP problem of approximating the Gram-Schmidt minimum of a
lattice.

1.2 Our Results

We construct (without any assumption) noninteractive statistical zero-knowledge proof systems
for a variety of lattice problems, for reasonably small approximation factors γ(n). These are the
first known NISZK proofs for lattice problems, and more generally, for any cryptographically useful
problem not related to integer factorization. In addition, they are proofs of knowledge, have
reasonable communication and verifier complexity, and admit efficient provers. They also imply the
first known interactive statistical zero-knowledge proofs for certain lattice problems. Specifically, we
construct the following:

• NISZK proofs (with efficient provers) for the GapSIVPγ , GapCRPγ , and GapGSMPγ problems,
for any factor γ(n) = ω(

√
n log n).5

In particular, this implies the first known (even interactive) SZK proof systems for these
problems with approximation factors tighter than n1.5/

√
log n.

• An NISZK proof for coGapSVPγ for any factor γ(n) ≥ 20
√
n. This is essentially the best we

could hope for (up to constant factors) given the state of the art, because coGapSVPγ is not
even known to be in NP for any factor γ(n) <

√
n.

For this proof system, we are able to give an efficient prover for γ(n) = ω(n ·
√

log n) factors,
and an efficient quantum prover for slightly tighter γ(n) = O(n/

√
log n) factors. (The prover’s

advice and the proof itself are still entirely classical; only the algorithm for generating the
proof is quantum.)

• An NISZK proof for a special disjunction problem of two or more coGapSVPγ instances. As
we describe in more detail below, this system may serve as an important ingredient in an
eventual construction of noninteractive (computational) zero knowledge proofs for all of NP
under lattice-related assumptions.

Our systems are also proofs of knowledge of a full-rank set of relatively “short” vectors in the
given lattice. This is an important property in some of the applications to lattice-based cryptography
we envision, described next.

1.2.1 Applications.

Public key infrastructure. It is widely recognized that in public-key infrastructures, a user who
presents her public key to a certification authority should also prove knowledge of a corresponding

5Recall that a function g(n) = ω(f(n)) if g(n) grows faster than c · f(n) for every constant c > 0.
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secret key (lest she present an “invalid” key, or one that actually belongs to some other user). A
recent work of Gentry, Peikert, and Vaikuntanathan [GPV08] constructed a variety of cryptographic
schemes (including “hash-and-sign” signatures and identity-based encryption) in which the secret
key can be any full-rank set of suitably “short” vectors in a public lattice. Our NISZK proof systems
provide a reasonably efficient and statistically-secure way to prove knowledge of such secret keys.
Implementing this idea requires some care, however, due to the exact nature of the knowledge
guarantee and the fact that we are dealing with proof systems for promise problems.

To be more specific, a user generates a public key containing some basis B of a lattice Λ, and
acts as the prover in the GapSIVPγ system for (say) γ ≈

√
n. In order to satisfy the completeness

hypothesis, an honest user needs to generate B along with a full-rank set of lattice vectors all
having length at most ≈ 1. The statistical zero-knowledge condition ensures that nothing about
the user’s secret key is leaked to the authority. Now consider a potentially malicious user. By the
soundness condition, we are guaranteed only that Λ contains a full-rank set of lattice vectors all
of length at most γ (otherwise the user will not be able to give a convincing proof). Under this
guarantee, our knowledge extractor is able to extract a full-rank set of lattice vectors of somewhat
larger length ≈ γ ·

√
n ≈ n. Therefore, the extracted secret key vectors may be somewhat longer

than the honestly-generated ones. Fortunately, the schemes of [GPV08] are parameterized by a
value L, so that they behave identically on any secret key consisting of vectors of length at most L.
Letting L be a bound on the length of the extracted vectors ensures that the proof of knowledge is
useful in the broader context, e.g., to a simulator that needs to generate valid signatures under the
presented public key. We also remark that our NISZK proofs can be made more compact in size
when applied to the hard-on-average integer lattices used in [GPV08] and related works, by dealing
only with integer vectors rather than high-precision real vectors.

NICZK for all of NP? Our proof systems may also be useful in constructing noninteractive
computational zero-knowledge proof systems for all of NP based on the hardness of lattice prob-
lems. We outline a direction that follows the general approach of Blum, De Santis, Micali, and
Persiano [BDMP91], who constructed an NICZK for the NP-complete language 3SAT under the
quadratic residuosity assumption.

In [BDMP91], the common input is a 3SAT formula, and the auxiliary input to the prover is a
satisfying assignment. The prover first chooses N , a product of two distinct primes. He associates,
in a certain way, each true literal with a quadratic nonresidue from Z∗N , and each false literal
with a quadratic residue. He proves in zero knowledge that (a) for each variable, either it or its
negation is associated with a quadratic residue (thus, a variable and its negation cannot both be
assigned true), and (b) for each clause, at least one of its three literals is associated with a quadratic
nonresidue (thus, each clause is true under the implicit truth assignment). Thus, the entire proof
involves zero-knowledge proofs of a disjunction of quadratic residuosity instances (for case (a)) and
a disjunction of quadratic nonresiduosity instances (for case (b)).

We can replicate much of the above structure using lattices. Briefly, the modulus N translates
to a suitably-chosen lattice Λ having large minimum distance, a quadratic nonresidue translates to
a superlattice Λi of Λ also having large minimum distance, and a quadratic residue translates to a
superlattice having small minimum distance. It then suffices to show in zero knowledge that (a)
for each variable, the lattice associated to either it or its negation (or both) has small minimum
distance, and (b) for each clause, the lattice associated to one of the variables in the clause has
large minimum distance. In Section 3.5, we show how to implement part (b) by constructing an
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NISZK proof for a special disjunction of coGapSVP instances. However, we do not know how to
prove noninteractively that one or more lattices has small minimum distance, i.e., a disjunction of
GapSVP instances (see Section 1.3 for discussion). This seems to be the main technical barrier for
obtaining NICZK for all of NP under lattice assumptions.

Finally, our NISZK proofs immediately imply statistically-secure zaps, as defined by Dwork and
Naor [DN00], for the same problems. Zaps have a number of applications in general, and we suspect
that they may find equally important applications in lattice-based cryptography.

1.2.2 Techniques.

The main conceptual tool for achieving zero knowledge in our proof systems is a lattice quantity
called the smoothing parameter, introduced by Micciancio and Regev [MR07] (following related
work of Regev [Reg04]). The smoothing parameter was introduced for the purpose of obtaining
worst-case to average-case reductions for lattice problems, but more generally, it provides a way to
generate an (almost-)uniform random variable related to an arbitrary given lattice.

In more detail, let Λ ⊂ Rn be a lattice, and imagine “blurring” all the points of Λ according
to a Gaussian distribution. With enough blur, the discrete structure of the lattice is entirely
destroyed, and the resulting picture is (almost) uniformly-spread over Rn. Technically, this intuitive
description corresponds to choosing a noise vector e from a Gaussian distribution (centered at the
origin) and reducing e modulo any basis B of the lattice. (The value e mod B is the unique point
t ∈ P(B) = {

∑
i cibi : ∀ i, ci ∈ [0, 1)} such that t− e ∈ Λ; it can be computed efficiently given e

and B.) Informally, the smoothing parameter of the lattice is the amount of noise needed to obtain
a nearly uniform distribution over P(B) via this process.

