
Deep Dive Into the Cost of Context Switch
Shibo Chen, Yu Wu, Xinyun Jiang, Wen-Jye Hu
{chshibo, wuyumay, xinyunj, huwenjye}@umich.edu

Abstract—Although modern operating systems and architec-
tures have already made it easy for programmers to hide
the nanosecond and millisecond scale latency resulting from
conventional memory and storage devices, there are very few
software or hardware techniques that are effective in hiding
the latency on microsecond level. Microsecond scale latency has
become increasingly common in data centers and warehouse-
scale computing environment. Inability to hide such latency leads
to low resource utilization and performance degradation. Since
the ”killer-microsecond” problem gained widespread attention,
a number of possible solutions have been proposed to hide
microsecond scale latency, and enabling fast context switching is a
noteworthy example. However, the conventional operating system
managed context switching mechanism has significant overhead
and is difficult to optimize, which gives us the motivation to find
out the bottleneck of the context switch.

In this study, we measured the cost of both the kernel-level
and user-level context switch, and we compared them to show the
differences. By analyzing the results in great length, we provide
explanations about the components of the overhead and also the
insight into the bottleneck of context switch.

Index Terms—context switch, kernel-level thread, user-level
thread

I. INTRODUCTION

Today’s CPU and operating systems are very good at dealing
with latency at nanoseconds and milliseconds scale, while
modern high-performance networking and flash I/O often
have microsecond scale data access latency. Neither hardware
nor software can provide efficient mechanisms to hide these
latency. One of the conventional ways to hide millisecond-
level latency is context switching, thus it is appealing to
use the same technique to hide microsecond scale latency.
Previous works, such as Denelcor HEP15 [4] and Tera MTA
computers [5], enable fast context switch by giving up single
thread performance. Other works, like Erlang [6] and Go [7],
propose using light-weighted threads and context switching in
order to avoid high-cost operating system context switching,
but such solutions fall back to conventional operating system
context switching when dealing with I/O request. None of the
aforementioned approaches is appealing in warehouse scale
environment. It would be plausible to incorporate modifi-
cations into either hardware or software to speed up con-
text switch. However, even though context switch is well
understand on software level, its implications on hardware-
level events are not fully understand, which makes finding
a low-cost and universal solution with high single thread
performance impossible. Therefore, in this study, we propose
to find the bottleneck of the speed of context switching in
hardware design. Inspired by Li’s work [1] which measured
the indirect kernel-level context switch time back in 2007,

we expect the kernel-level context switch time would be
improved by a large amount due to the development of multi-
core processors in the past ten years. Therefore, we would
like to re-visit the bottleneck of context switch in modern
processor and to explore potential opportunities for speed up.
In addition, we are interested to see how user-level context
switch performs compared to kernel-level one, thus specific
perf hardware events, such as Instruction Cache (icache)
misses and Translation Lookaside Buffer (TLB) misses, have
been collected and profiled during the experiment. By profiling
access patterns and characteristics during the context switch,
we provide insights into the context switch and set up the
stage for future works. Based on our observations, the average
direct cost of the kernel-level context switch is 0.62µs and
the average direct cost of user-level context switch time is
1.18µs. Although the average total cost of the kernel-level
context switch varies over different stride size and working
array size, we are able to identify two components of the
overhead in kernel-level context switch: (1) L1 cache misses,
and (2) dTLB misses.

The paper is organized as follows: in section two, we
explain the high-level ideas and implementation details of our
measurements; in section three, we explain the experiment
setups; in section four, we present our results and discuss
the implications of the results; in section five, section six and
section seven, we introduce the related works, conclude our
findings and present the our contributions in this work.

II. METHODOLOGY

We referred to the approach proposed in Li’s work [1] as
our starting point. Since a context switch only takes a few
microseconds on average, in order to statistically measure
the overhead of one context switch, we need to measure a
large number(N) of context switches and then divide the total
overhead by N. Moreover, to make the measurement more
realistic and closer to the production environment, we pad
each context switch with one unit of work. The general idea is
that we first measure the average execution time of one unit of
work and then measure the average execution time of one unit
of work plus the overhead introduced by the context switch.
To be more specific, we first measure the time tsingle of a
single thread sending message to itself for N times. Between
each message communication, the thread would complete one
unit of work. We then measure the execution time, tswitch,
of two threads passing messages and switching between each
other for N times. Between each message communication,



Fig. 1: Thread execution

each thread would do one unit of work and one context switch.
The average time of context switch should be

tavg = (tswitch/2− tsingle)/N

where N is the total count of switching (100,000 in this work).
Figure 1 illustrates the context switch between two threads,

where the threads take turns to execute. When one thread is
stalled due to system call in kernel-level or yield() function
called in user-level, the thread relinquishes the resource and
allow the other thread to execute.

