
Lattices in Cryptography
Georgia Tech, Fall 2013

Lecture 5
Cryptanalysis of Knapsack Cryptography

Instructor: Chris Peikert
Scribe: Eric Crockett

1 The Subset-Sum Problem

We begin by recalling the definition of the subset-sum problem, also called the “knapsack” problem, in its
search form.

Definition 1.1 (Subset-Sum). Given positive integer weights a = (a1, . . . , an) and s =
∑n

i=1 aixi =
〈a,x〉 ∈ Z for some bits xi ∈ {0, 1}, find x = (x1, . . . , xn).

The subset-sum problem (in its natural decision variant) is NP-complete. However, recall that NP-
completeness is a worst-case notion, i.e., there does not appear to be an efficient algorithm that solves every
instance of subset-sum. Whether or not “most instances” can be solved efficiently, and what “most instances”
even means, is a separate question. As we will see below, there are highly structured subset-sum instances
that are easily solved. Moreover, we will see that if the bit length of the ai is large enough relative to n,
subset-sum is easy to solve for almost every choice of a, using LLL.

2 Knapsack Cryptography

Motivated by the simplicity and NP-completeness of subset-sum, in the late 1970’s there were proposals to
use it as the basis of public-key encryption schemes. In these systems, the public key consists of weights
a = (a1, . . . an) chosen from some specified distribution, and to encrypt a message x ∈ {0, 1}n one computes
the ciphertext

s = Enca(x) = 〈a,x〉.

A major advantage of this kind of encryption algorithm is its efficiency: encrypting involves just summing up n
integers, which is much faster than operations like modular exponentiation, as used in other cryptosystems.
As for security, recovering the message x from the ciphertext is equivalent to solving the subset-sum instance
(a, s), which we would like to be hard.1 Of course, the receiver who generated the public key should have a
way of decrypting the message. This is achieved by embedding a secret “trapdoor” into the weights, which
allows the receiver to convert the subset-sum instance into an easily solvable one.

One class of easily solved subset-sum instances involves weights of the following type.

Definition 2.1. A superincreasing sequence a = (a1, . . . , an) is one where ai >
∑i−1

j=1 aj for all i.

Given any superincreasing sequence a and s = 〈a,x〉, it is easy to find x: observe that xn = 1 if and only
if s >

∑n−1
j=1 ai. Having found xn, we can then recursively solve the instance (a′ = (a1, . . . , an−1), s′ =

s− anxn), which still involves superincreasing weights.
Of course, we cannot use a superincreasing sequence as the public key, or it would be trivial for an

eavesdropper to decrypt. The final idea is to embed a superincreasing sequence into a “random-looking”
public key, along with a trapdoor that lets us convert the latter back to the former. The original method of
doing so, proposed by Merkle and Hellman, works as follows:

1. Start with some superincreasing sequence b1, . . . , bn.

2. Choose some modulus m >
∑n

i=1 bi, uniformly random w ← Z∗m, and uniformly random permuta-
tion π on {1, . . . , n}.

1We ignore the fact that accepted notions of security for encryption require much more than hardness of recovering the entire
message. However, if the message is easy to recover by an eavesdropper, then the scheme is clearly insecure.

1

http://www.cc.gatech.edu/~cpeikert/lic13/
http://www.cc.gatech.edu/~cpeikert/

3. Let ai = w · bπ(i) mod m. The public key is a = (a1, . . . , an), and the trapdoor is (m,w, π).

The encryption of a message x ∈ {0, 1}n is then

s = Enca(x) =
n∑
i=1

aixi =
n∑
i=1

w · bπ(i)xi.

Given the trapdoor (m,w, π), we can decrypt s as follows: simply compute

s′ = w−1s =
n∑
i=1

bπ(i)xi mod m,

and then solve the subset-sum problem for the (permuted) superincreasing bi, treating s′ as an integer in
the range {0, . . . ,m− 1}. This works because

∑n
i=1 bπ(i)xi < m, so s′ is the true subset-sum (not modulo

anything).
It turns out that some care is needed in choosing the superincreasing sequence b1, . . . , bn. For example,

the natural choice of bi = 2i−1 ends up admitting some simple attacks. We won’t discuss this issue in any
detail, because it turns out that the Merkle-Hellman scheme (and almost all of its subsequent variants) can be
broken using tools like LLL, regardless of what superincreasing sequence is used.

3 Lattice Attacks on Knapsack Cryptography

In 1982, Shamir showed how to break the basic Merkle-Hellman class of schemes. His attack used Lenstra’s
polynomial-time algorithm for fixed-dimension integer programming, which uses LLL as a subroutine.
(Shamir’s attack has been extended to break many subsequent versions of the Merkle-Hellman system.)
Shortly thereafter, Lagarias and Odlyzko gave an incomparable attack (later simplified by Frieze) that solves
almost all instances of “low-density” subset-sum problems.