Overview of our proof systems. Our NISZK proofs all share a common structure regardless
of the specific lattice problem in question. It is actually most instructive to first consider the
zero-knowledge simulator, and then build the prover and verifier around it. In fact, we have already
described how the simulator works: given a basis B, it simply chooses a Gaussian noise vector e′

and computes t′ = e′ mod B. The vector t′ ∈ P(B) is the simulated common random “string,”
and e′ is the simulated proof.6 In the real proof system, the random string is a uniformly random
t ∈ P(B), and the prover (suppose for now that it is unbounded) generates a proof e by sampling
from the Gaussian distribution conditioned on the event e = t mod B. The verifier simply checks
that indeed t− e ∈ Λ and that e is “short enough.”

For statistical zero knowledge, suppose that YES instances of the lattice problem have small
smoothing parameter. Then the simulated random string t′ = e′ mod B is (nearly) uniform, just as
t is in the real system; moreover, the distribution of the simulated proof e′ conditioned on t′ is the
exactly the same as the distribution of the real proof e. For completeness, we use the fact (proved
in [MR07]) that a real proof e generated in the specified way is indeed relatively short. Finally, for
soundness, we require that in NO instances, a significant fraction of random strings t ∈ P(B) are
simply too far away from the lattice to admit any short enough proof e. (The soundness error can
of course be attentuated by composing several independent proofs in parallel.)

The two competing requirements for YES and NO instances (for zero knowledge and soundness,
respectively) determine the resulting approximation factor for the particular lattice problem. For

6A random binary string can be used to represent a uniformly random t′ ∈ P(B) ⊂ Rn by its n coefficients
ci ∈ [0, 1) relative to the given basis B, to any desired level of precision.
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the GapSIVP, GapCRP, and GapGSMP problems, the factor is ≈
√
n, but for technical reasons it

turns out to be only ≈ n for the coGapSVP problem. To obtain tighter O(
√
n) factors, we design

a system that can be seen as a zero-knowledge analogue of the NP proof system of Aharonov
and Regev [AR05]. Our prover simply gives many independent proofs ei (as above) in parallel,
for uniform and independent ti ∈ P(B). The verifier, rather than simply checking the lengths
of the individual eis, instead performs an “eigenvalue test” on the entire collection. Although
the eigenvalue test and its purpose (soundness) are exactly the same as in [AR05], we use it in a
technically different way: whereas in [AR05] it bounds a certain quantity computed by the verifier
(which leaks knowledge, but guarantees rejection), here it bounds the volume of “bad” random
strings that could potentially allow for false proofs.

We now turn to the issue of prover efficiency. Recall that the prover must choose a Gaussian
noise vector e conditioned on the event that e = t mod B. Such conditional distributions, called
discrete Gaussians over lattices, have played a key role in several recent results in complexity theory
and cryptography, e.g., [AR05, MR07, Reg05, Pei08]. The recent work of [GPV08] demonstrated an
algorithm that can use any suitably “short” basis of the lattice as advice for efficiently sampling from
a discrete Gaussian. Applying this algorithm immediately yields efficient provers for the tightest
γ(n) = ω(

√
n log n) factors for GapSIVP and related problems, and γ(n) = ω(n ·

√
log n) factors for

coGapSVP. In this work, we also describe a quantum sampling algorithm (using different advice)
that yields an efficient quantum prover for coGapSVP, for slightly tighter γ(n) = O(n/

√
log n)

factors.
Finally, we add that all of our proof systems easily generalize to arbitrary `p norms for p ≥ 2,

under essentially the same approximation factors γ(n). The proof systems themselves actually
remain exactly the same; their analysis in `p norms relies upon general facts about discrete Gaussians
due to Peikert [Pei08].

1.3 Open Questions

Recall that SZK is closed under complement and union [Oka00] and that every langauge in SZK∩NP
has a statistical zero-knowledge proof with an efficient prover [NV06]. Whether NISZK has analogous
properties is a difficult open problem with many potential consequences. Our work raises versions of
these questions for several specific problems, which may help to shed some light on the general case.

We have shown that coGapSVPγ has NISZK proofs for certain γ(n) = poly(n) factors; does its
complement GapSVPγ have such proofs as well? As described above, we suspect that a positive
answer to this question, combined with our proofs for the special coGapSVP disjunction problem,
could lead to noninteractive (computational) zero knowledge proofs for all of NP under worst-case
lattice assumptions. In addition, because the closest vector problem GapCVP and its complement
coGapCVP both admit SZK proofs, it is an interesting question whether they also admit NISZK
proofs. The chief technical difficulty in addressing any of these questions seems to be that a short
(or close) lattice vector guarantees nothing useful about the smoothing parameter of the lattice
(or its dual). Therefore it is unclear how the simulator could generate a uniformly random string
together with a meaningful proof.

The factors γ(n) for which we can demonstrate efficient provers are in some cases looser
than those for which we know of inefficient provers. The gap between these factors is solely a
consequence of our limited ability to sample from discrete Gaussians. Is there some succinct (possibly
quantum) advice that permits efficient sampling from a discrete Gaussian with a parameter close to
the smoothing parameter of the lattice (or close to the tightest known bound on the smoothing
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parameter)? More generally, does every problem in NISZK ∩ NP have an NISZK proof with an
efficient prover?

Finally, although we construct an NISZK proof for a problem that is structurally similar to the
disjunction (OR) of many coGapSVP instances, there are additional technical constraints on the
problem. It would be interesting to see if these constraints could be relaxed or lifted entirely.

2 Preliminaries

2.1 Notation

For any positive integer n, [n] denotes the set {1, . . . , n}. The function log always denotes the natural
logarithm. We extend any function f(·) to a countable set A in the following way: f(A) =

∑
x∈A f(x).

A positive function ε(·) is negligible in its parameter if it decreases faster than the inverse of any
polynomial, i.e., if ε(n) = n−ω(1). The statistical distance between two distributions X and Y over
a countable set A is ∆(X,Y ) = 1

2

∑
a∈A |Pr[X = a]− Pr[Y = a]|.

Vectors are written using bold lower-case letters, e.g., x. Matrices are written using bold capital
letters, e.g., X. The ith column vector of X is denoted xi. We often use matrix notation to denote
a set of vectors, i.e., S also represents the set of its column vectors. We write span(v1,v2, . . .) to
denote the linear space spanned by its arguments. For a set S ⊆ Rn, v ∈ Rn, and c ∈ R, we let
S + x = {y + x : y ∈ S} and cS = {cy : y ∈ S}.

The symbol ‖·‖ denotes the Euclidean norm on Rn. We say that the norm of a set of vectors is
the norm of its longest element: ‖X‖ = maxi‖xi‖. For any t ∈ Rn and set V ⊆ Rn, the distance
from t to V is dist(t, V ) = infv∈V dist(t,v).