To make sure that the two replicated threads are executed
sequentially and in turn, we need to schedule them on the same
virtual core. In order to do so, we restricted our program on
one core by calling sched_setaffinity(). And with the
help of real-time scheduling policy SCHED_FIFO, we granted
our process with the highest scheduling priority and prevented
them from being interrupted and swapped out by other threads.

The total cost of context switch consists of two parts. The
first part, which is called direct cost, is contributed mainly by
storing and restoring the processor states, flushing the pipeline,
thread scheduling and executing the OS kernel code. The
other part, which is called indirect cost, is resulted from the
resource contention between multiple processes including but
not limited to memory contention, TLB contention and BTB
contention.

A. Kernel-level context switch

To measure the direct cost of context switch, we take the
time difference between the two threads repeatedly sending
messages to each other and one thread repeatedly sending
messages to itself. The thread passes a message with size of
1 bit via pipe. The pipe has a read end and a write end. We
first obtained the time for single-thread message passing. By
calling write() and then read() the main thread performs
one round of message passing. To obtain the time for two
threads sending messages to each other, a child process is

first created from main process via fork(). Two pipes were
created where one thread writes in pipe1 and reads in pipe2

while the other thread does in opposite. Read from a pipe
cannot be performed unless there is a message written to the
pipe. This triggers context switch between the two threads.

To measure the indirect cost of context switch, an array
traversal is performed between each round of message passing.
To measure the cost under different access pattern, we traverse
the array in different stride size. Figure 2 shows an example
of traversing a 32 byte array in stride size 2 or 4. Algorithm
1 shows the the code we use to traverse the array.

Algorithm 1 Traverse Array

for (i = 0; i < Stride Size; i++) do
for (j = i; j < Array Size; j+ = i) do
ARRAY [j]← ARRAY [j] + 1

end for
end for

B. User-level context switch

To show the impact of using system call, we implemented
a user-mode program to compare its performance with that
of the kernel-mode program, using an open source user level
thread library gtthread [2], which has similar semantics
as pthread library. The gtthread_create() function
handles heap allocation for parent thread and stack allo-
cation for the new context. The scheduling of the created
user-level threads are implemented using a queue. When a
thread calls gtthread_yield(), the calling thread will
be put at the tail of the queue, letting the ready thread
at the head of the queue start executing. We made some
necessary modification to the library in order to imitate the
scenario in our kernel-level process. For each thread, it also
walks through an array before sending message as shown
in algorithm 1. We need to implement synchronization and
message exchanging functionalities similar to the program
behaviors we achieved by using read()and write() pair.
However, we do not want to hand the control over to
the kernel in order to avoid undesirable kernel-level con-
text switch, thus we pass messages by doing atomic read
and write to two shared memory location with the help of
synchronization semantics implemented by gtthread. Our
program acquires lock before reading and then releases the
lock by calling the functions gtthread_mutex_lock()
and gtthread_mutex_unlock() provided by the library.
Under the circumstances that it finishes execution or cannot
proceed, it releases the lock and calls gtthread_yield()
to put itself at the tail of a queue of all the threads, and allow
the thread at the head of the queue to proceed.

III. EXPERIMENT

We performed the simulation on a Xeon processor. Table I
shows the detailed configuration of the server.

Naively running the program would lead to changing perfor-
mance caused by unpredictable factors like dynamic frequency



Parameter Value
Core Xeon D-1541 (Broadwell)

Max Clock Frequency 2.1GHz
L1 iCache/dCache size 32kB

L1 iCache/dCache line size 64B
L2 iCache size 256KB

L2 iCache line size 64B
dTLB 4KB, 4-way, 64 entries

TABLE I: Server Configuration

Fig. 2: Access pattern

scaling, temperature variation. For example, if the processor is
running at a lower frequency when executing the single-thread
program and dynamically switches to higher frequency when
executing the multi-thread version because of more intense
resource contention, we may observe a negative context switch
cost due to the unfairness described beforehand. In order to
rule out such undesirable factors, multiple efforts and sanity
checks have been made during the experiment setup stage.