Definition 3.1. The density of a subset-sum instance is n/maxi log ai.

Frieze showed that if the ai are uniformly random in {1, . . . , X ≥ 2n
2(1/2+ε)}, corresponding to a density of

about 2/n or less, then we can efficiently solve the subset-sum problem with very high probability over the
choice of the ai alone. We describe Frieze’s algorithm in the remainder of these notes.

We are given a subset-sum instance (a = (a1, . . . , an), s = 〈a,x〉) for some x ∈ {0, 1}n. Without loss
of generality, we may assume that s ≥ (

∑
i ai)/2. If not, we replace s by s′ = (

∑n
i=1 ai)− s, then flip the

bits of the answer x that we find. Note that this assumption implies x 6= 0.
Let B = d

√
n · 2ne, and define a lattice L using the basis

B =


1

1
. . .

1
−Ba1 −Ba2 . . . −Ban Bs

 ∈ Z(n+1)×(n+1).

The attack simply runs LLL on this basis to obtain a nonzero lattice vector whose length is within a 2n/2

factor of λ1(L). The analysis below shows that with high probability, the obtained vector is of the form
±(x

0), which reveals the solution x.

2

Notice that for coefficient vector z = (x
1), we have the nonzero lattice vector Bz = (x

0) 6= 0, which
has norm at most

√
n. Also, any lattice vector has a final coordinate divisible by B, and if this coordinate is

nonzero, then the vector has length at least B > 2n/2 · ‖x‖ ≥ 2n/2 · λ1(L). Therefore, LLL always yields a
lattice vector whose final coordinate is zero, and in the remainder of the analysis we restrict our attention to
such vectors.

We now show that with high probability, integer multiples of (x
0) are the only nonzero lattice vectors that

can have length at most 2n/2
√
n < B. So LLL must return such a multiple, and since the returned vector is

part of a basis, it must be ±(x
0).

Consider an arbitrary nonzero vector (z
0) ∈ Zn+1, where ‖z‖ < 2n/2

√
n and z is not an integer multiple

of x. We want to bound the probability that this vector is in L, i.e., the probability that (z
0) = B(z

zn+1) for
some zn+1 ∈ Z. In such an event, we have

s · |zn+1| = |s · zn+1| =

∣∣∣∣∣
n∑
i=1

ai · zi

∣∣∣∣∣ ≤ ‖z‖
n∑
i=1

ai,

so |zn+1| ≤ 2‖z‖ (recall that we assumed s ≥ (
∑n

i=1 ai)/2). So fix a particular such zn+1. In order for (z
0)

to be in L, it must be the case that
n∑
i=1

aizi = zn+1 · s = zn+1

n∑
i=1

aixi,

which implies that
∑n

i=1 aiyi = 0 where yi = (zi − zn+1xi). Since z is not an integer multiple of x,
some yi 6= 0, and we can assume that without loss of generality that i = 1. Therefore, we must have
a1 = −(

∑n
i=2 aiyi)/y1.

With these observations, for any fixed z, zn+1 satisfying the above constraints, the probability that
(z

0) ∈ L is bounded by

Pr
ai

[
n∑
i=1

aiyi = 0

]
= Pr

a1

[
a1 = −(

n∑
i=2

aiyi)/y1

]
≤ X−1,

because the ai are chosen uniformly from {1, . . . , X}. Finally, we apply the union bound over all legal
choice of z, zn+1, of which there are at most

(2B + 1)n · (4B + 1) ≤ (5B)n+1 ≤ 2n
2(1/2+o(1)).

Therefore, taking X = 2n
2(1/2+ε) for an arbitrarily small ε > 0, the probability that there exists any (z

0) ∈ L
satisfying the above constraints is at most 2−Ω(n2), which is extremely small. This completes the analysis.

Variants. We showed that, except for integer multiples of (x
0), no lattice vector has length less than 2n/2

√
n.

So, LLL’s approximation factor of 2n/2 guarantees that it returns ±(x
0). Inspecting the analysis, the 2n/2

factor accounts for the density bound of 2/n.
What if we had an algorithm that achieves a better approximation factor, e.g., one that solves SVP exactly,

or to within a poly(n) factor? For a density of ≈ 1/1.6 (i.e., the ai have bit length ≈ 1.6n), one can show
(following the same kind of argument, but with tighter bounds on the number of allowed z) that ±(x

0) are the
only shortest vectors in the lattice. Similarly, for density 1/Θ(log n), one can show that all lattice vectors not
parallel to (x

0) are some poly(n) factor longer than it. However, at densities above 2/3 or so, (x
0) may no

longer be a shortest nonzero vector in the lattice, so even an exact-SVP oracle might not reveal a subset-sum
solution.

3

	The Subset-Sum Problem
	Knapsack Cryptography
	Lattice Attacks on Knapsack Cryptography