2.2 Noninteractive Proof Systems

We consider proof systems for promise problems Π = (ΠYES,ΠNO) where each instance of the
problem is associated with some value of the security parameter n, and we partition the instances
into sets ΠYES

n and ΠNO
n in the natural way. In general, the value of n might be different from

the length of the instance; for example, the natural security parameter for lattice problems is the
dimension n of the lattice, but the input basis might be represented using many more bits. In this
work, we assume for simplicity that instances of lattice problems have lengths bounded by some
fixed polynomial in the dimension n, and we treat n as the natural security parameter.

Definition 2.1 (Noninteractive Proof System). A pair (P, V ) is a noninteractive proof system for
a promise problem Π = (ΠYES,ΠNO) if P is a (possibly unbounded) probabilistic algorithm, V is
a deterministic polynomial-time algorithm, and the following conditions hold for some functions
c(n), s(n) : N→ [0, 1] and for all n ∈ N:

• Completeness: For every x ∈ ΠYES
n , Pr[V (x, r, P (x, r)) accepts] ≥ 1− c(n).

• Soundness: For every x ∈ ΠNO
n , Pr[∃ π : V (x, r, π) accepts] ≤ s(n).

The probabilities are taken over the choice of the random input r and the random choices of P . The
function c(n) is called the completeness error, and the function s(n) is called the soundness error.
For nontriviality, we require c(n) + s(n) ≤ 1− 1/poly(n).
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The random input r is generally chosen uniformly at random from {0, 1}p(n) for some fixed
polynomial p(·). For notiational simplicity, we adopt a model in which the random input r is chosen
from an efficiently-sampleable set Rx that may depend on the instance x. This is without loss
of generality, because given a random string r′ ∈ {0, 1}p(n), both prover and verifier can generate
r ∈ Rx simply by running the sampling algorithm with randomness r′.

By standard techniques, completeness and soundness errors can be reduced via parallel repetition.
Note that our definition of soundness is non-adaptive, that is, the NO instance is fixed in advance of
the random input r. Certain applications may require adaptive soundness, in which there do not
exist any instance x ∈ ΠNO

n and valid proof π, except with negligible probability over the choice
of r. For proof systems, a simple argument shows that non-adaptive soundness implies adaptive
soundness error 2−p(n) for any desired p(n) = poly(n): let B(n) = poly(n) be a bound on the length
of any instance in ΠNO

n , and compose the proof system in parallel some poly(n) times to achieve
(non-adaptive) soundness 2−p(n)−B(n). Then by a union bound over all x ∈ ΠNO

n , the resulting proof
system has adaptive soundness 2−p(n).

Definition 2.2 (NISZK). A noninteractive proof system (P, V ) for a promise problem Π =
(ΠYES,ΠNO) is statistical zero knowledge if there exists a probabilistic polynomial-time algorithm S
(called a simulator) such that for all x ∈ ΠYES, the statistical distance between S(x) and (r, P (x, r))
is negligible in n:

∆(S(x) , (r, P (x, r)) ) ≤ negl(n).

The class of promise problems having noninteractive statistical zero knowledge proof systems is
denoted NISZK.

For defining proofs of knowledge, we adapt the general approach advocated by Bellare and
Goldreich [BG92] to our noninteractive setting. In particular, the definition is entirely distinct from
that of a proof system, and it refers to relations (not promise problems). Let R ⊆ {0, 1}∗ × {0, 1}∗
be a binary relation where the first entry x of each (x, y) ∈ R is associated with some value of
the security parameter n, and partition the relation into sub-relations Rn in the natural way. Let
Rx = {y : (x, y) ∈ R} and ΠR

n = {x : ∃ y such that (x, y) ∈ Rn}.

Definition 2.3 (Noninteractive proof of knowledge). Let R be a binary relation, let V be a
determinstic polynomial time machine, and let κ(n), c(n) : N→ [0, 1] be functions. We say that V
is a knowledge verifier for the relation R with nontriviality error c and knowledge error κ if the
following two conditions hold:

1. Nontriviality (with error c): there exists a probabilistic function P such that for all x ∈ ΠR
n ,

Pr[V (x, r, P (x, r)) accepts] ≥ 1− c(n).

2. Validity (with error κ): there exists a probabilistic oracle machine E such that for for every
probabilistic function P ∗ and every x ∈ ΠR

n where

px = Pr[V (x, r, P ∗(x, r)) accepts] > κ(n),

EP
∗
(x) outputs a string from Rx in expected time at most poly(n)/(px − κ(n)).

The probabilities above are taken over the random input r and the random choices of P (or P ∗).
Note that E is given oracle access to the prover P ∗, so in particular it can “rewind” P ∗ and run it
on several different random inputs r.
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2.3 Lattices

For a matrix B ∈ Rn×n whose columns b1, . . . ,bn are linearly independent, the n-dimensional
lattice7 Λ generated by the basis B is

Λ = L(B) = {Bc =
∑

i∈[n]
ci · bi : c ∈ Zn}.

The fundamental parallelepiped of B is the half-open set P(B) = {
∑

i cibi : 0 ≤ ci < 1, i ∈ [n]}.
For any lattice basis B and point x ∈ Rn, there is a unique vector y ∈ P(B) such that y−x ∈ L(B).
This vector is denoted y = x mod B, and it can be computed in polynomial time given B and x.

For any (ordered) set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, let S̃ = {s̃1, . . . , s̃n}
denote its Gram-Schmidt orthogonalization, defined iteratively in the following way: s̃1 = s1, and for
each i = 2, . . . , n, s̃i is the component of si orthogonal to span(s1, . . . , si−1). Clearly, ‖s̃i‖ ≤ ‖si‖.

Let Cn = {x ∈ Rn : ‖x‖ ≤ 1} be the closed unit ball. The minimum distance of a lattice Λ,
denoted λ1(Λ), is the length of its shortest nonzero element:

λ1(Λ) = min
06=x∈Λ

‖x‖.

More generally, the ith successive minimum λi(Λ) is the smallest radius r such that the closed
ball rCn contains i linearly independent vectors in Λ:

λi(Λ) = min{r ∈ R : dim span(Λ ∩ rCn) ≥ i}.

The Gram-Schmidt minimum b̃l(Λ) is

b̃l(Λ) = min
B
‖B̃‖ = min

B
max
i∈[n]
‖b̃i‖,

where the minimum is taken over all (ordered) bases B of Λ. The definition is restricted to bases
without loss of generality, because for any (ordered) full-rank set S ⊂ Λ, there is an (ordered) basis
B of Λ such that ‖B̃‖ ≤ ‖S̃‖ (see [MG02, Lemma 7.1]).

The covering radius µ(Λ) is the smallest radius r such that closed balls rCn centered at every
point of Λ cover all of Rn:

µ(Λ) = max
x∈Rn

dist(x,Λ).

The dual lattice of Λ, denoted Λ∗, is defined to be the set

Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}

of all vectors having integer inner product with all the vectors in Λ. It is routine to verify that this
set is indeed a lattice, and if B is a basis for Λ, then B∗ = (B−1)T is a basis for Λ∗. It also follows
from the symmetry of the definition that (Λ∗)∗ = Λ.