In order to limit the effect of dynamic frequency scheduling,
we set the cpu scaling governor to performance. To minimize
the influence of temperature and other resources of inter-
ference, we sampled 10 iterations for each combination of
stride and array size together as a group and ran 20 groups
of experiments. We took the average of these 200 samples
to improve the reliability of our results. To make sure that
there is no unexpected extra context switch, for instance,
non-voluntary context switching caused by OS when a single
thread is passing message to itself and when two threads are
passing message via system call, we verified the total number
of context switching counted by OS in /proc/<pid>/
status is consistent with our estimation.

To show the impact of accessing pattern, as figure 2 in-
dicates, we ran experiments with stride size from 23 to 28.
Stride size 0 is used to calculate the direct cost of context
switch since we don’t access the array between the message
passing. Note that since we use type double as our base
element, incrementing the array index by one means we jump
over 8 bytes. And we also compared the performance with
different array size from 210 to 220 bytes.

IV. RESULTS

We first measured the overhead induced by kernel-level
context switches. The overhead of the kernel-level context
switches over the size of the working data set is shown in
figure 3. When the stride size is 0 byte, the overhead is the
direct cost of the context switch. The direct cost of one context
switch is 0.62µs. When the stride size is larger than 0 byte,

the overhead is composed of direct cost of the context switch
and indirect cost of the context switch induced by resource
contention. When the stride size is larger than 0 byte, the
kernel-level context switch overhead increases along with the
array size when the array size is smaller than 32KB. After
hitting the local maximum, about 1.5µs, when the array size
is 32KB, the overhead decreases as we increase the array
size to 64KB. This pattern conforms to the the pattern of
dcache miss rate. Figure 4a shows the number of dCache load
misses per thousand instructions. At array size of 32KB, which
equals L1 cache capacity, the rate of dCache load misses in
context-switch case is larger than that of single-thread case.
However, when the array size increases to 64KB, the situation
reverses. This alternation in the rate of dCache load misses
could contribute to the local maximum of context switch time
in figure 3 at array size of 32KB.

When the array size is larger than 64KB, context switch
overhead begins to increase again until it hits the global
maximum at array size of 256KB. At array size 256KB,
the context switch overhead is around 3µs for stride size
of 8 byte to 256 byte, except for stride size of 64 byte
whose maximum context switch overhead is 5µs, significantly
greater than the others. As we increase the array size beyond
256KB, the overhead, when the stride size is greater than
16 byte, decreases to around 1.5µs and stays stable. This
pattern conforms to the pattern of dTLB load miss rate. Figure
4b shows the number of dTLB load misses per thousand
instructions. When array size is larger than 64KB, the rate
of dTLB load misses of context-switch case is much higher
than that of single-thread case. Though the rate of dTLB load
misses is smaller than the rate of dCache load misses, dTLB
load misses can result in a larger latency than dCache load
misses. So as the rate of dTLB load misses increases, the
context switch time in figure 3 increases accordingly. When
the rate of dTLB load misses in context-switch case decreases,
the context switch time in figure 3 also decreases.

Noticeably, the overhead has an increasing tendency when
the stride size is 8 byte or 16 byte. At this point, we still
cannot figure out any reasonable explanation.

The local maximum of context switch time occurred at
L1 cache capacity shown in figure 3 and then diminished
suggested that this might be due to a better cache replacement
algorithm or cache line locality improvement when L2 cache
is involved. Therefore this phenomenon might be exploited
and researched on to help eliminate context switch time.

Furthermore, using larger page or increasing the TLB entries
would also help to mitigate the context switch overhead when
the working data size is small. Using pid in TLB to avoid
flushing TLB entries entirely during the context switch may
also help, even though it may increase the TLB hit latency.

Then, we measured the overhead using user-level context
switch library. The results are shown in figure 5. As we can
see, the context switch overhead of user-level context switch
is constant and relatively stable at about 1.2µs comparing to
the kernel-level context switch overhead when the array size is
smaller than 64KB. As we increase the array size over 64KB,



Fig. 3: Kernel level context switch time

(a) dCache load miss per 1000
instructions, stride size=8

(b) dTLB load miss per 1000
instructions, stride size=8

Fig. 4: Kernel level load misses per 1000 instructions in (a)
dCache, (b) dTLB

the overhead increases along with the array size. When the
stride size is 128 byte, 256 byte or 32 byte, the overhead
reaches its maximum (5µs, 4.8µs, 2.2µs respectively) at array
size of 192 KB. When the stride size is 64 byte or 8 byte,
the overhead hits its maximum (4.5µs, 1.4µs respectively ) at
array size of 256 KB. After hitting the maximum, the overhead
of all stride sizes would decrease to around 1µs to 2 µs. The
only exception is when the stride size is 16 byte. When the
stride size is 16 byte, the overhead increases monotonically.