7Technically, this is the definition of a full-rank lattice, which is all we will be concerned with in this work.
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2.3.1 Basic Facts

The various quantities above can be related to each other via so-called transference theorems, such
as the following (non-trivial) result of Banaszczyk.

Lemma 2.4 ([Ban93]). For any n-dimensional lattice Λ,

1 ≤ 2 · λ1(Λ) · µ(Λ∗) ≤ n.

The next lemma bounds (twice) the covering radius µ from below by both the Gram-Schmidt
and nth successive minima.

Lemma 2.5 ([MG02, Theorem 7.9]). For any n-dimensional lattice Λ,

b̃l(Λ) ≤ λn(Λ) ≤ 2µ(Λ).

The next lemma establishes that a random point in P(B) is unlikely to be “close” to the lattice,
where the notion of closeness is relative to the covering radius.

Lemma 2.6 ([GMR05, Lemma 4.1]). For any lattice Λ = L(B),

Pr
t∈P(B)

[
dist(t,Λ) <

µ(Λ)
2

]
≤ 1

2
,

where the probability is taken over t ∈ P(B) chosen uniformly at ranodm.

2.3.2 Problems on Lattices

Here we define some standard approximation problems on lattices, all of which ask to estimate (to
within some factor γ) the value of some geometric lattice quantity. We define promise (or “gap”)
problems Π = (ΠYES,ΠNO), where the goal is to decide whether the instance belongs to the set
ΠYES or the set ΠNO (these two sets are disjoint, but not necessarily exhaustive; when the input
belongs to neither set, any output is acceptable). In the complement of a promise problem, ΠYES

and ΠNO are simply swapped.

Definition 2.7 (Lattice Problems). Let γ = γ(n) be an approximation factor in the dimension n.
For any function φ from lattices to the positive reals, we define an approximation problem where
the input is a basis B of an n-dimensional lattice. It is a YES instance if φ(L(B)) ≤ 1, and is a NO
instance if φ(L(B)) > γ(n).

In particular, we define the following concrete problems by instantiating φ:

• The Shortest Vector Problem GapSVPγ , for φ = λ1.

• The Shortest Independent Vectors Problem GapSIVPγ , for φ = λn.

• The Gram-Schmidt Minimum Problem GapGSMPγ , for φ = b̃l.

• The Covering Radius Problem GapCRPγ , for φ = µ.

Note that the choice of the quantities 1 and γ above is arbitrary; by scaling the input instance,
they can be replaced by β and β · γ (respectively) for any β > 0 without changing the problem.
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2.3.3 Gaussians on Lattices

Our review of Gaussian measures over lattices follows the development by prior works [Reg04, AR05,
MR07]. For any s > 0 define the Gaussian function centered at c with parameter s as:

∀x ∈ Rn, ρs,c(x) = e−π‖x−c‖2/s2 .

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted. The total measure
associated to ρs,c is

∫
x∈Rn ρs,c(x) dx = sn, so we can define a continuous Gaussian distribution

centered at c with parameter s by its probability density function

∀x ∈ Rn, Ds,c(x) =
ρs,c(x)
sn

.

It is possible to sample from Ds,c efficiently to within any desired level of precision. For simplicity,
we use real numbers in this work and assume that we can sample from Ds,c exactly; all the arguments
can be made rigorous by using a suitable degree of precision.

For any c ∈ Rn, real s > 0, and lattice Λ, define the discrete Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.

(As above, we may omit the parameters s or c.) Note that the denominator in the above expression is
always finite (see, e.g., [AR05, Claim 2.4]), so the probability distribution is well-defined. Intuitively,
DΛ,s,c can be viewed as a “conditional” distribution, resulting from sampling x ∈ Rn from a Gaussian
centered at c with parameter s, and conditioning on the event x ∈ Λ.

The smoothing parameter. Micciancio and Regev [MR07] introduced a lattice quantity called
the smoothing parameter.

Definition 2.8. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is defined to be the smallest s such that ρ1/s(Λ∗\{0}) ≤ ε.

The name “smoothing parameter” is due to the following (informally stated) fact: if a lattice
Λ is “blurred” by adding Gaussian noise with parameter s ≥ ηε(Λ) for some ε > 0, the resulting
distribution is ε/2-close to uniform over the entire space. This is made formal in the following
lemma.

Lemma 2.9 ([MR07, Lemma 4.1]). For any lattice L(B), ε > 0, s ≥ ηε(L(B)), and c ∈ Rn, the
statistical distance between (Ds,c mod B) and the uniform distribution over P(B) is at most ε/2.

The smoothing parameter of an n-dimensional lattice Λ is related to other fundamental lattice
quantities, such as the dual minimum distance λ1(Λ∗) and the Gram-Schmidt minimum b̃l(Λ).

Lemma 2.10 ([MR07, Lemma 3.2]). Let Λ be any n-dimensional lattice, and let ε(n) = 2−n. Then

ηε(Λ) ≤
√
n/λ1(Λ∗).
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Lemma 2.11 ([GPV08, Lemma 3.1]). For any n-dimensional lattice Λ and ε > 0, we have

ηε(Λ) ≤ b̃l(Λ) ·
√

log(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible function ε(n) for which

ηε(Λ) ≤ b̃l(Λ) · ω(
√

log n).

Note that because b̃l(Λ) ≤ λn(Λ), we also have ηε(Λ) ≤ λn(Λ) · ω(
√

log n); this is Lemma 3.3
in [MR07].

The smoothing parameter also influences the behavior of discrete Gaussian distributions over
the lattice. When s ≥ ηε(Λ), the distribution DΛ,s,.c has a number of nice properties: it is highly
concentrated within a radius s

√
n around its center c, it is not concentrated too heavily in any

single direction, and it is not concentrated too heavily on any fixed hyperplane. The next lemma
states all these facts precisely.

Lemma 2.12 ([MR07, Lemmas 4.4 and 4.2] and [Reg05, Lemma 3.13]). For any n-dimensional
lattice Λ, any c ∈ Rn, and any ε ∈ (0, 1) and s ≥ ηε(Λ),

Pr
x∼DΛ,s,c

[‖x− c‖ > s
√
n] ≤ 1+ε

1−ε · 2
−n.

In addition, for any unit vector u ∈ Rn,

E
x∼DΛ,s,c

[〈x− c,u〉2] ≤ s2 ·
(

1
2π + ε

1−ε

)
.

In addition, if s ≥
√

2 · ηε(Λ) and H ⊂ Rn is any fixed (n− 1)-dimensional hyperplane,

Pr
x∼DΛ,s,c

[x ∈ H] < 1√
2
· 1+ε

1−ε

3 Noninteractive Statistical Zero Knowledge

In this section we give NISZK proof systems for a variety of standard lattice problems, as well as for
a special kind of disjunction (OR) of two or more coGapSVP instances.

3.1 NISZK for Smooth-Or-Separated Problem

Here we introduce an intermediate lattice problem (actually, a family of problems parameterized by
a function ε(n)) called SOS, which stands for “smooth-or-separated.” The SOS problem exactly
captures the two properties we need for our first basic NISZK proof system: in YES instances, the
lattice can be completely smoothed by a Gaussian with parameter 1, and in NO instances, a random
point is at least

√
n away from the lattice with good probability. Moreover, the SOS problem is at

least as expressive as several standard lattice problems of interest, by which we mean that there are
simple (deterministic) reductions to SOS from GapSIVPγ , GapCRPγ , GapGSMPγ , and coGapSVPγ
(for appropriate approximation factors γ).
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Definition 3.1 (Smooth-Or-Separated Problem). For any positive function ε = ε(n), an input to
ε-SOSγ is a basis B of an n-dimensional lattice. It is a YES instance if ηε(L(B)) ≤ 1, and is a NO
instance if µ(L(B)) > γ(n).8

The NISZK proof system for SOS is described precisely in Figure 1. For the moment, we ignore
issues of efficiency and assume that the prover is unbounded (in Section 3.3 below, we describe
efficient provers for specific problems of interest). To summarize, the random input is a uniformly
random point t ∈ P(B), where B is the input basis. The prover samples a vector e from a Gaussian
(centered at the origin), conditioned on the event that e is congruent to t modulo the lattice, i.e.,
e− t ∈ L(B). In other words, the prover samples from a discrete Gaussian distribution. The verifier
accepts if e and t are indeed congruent modulo L(B), and if ‖e‖ ≤

√
n.

In the YES case, the smoothing parameter is at most 1. This lets us prove that the sampled
proof e is indeed shorter than

√
n (with overwhelming probability), ensuring completeness. More

interestingly, it means that the simulator can first choose e from a continuous Gaussian, and then
set the random input t = e mod B. This t is almost-uniform in P(B), ensuring zero knowledge.
In the NO case, the covering radius of the lattice is large. Therefore, with good probability the
random vector t ∈ P(B) is simply too far away from the lattice to admit any short enough e, hence
no proof can convince the verifier.

NISZK proof system for SOS

Common Input: A basis B of an n-dimensional lattice Λ = L(B).

Random Input: A vector t ∈ Rn chosen uniformly at random from P(B).

Prover P : Sample v ∼ DΛ,−t, and output e = t + v ∈ Rn as the proof.

Verifier V : Accept if e− t ∈ Λ and if ‖e‖ ≤
√
n, otherwise reject.

Figure 1: The noninteractive zero-knowledge proof system for the SOS problem.

Theorem 3.2. For any γ(n) ≥ 2
√
n and any negligible function ε(n), the problem ε-SOSγ ∈ NISZK

via the proof system described in Figure 1. The completeness error of the system is c(n) = 2−n+1

and the soundness error is s(n) = 1/2.

Proof. We demonstrate each of the required properties in turn.

Completeness. Suppose that B is a YES instance of ε-SOSγ , i.e., ηε(Λ) ≤ 1. By construction,
v ∈ Λ because the support of DΛ,−t is Λ. Therefore e− t = v ∈ Λ. Furthermore, by Lemma 2.12,
we have

‖e‖ = ‖v − (−t)‖ ≤
√
n,

except with probability at most 1+ε
1−ε · 2

−n ≤ 2−n+1, which is therefore an upper bound on the
completeness error.

8Using techniques from [MR07], it can be verified that the YES and NO sets are disjoint whenever γ ≥
√
n and

ε(n) ≤ 1/2.
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Soundness. Suppose that B is a NO instance of ε-SOSγ , i.e., µ(Λ) > γ(n) ≥ 2
√
n. For the verifier

to accept, it must be that ‖e‖ ≤
√
n and t− e ∈ Λ, which implies

dist(t,Λ) ≤
√
n <

µ(Λ)
2

.

However, by Lemma 2.6, the probability (over the choice of t ∈ P(B)) of this event is at most 1/2,
which is therefore an upper bound on the soundness error.

Statistical zero knowledge. The simulator S algorithm does the following: choose e′ ∼ D from
the continuous Gaussian distribution (centered at 0 with parameter 1) and compute t′ = e′ mod B.
Output (t′, e′).

We now analyze the statistical distance between the distribution of the simulator’s output (t′, e′)
and the distribution of (t, e) in the real protocol. By definition, the distribution of v = e − t
conditioned on any fixed value of t ∈ P(B) is exactly DΛ,−t. In the simulation, consider the
distribution D of v′ = e′ − t′ conditioned on any fixed value of t′ ∈ P(B). The support of D is Λ,
and the distribution is

D(v′) =
ρ(e′)

ρ(Λ + t′)
=
ρ−t′(v′)
ρ−t′(Λ)

= DΛ,−t′(v′).

Therefore for any t̂ ∈ P(B), the distribution of the simulated proof e′ conditioned on t′ = t̂ is
identical to the distribution of the real proof e conditioned on t = t̂.

Now because B is a YES instance of ε-SOSγ , we have ηε(Λ) ≤ 1. By Lemma 2.9, the random
input t′ generated by the simulator is within negligible statistical distance ε(n)/2 of uniform over
P(B), which is the distribution of t in the real system. It follows that ∆((e, t), (e′, t′)) ≤ ε(n)/2, as
desired.

We now turn to the knowledge guarantee for the protocol. For a function ε = ε(n), we define a
relation Rε where an instance (for security parameter n) is a basis B ⊂ Rn×n of a lattice having
smoothing parameter bounded by 1 (without loss of generality), and a witness for B is a full-rank
set S ⊂ L(B) of lattice vectors having length at most 2

√
n. Formally,

Rε = {(B,S) : dim span(B) = dim span(S) = n, ηε(L(B)) ≤ 1, S ⊂ L(B), and ‖S‖ ≤ 2
√
n}.

Theorem 3.3. For any positive ε(n) ≤ 1/3, the verifier described in Figure 1 is a knowledge verifier
for relation Rε with nontriviality error c(n) = 2−n+1 and knowledge error κ(n) = ε(n)/2.

Proof. The nontriviality error follows directly from the completeness property as shown in the proof
of Theorem 3.2.

Let B ∈ ΠRε
n and Λ = L(B), and suppose that for some P ∗,

pB = Pr[V (B, t, P ∗(B, t)) accepts] > κ(n) = ε(n)/2,

where the probability is taken over a uniformly random t ∈ P(B) and the randomness of P ∗.
The extractor E, on input B and given oracle access to P ∗, works as follows. Start with an

empty set S, and repeat the following: choose e′ ∼ D1 and compute t′ = e′ mod B. Run the prover
P ∗ on (B, t′). If the prover produces an e such that ‖e‖ ≤

√
n and e = t′ mod B (i.e., an e such

that V (B, t′, e) accepts), and if s = e′ − e ∈ Λ is linearly independent from the vectors in S and
‖s‖ ≤ 2

√
n, then add s to S. If |S| = n, output S, otherwise loop.
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We now analyze E. First, note that because B ∈ ΠRε
n , we have ηε(Λ) ≤ 1. Therefore, each

random input t′ produced by E is within statistical distance κ(n) = ε(n)/2 of uniform over P(B), by
Lemma 2.9. Thus, P ∗ produces a valid proof with probability at least pB−κ(n) over the extractor’s
choice of t′ and the randomness of P ∗. Now condition on the event that P ∗ produces an accepting
proof e. First, it can be seen that the distribution of s = e′ − e is exactly the discrete Gaussian
DΛ,s,−e. By the fact that ‖e‖ ≤

√
n, the triangle inequality, and Lemma 2.12, we have

‖s‖ ≤ ‖(e′ − e)− (−e)‖+ ‖e‖ ≤ 2
√
n,

except with probability at most 2−n+1. Moreover, the probability that s lands in any fixed n− 1
dimensional subspace of Rn is at most 9/10 by Lemma 2.12. If follows that with each iteration,
the probability that we add a new vector to S is at least (pB − κ(n))/20. We conclude that the
expected number of iterations before |S| = n is O(n)/(pB − κ(n)), and the proof is complete.