The analysis of the following sections are based on results
obtained from perf. Section A discussed the impact of load
misses incurred in L1 instruction cache and L1 data cache
respectively on both kernel-level and user-level context switch
implementation. Section B discussed the impact of TLB misses
and section C presents the compare and contrast between
kernel-level and user-level context switch.

A. Impact of Cache Miss

1) L1 iCache Load Miss: Figure 6 shows the result of
kernel-level iCache load misses with stride size 8, and 64.
There is a gap in the number of iCache misses between single-
thread case and context-switch case, although we have already
normalized the counts based on the amount of work they do.
We observed that there are non-zero iCache load misses in
context-switch case when the array size is larger than 214

bytes, which is half of the L1 cache size. In addition, the
difference of count increases as the array size increases. Due
to inclusive L2 cache and the fact that the total working set of
context-switch case is twice as that of single-thread case, as
more data is put into the L2 cache, instructions will be more

Fig. 5: User level context switch time

likely to be evicted out of L2 cache. In order to maintain the
inclusiveness, the same piece of data would also be evicted
from L1 iCache. Thus, it results in an increasing difference in
L1 iCache misses.

Figure 7 shows the user-level iCache load miss patterns.
Similarly, we can find that the context-switch case is still a
little more than single-thread case. Again this might be due
to the inclusive L2 cache. Since there is not much difference
among different stride sizes, only stride size of 8 is present in
this paper.

The reason for the gap being larger in the kernel-level
context switch than in the user-level context switch may be
ascribed to the fact that kernel-level context switch runs a more
complex scheduling algorithm thus leaving a larger memory
footprint in both dcache and icache.

(a) stride=8

(b) stride=64

Fig. 6: Kernel level L1-iCache load misses

2) L1 dCache Load Miss: Figure 8 and 9 illustrate the
L1 dCache load misses in the kernel-level and user-level
respectively. Since the access to dCache is limited by the



Fig. 7: User level L1-iCache load misses

(a) stride=8

(b) stride=64

Fig. 8: Kernel level L1-dCache load misses

dCache cache line size, which is 64B, the dCache load misses
for stride size 64 or more are approximately 10 times more
than that of stride size of 8 (here only stride size of 64 is
present). Furthermore, because the size of L1 dCache is 32KB,
when the array size is smaller the capacity of L1 dCache, there
is zero load misses in the single-thread case since the entire
working set can be fit into the L1 dCache. This also applies to
the context-switch case, but the boundary capacity is 16KB,
half of the capacity of dCache due to the doubled overall
working set. As the working set increases and goes beyond
the boundary capacity (i.e., 32KB for single-thread case and
16KB for context-switch case), capacity conflict becomes an
issue and the load misses increases for both cases.

B. Impact of dTLB Load Miss

Figure 10 shows the dTLB load misses in kernel-level
case. The number of dTLB load miss for context switch case
becomes non-zero when the working set is larger than 32KB.
When the array size is smaller 32KB, the address space can
perfectly fit into the dTLB. Thus, there is no need to load new

(a) stride=8

(b) stride=64

Fig. 9: User level L1-dCache load misses

physical address bases to map those virtual addresses when the
array size is smaller than 32KB.

When the stride size is larger than 64 bytes, the number of
dTLB load miss for context switch increases along with the
stride size. When stride size is smaller than 64B, there is not
much variation among different stride sizes. When the array
size is larger than 32KB and fixed, the number of memory
access during the array traversing is also fixed. The smaller
the stride size (especially smaller than 64B), the more memory
access can be supported by a single page mapping because of
the spatial locality. Under this circumstance, dTLB does not
need to load new physical address bases, because there is no
new virtual address mapping request from dCache. It reduces
the number of dTLB load miss as well.

The number of dTLB load misses for context-switch case
is apparently larger than the single-thread case under kernel
mode. Since we use fork() to create a child process to run
the second thread, two threads are running in two different
address space. Therefore there are increasing TLB contentions
when the array size is large and thus consumes more pages.
Moreover, when using the kernel-level context switch, we need
to switch to the kernel mode, thus new TLB entries would be
brought into the TLB and the TLB entries of the user-level
program may be evicted due to conflict. It’s even possible
for the OS or the processor to flush the TLB entirely when
switching between kernel mode and user mode depending on
the implementation. However, this is not the case for user-level
context switch.