3.2 Standard Lattice Problems

We now show straightforward deterministic reductions from the standard lattice problems GapSIVPγ′ ,
GapCRPγ′ and coGapSVPγ′ to the ε-SOSγ problem, for appropriate approximation factors γ′(n)
related to γ(n) (and some negligible function ε(n)).

Theorem 3.4. For every γ(n) ≥ 1 and any fixed ω(
√

log n) function, there is a deterministic
polynomial-time reduction from each of the following problems to ε-SOSγ (for some negligible
function ε(n)):

• GapSIVPγ′, GapCRPγ′, and GapGSMPγ′ for any γ′(n) ≥ 2ω(
√

log n) · γ(n),

• coGapSVPγ′ for any γ′(n) ≥ 2
√
n · γ(n).

In particular, the problems GapSIVPγ′, GapCRPγ′, and GapGSMPγ′ for γ′(n) = ω(
√
n log n) and

coGapSVP4n are in NISZK.

Proof. The “in particular” part of the claim follows by Theorem 3.2, which gives an NISZK proof
system for ε-SOSγ for any γ(n) ≥ 2

√
n.

First consider GapSIVPγ′ . The reduction is the trivial one that on input B outputs B. Without
loss of generality, we can assume (by scaling) that for YES instances B of GapSIVPγ′ , the lattice
Λ = L(B) has λn(Λ) ≤ 1/ω(

√
log n), while NO instances are such that λn(Λ) > 2γ(n). Suppose that

B is a YES instance. By Lemma 2.11, there is a negligible function ε(n) such that ηε(Λ) ≤ 1, and
thus B is a YES instance of ε-SOSγ . Now suppose that B is a NO instance. Then by Lemma 2.5,
µ(Λ) ≥ λn(Λ)/2 > γ(n), and B is a NO instances of ε-SOSγ . The reduction and analysis for
GapGSMPγ′ is identical, with λn replaced by b̃l.

The reduction from GapCRPγ′ is likewise the trivial reduction. Without loss of generality, we can
assume that for YES instances B of GapCRPγ′ , the lattice Λ = L(B) has µ(Λ) ≤ 1/(2ω(

√
log n)),

while NO instances are such that µ(Λ) > γ(n). For a YES instance, by Lemma 2.5 and 2.11, there
is a negligible function ε(n) such that ηε(Λ) ≤ 1, and thus B is a YES instance of ε-SOSγ . Now
if B is a NO instance of GapCRPγ′ , then we have already seen that µ(Λ) > γ(n), and B is a NO
instances of ε-SOSγ as desired.

The reduction from coGapSVPγ′ is almost as trivial: on input basis B output the basis B∗ =
(B−1)T of the dual lattice Λ∗ = L(B∗). Without loss of generality, we can assume that YES instances
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(of coGapSVPγ′) are such that λ1(Λ) ≥
√
n, while NO instances are such that λ1(Λ) < 1/(2γ(n)).

For a YES instance, we have ηε(Λ∗) ≤
√
n/λ1(Λ) ≤ 1 for ε(n) = 2−n by Lemma 2.10, so B∗ is a

YES instance of ε-SOSγ . For a NO instance, we have µ(Λ∗) ≥ 1/(2λ1(Λ)) > γ(n) by Lemma 2.4, so
B∗ is a NO instance of ε-SOSγ , as desired.

3.3 Prover Efficiency

We now show an efficient implementation of the prover strategy from the proof system of Figure 1,
given some appropriate auxiliary information about the lattice Λ. Note that the prover has to
sample from the discrete Gaussian distribution DΛ,−t (with parameter 1). For this purpose, we use
a recent result of Gentry, Peikert and Vaikuntanathan [GPV08].

Proposition 3.5 ([GPV08, Theorem 4.1]). There is a probabilistic polynomial-time algorithm
SampleD having the following properties. On input an n-dimensional lattice basis B, any s ≥
‖B̃‖ · ω(

√
log n), and an arbitrary c ∈ Rn, the output distribution of SampleD(B, s, c) is within

negligible (in n) statistical distance of DL(B),s,c.

Corollary 3.6. The problems GapSIVPω(
√
n logn), GapCRPω(

√
n logn), and coGapSVPω(n1.5

√
logn) ad-

mit NISZK proof systems with efficient prover algorithms.

Proof. By the reductions from the proof of Theorem 3.4, GapSIVPω(
√
n logn) and GapCRPω(

√
n logn)

reduce to ε-SOS2
√
n (for some negligible ε(n)), which has an NISZK proof system as described in

Figure 1. It simply remains to show that the prover algorithm from that system can be implemented
by an efficient algorithm with suitable auxiliary input. As we have seen in the proof of Theorem 3.4,
the YES instances B for both GapSIVP and GapCRP have λn(L(B)) ≤ 1/ω(

√
log n). Using a basis

B such that ‖B̃‖ ≤ 1/ω(
√

log n) as the auxiliary input, an efficient prover can use the SampleD
algorithm claimed in Proposition 3.5 to sample from a distribution that is statistically close to
DL(B),−t for any t. Because the distributions are statistically close, the completeness, soundness,
and knowledge errors of the efficient-prover system are negligibly close to those of the original
(unbounded-prover) system.

For coGapSVPω(n1.5
√

logn), by Lemmas 2.4 and 2.5 we have a reduction to GapSIVPω(
√
n logn)

that maps B to B∗. The claim then follows from the results we have already shown.

3.4 Tighter Factors for coGapSVP

Theorem 3.4 and Corollary 3.6 establish that GapSIVPγ and GapCRPγ are in NISZK, and even have
efficient provers, for any γ(n) = ω(

√
n log n). On the other hand, for coGapSVP they give NISZK

proof systems only for γ(n) ≥ 4n; for an efficient prover, the factor γ(n) = ω(n1.5 log n) is looser
still.

Here we give a more sophisticated NISZK proof system specifically for coGapSVPγ . With an
unbounded prover, the approximation factor is some γ(n) = O(

√
n); with an efficient prover it

can be any γ(n) = ω(n
√

log n). Interestingly, we can also give an efficient quantum prover for any
γ(n) = O(n/

√
log n), which is an ω(log n) factor tighter than the classical factor. (Note that the

auxiliary input and proof system are still entirely classical; only the internal prover algorithm itself
is quantum.)
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NISZK proof system for coGapSVP

Common Input: A basis B of an n-dimensional lattice Λ = L(B). Let N = 10n3 log n.

Random Input: Vectors t1, . . . , tN ∈ P(B∗) chosen independently and uniformly at random
from P(B∗), defining the matrix T ∈ (P(B∗))N ⊂ Rn×N .

Prover P : For each i ∈ [N ], choose vi ∼ DΛ∗,−ti , and let ei = ti + vi. The proof is the matrix
E ∈ Rn×N .

Verifier V : Accept if both of the following conditions hold, otherwise reject:

1. ei − ti ∈ Λ∗ for all i ∈ [N ], and

2. All the eigenvalues of the n× n positive semidefinite matrix EET are at most 3N .

Figure 2: The noninteractive zero-knowledge proof system for coGapSVP.

Theorem 3.7. For any γ(n) ≥ 20
√
n, the problem coGapSVPγ is in NISZK, via the proof system

described in Figure 2.
Furthermore, for any γ(n) ≥ ω(n

√
log n), the prover can be implemented efficiently with an

appropriate succinct witness. For any γ(n) ≥ n/
√

log n, the prover can be implemented efficiently
as a quantum algorithm with a succinct classical witness.

Proof. We analyze the proof system and prove each of the required properties. Without loss of
generality, we can assume (by scaling) that YES instances of coGapSVP are such that λ1(Λ) >

√
n,

while NO instances are such that λ1(Λ) ≤ 1/20.

Statistical zero knowledge. (This property is the easiest to demonstrate, so we dispense with
it first.) The prover strategy on input B is exactly the prover strategy for ε-SOS on input B∗

(Figure 1), run N times in parallel using the independent random ti ∈ P(B∗) as random inputs.
Therefore, we can simply run the simulator S from the proof of Theorem 3.2 on input B∗ in parallel
N times. It simply remains to ensure that B∗ is a YES instance of ε-SOS for some negligible ε(n).
Indeed, when B is a YES instance, we have λ1(Λ) >

√
n, which by Lemma 2.10 implies ηε(Λ∗) ≤ 1

for ε(n) = 2−n.

Completeness and prover efficiency. Suppose B is a YES instance. Because λ1(Λ) >
√
n, we

have ηε(Λ∗) ≤ 1 for ε = 2−n by Lemma 2.10. By definition of P , ei − ti = vi ∈ Λ∗ for all i ∈ [N ], so
it remains to show that Test 2 is satisfied with significant probability. This fact is (almost) proved
in [AR05, Lemma 6.2], where it is shown that all the eigenvalues of the matrix EET are at most 3N
(except with probability 2−Ω(n)) if every column ei is chosen independently according to DΛ∗ . In
our case, the columns are distributed as t +DΛ∗,−t, where ηε(Λ∗) ≤ 1. The proof of [AR05, Lemma
6.2] carries through even when each column ei is chosen according to a different distribution, as long
as all of the distributions satisfy the two hypotheses of that lemma. Indeed, Lemma 2.12 establishes
these hypotheses for the distribution t +DΛ∗,−t. It follows that our proof system has completeness
error 2−Ω(n), as desired.
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For the efficient classical prover, we have λ1(Λ) > ω(n
√

log n), so λn(Λ∗) ≤ 1/ω(
√

log n) by
Lemma 2.4. Therefore there is a sufficiently short full-rank set S ⊂ Λ∗ that enables efficient
sampling from DΛ∗,c (Proposition 3.5). For the efficient quantum prover, we combine techniques
from [Reg05] and [LLM06]. This involves generating a quantum state corresponding to the Fourier
transform of DΛ∗,c by using the algorithm of [LLM06] to decode points that are within distance√
n ≤ λ1(Λ) ·

√
log n/n of Λ. As in [Reg05], we then compute the quantum Fourier transform and

take a measurement, thus yielding a sample from DΛ∗,c. We defer the details.

Soundness. Suppose that B is a NO instance, i.e., λ1(Λ) ≤ 1/20. Consider the set of all random
inputs T for which the verifier may be fooled into accepting, i.e.,

BAD = {T ∈ (P(B∗))N : ∃ E such that V (B,T,E) accepts}.

We show that PrT[T ∈ BAD] ≤ 2−N , which establishes an exponentially-small soundness error.
Let T ∈ BAD,E be such that V (B,T,E) accepts. Let v1, . . . ,vn be an orthonormal eigenvector

basis of EET (which exists because EET is positive semidefinite). Then because Test 2 is passed,
for all i ∈ [n] we have EETvi = κivi for some 0 ≤ κi ≤ 3N . For any x ∈ Rn, we may write
x =

∑
i∈[n] civi ∈ Rn for some coefficients ci ∈ R, hence ‖x‖2 =

∑
i c

2
i . Furthermore, we have

‖ETx‖2 = 〈x, (EETx)〉 = 〈
∑

i∈[n]
civi,

∑
j∈[n]

κjcjvj〉 =
∑

i∈[n]
κic

2
i ≤ 3N · ‖x‖2.

In particular, if x ∈ Λ = L(B) is a shortest nonzero vector in Λ, i.e., ‖x‖ = λ1(Λ) ≤ 1/20, then
‖ETx‖ ≤

√
N/10.

Now because Test 1 is passed, we have ti − ei ∈ Λ∗ for each i ∈ [N ]. Because x ∈ Λ, we have

〈ti,x〉 = 〈ti − ei,x〉+ 〈ei,x〉 = 〈ei,x〉 mod 1.

Thus, TTx = ETx mod 1, i.e., corresponding entries are congruent modulo 1. Now because
‖ETx‖ ∈ CN

√
N/10 (recall that CN is the closed unit ball in RN ), we have established that if

T ∈ BAD,
TTx ∈ (CN

√
N/10) mod 1. (3.1)

We now bound the probability that Equation (3.1) holds over the random choice of T ∈ (P(B∗))N .
First we show that for any fixed nonzero x ∈ Λ (and in particular, for the x defined above), TTx mod 1
is uniformly random in [0, 1)N . To see this, let x = Bz for some nonzero z ∈ Zn, and observe that
for each i ∈ [N ], ti = B∗ui for uniformly random and independent ui ∈ [0, 1)n. Then

〈ti,x〉 = 〈B∗ui,Bz〉 = uTi (B−1B)z = 〈ui, z〉,

which is uniform modulo 1 because z 6= 0. (Specifically, if zj 6= 0 then (ui)j · zj mod 1 is uniform
and independent of the other coordinates of u.)

Because TTx mod 1 is uniform in the region [0, 1)N having volume 1, PrT[T ∈ BAD] is bounded
from above by the volume of the region (CN

√
N/10) mod 1 ⊆ [0, 1)N , which in turn is bounded

from above by

vol(CN
√
N/10) = (

√
N/10)N · vol(CN ) =

(πN/100)N/2

Γ(N2 + 1)
≤
(
πeN/100
N/2

)N/2
≤ 2−N ,

where the inequality follows by Stirling’s approximation Γ(k + 1) = k! ≥ (k/e)k. This completes the
proof.
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3.5 NISZK for a Special Disjunction Language

Here we demonstrate a NISZK proof system for a special language that is structurally similar to the
disjunction of many coGapSVPγ instances. For simplicity, we abuse notation and identify lattices
with their arbitrary bases (e.g., as problem instances or inputs to algorithms).

Definition 3.8. For a prime q, an input to OR-coGapSVPkq,γ is an n-dimensional lattice Λ such
that λ1(Λ) > γ(n), and k superlattices Λj ⊃ Λ for j ∈ [k] such that the quotient groups Λ∗/Λ∗j are
all isomorphic to the additive group G = Zq.

It is a YES instance if λ1(Λi) > γ(n) for some i ∈ [k], and is a NO instance if λ1(Λi) ≤ 1 for
every i ∈ [k].

We present an NISZK proof system for OR-coGapSVP2
q,γ in Figure 3. The proof and its analysis

generalize to any k > 2 with moderate changes (mainly, the
√
q factors in the statement of

Theorem 3.9 become q(k−1)/k factors).

Theorem 3.9. Let q ≥ 100 be prime and let γ(n) ≥ 40
√
qn. Then the protocol in Figure 3 is a

NISZK proof system for OR-coGapSVP2
q,γ.

Furthermore, if γ(n) ≥ 40
√
q ·ω(n

√
log n), then the oracles used by the prover can be implemented

efficiently with appropriate succinct witnesses.

Proof sketch. By scaling, we can say that YES instances have λ1(Λ), λ1(Λj) >
√
n for some j ∈ {1, 2},

while NO instances have λ1(Λj) ≤ 1/40
√
q for all j ∈ {1, 2}. For the second part of the claim, we

can assume that YES instances have λ1(Λ), λ1(Λj) > ω(n
√

log n).
Completeness is relatively straightforward to show. Briefly, for some j ∈ {1, 2} we have

ηε(Λ∗), ηε(Λ∗j ) ≤ 1 for ε = 2−n, by Lemma 2.10. For the second part of the claim, by Lemma 2.4 we
have λn(Λ∗), λn(Λ∗j ) ≤ 1/ω(

√
log n), so there are short full-rank sets S ⊂ Λ∗,Sj ⊂ Λ∗j that enable

efficient sampling from discrete Gaussians over Λ∗ and Λ∗j (Proposition 3.5). As we showed in the
proof of Theorem 3.7, the matrices Ej satisfy the eigenvalue test with overwhelming probability.

For statistical zero knowledge, the simulator does the following for each i ∈ [N ] (we elide
the subscript i in the following): for j ∈ {1, 2}, it chooses ej ∼ D (the continuous Gaussian
with parameter 1 centered at 0) independently and computes tj = ej mod Λ∗j . It then computes
gj = (ej − tj mod Λ∗j ) ∈ G, and sets s = g1 + g2 ∈ G. The simulated random input and proof are
as in the proof system. Essentially, statistical zero knowledge follows because the tj ∈ P(Λ∗) are
(statistically) uniform and independent. Furthermore, for YES instances, at least one of g1,g2 is
uniformly random in G (statistically) conditioned on any fixed values of t1, t2.

The proof of soundness is more involved. Suppose we have a NO instance. We will show that
the fraction of random inputs for which there exists some valid proof is 2−N . For each j ∈ {1, 2},
and let xj be a shortest nonzero vector in Λj , so ‖x‖ ≤ 1/40

√
q. If the verifier accepts, then as in

the proof of Theorem 3.7, we have

‖ET
j xj‖ ≤

√
N/400q.

Moreover,
GT
j xj + TT

j xj = ET
j xj mod 1 ∈ CN ·

√
N/400q mod 1, (3.2)

where the columns of Gj ∈ GN are made up of the N group elements gj ∈ G as in the verifier
algorithm.
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NISZK proof system for OR-coGapSVP2
q,γ

Common Input: Lattices Λ, Λ1, Λ2 of dimension n as in Definition 3.8. Let N = 10n3 log n.

Random Input: Matrices T1,T2 ∈ (P(Λ∗))N and group elements s1, . . . , sN ∈ G = Zq chosen
independently and uniformly at random.

Prover P : Recall that λ1(Λ) > γ(n), and without loss of generality assume that λ1(Λ1) > γ(n)
(the other case is symmetric).

The auxiliary input to the prover is an oracle O (or its equivalent) that samples from
DΛ∗,c for any given c ∈ Rn, and an oracle O1 for sampling from DΛ∗1,c

.

Do the following for each i ∈ [N ] (for clarity, we omit the subscript i on all vectors):

1. Let e2 ← t2 +DΛ∗,−t2 , and let g2 = (e2 − t2 mod Λ∗2) ∈ (Λ∗/Λ∗2) = G.

2. Let g1 = s − g2 ∈ G = (Λ∗/Λ∗1), and compute the unique t′1 ∈ P(Λ∗1) such that
t′1 = t1 mod Λ∗ and (t′1 − t1 mod Λ∗1) = g1 ∈ (Λ∗/Λ∗1).

3. Let e1 ← t′1 +DΛ∗1,−t′1
.

The proof consists of the matrices E1,E2 ∈ Rn×N (whose N columns are the e1 and e2

vectors, respectively, constructed above for each i ∈ [N ]).

Verifier V : Accept if all of the following conditions hold, otherwise reject.

• All the eigenvalues of both E1ET
1 and E2ET

2 are at most 3N .

• For every i ∈ [N ] (again eliding the subscripts i),

e1 = t1 mod Λ∗ and e2 = t2 mod Λ∗ and g1 + g2 = s ∈ G,

where gj = (ej − tj mod Λ∗j ) ∈ (Λ∗/Λ∗j ) = G for j = 1, 2.

Figure 3: The noninteractive statistical zero-knowledge proof system for the OR-coGapSVP problem.

Define the discrete additive subgroup H ⊂ [0, 1)n as H = 〈Λ∗,xj〉 mod 1 (i.e., the inner product
of every vector in Λ∗ with xj). Because the inner product with xj is a group homomorphism and
xj ∈ Λj , xj 6∈ Λ, H is a nontrivial subgroup of G = Zq, hence it is isomorphic to Zq.

Now GT
j xj ∈ HN , and by (3.2), it must be within radius

√
N/400q (modulo 1) of −TT

j xj . Our
goal will be to bound the number of possible values of GT

j xj ∈ HN . Consider all the points of
HN within a radius of

√
N/400q of −TT

j xj . If we center cubes with (axis-parallel) edges of length
1/q at all K such points, then by the triangle inequality, all the cubes lie within a ball of radius√
N/400q +

√
N/2q ≤

√
N/100q around −TT

j xj modulo 1. Then we have

K ≤ qN · vol(CN
√
N/100q) = (Nq/100)N/2 · vol(CN ) ≤ (q/2)N/2.

Now if the verifier accepts, there are at most K2 ≤ (q/2)N possible values for (GT
1 x1,GT

2 x2) ∈ H2N .
Because the homomorphism from (Λ∗/Λ∗j ) = Zq to H is actually an isomorphism, we conclude
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that (for any fixed values of Tj) there are at most (q/2)N possible values of the group elements
(s1, . . . , sN ) ∈ Znq for which the verifier may mistakenly accept. Therefore the probability that the
random input lands on one of these value is at most 2−N , and we are done.
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