In the user-level experiment, we can find that there is only
a slight difference between single-thread and context-switch
cases. The patterns in figure 11 overlap a lot. There is more



(a) stride=8

(b) stride=64

(c) stride=256

Fig. 10: Kernel level dTLB load misses

dTLB load miss in bigger stride size compared to smaller
stride size, because the data might distribute in different
physical pages. Traversing with a larger stride size leaps over
to a different page more frequently than with a smaller stride
size. The patterns of stride size bigger than 64B is similar to
that of 64B.

To reduce the dTLB load misses, either a larger page size or
more TLB entries can be possible solutions. A larger page size
might reduce the probability of page fault under large stride
size, while having more TLB entries enlarges the capacity of
holding more mappings.

C. User-level v.s. Kernel-level context switch

The direct cost (i.e. no working set accessing) of user-level
context switch of our experiment is about 1.18µs, while that
of the kernel-level context switch is around 0.62µs, which is
much faster. However, although our user-level implementation
shows higher context switch overhead with small working set
size, it has smaller variance than that of kernel-level cases as
the working set size increases. As the perf results in Figure
12a indicate, the instruction counts of kernel-level process are
different in each iteration even if the working set size and

(a) stride=8

(b) stride=64

Fig. 11: User level dTLB load misses

(a) Kernel-level (b) User-level

Fig. 12: Instruction count

access stride size are fixed. In contrast, there is relatively
less variance in the instruction counts of user-level context
switch. A possible reason is that kernel-level threads might be
stuck inside loops while waiting for a system call to return,
and the duration of waiting depends on the implementation of
kernel functions and is non-deterministic. This characteristic
of kernel-level context switch makes it unfriendly to some
tail-latency-sensitive applications that require good quality-of-
service, while the latency of the context switch in user-level
is more predictable and thus more suitable for this kind of
applications.

Another observation from the instruction counts is that the
user-level process executes more instructions than kernel-level
one. It is because that we directly made use of the functions
in gtthread library without adding any optimization, while
the well-accepted opinion that user-level context switch occurs
less overhead than kernel-level context switch is based on
the fact that programmers have more knowledge about the
behavior of their processes than OS so that they usually take
advantage of it to hide the latency. And the thread scheduling
algorithm adopted by the OS is usually very aggressive, which



also contributes to the difference of overhead between kernel-
level and user-level cases shown in the Figure 12. Therefore,
the main takeaway from this observation is that, in order to
gain improvement in performance by implementing user-level
context switching, non-trivial efforts is needed to add finer-
grained scheduling optimization.

V. RELATED WORK

In Cho’s Taming the killer microsecond, they mention
existing systems cannot hide microsecond scale latencies
effectively. There exists some mechanisms which can solve
the problem by replacing on-demand memory accesses with
prefetch-based device access, which is followed by fast user-
mode context switches. Increasing hardware queues, which
tracks in-flight accesses, outperforms the application-managed
software queue.

In Lis Quantifying the cost of context switch, the author
collected the overhead of context switch with regard to the dif-
ferent size of working dataset and stride. However, this study
has the following the limitations: 1) The study was conducted
back in 2007, which may not sufficiently reflect the present
context switch overhead. 2) The study is conducted with a
fixed cache size and frequency, which may not reflect the best
configuration for context switch workload. 3) The study only
considered two threads. More threads would introduction more
interference and maybe different overhead characteristics.

Multiple solutions to enable fast context switch have been
proposed overtime, on both hardware level and software level.
However, each of them has drawbacks which make them have
limited appeal in warehouse-scale computing environment.

Smith proposed a pipelined, shared resource MIMD archi-
tecture in Denelcor HEP [4]. In a HEP processor, two queues
are used to time-multiplex the process states. In this type
of organization, skeleton processors compete for execution
resources in either space or time. Such design gives up the
locality advantage and single thread performance due to its
nature of contention.

R. Alverson et al. proposed an architecture with 128 pro-
gram counters and instruction streams in the Tera Computer
System [5]. For each cycle, the scheduler would choose one
instruction stream to execute. While it enables negligible
context switch overhead, the cost of such system can be
much greater than the conventional architecture. Moreover,
the number of threads supported is limited to the number
of hardware. Since, ideally, we want to support thousands
of threads in a warehouse-scale computing environment, such
design may not be appealing.

A lot of effort has been put into implementing light-weight
threads (i.e. Go [7] and Erlang [6]). Light weight threads are
usually light in two ways: 1) Light in context switching cost by
avoiding switching to kernel level library so that the program
can bypass TLB flush, memory paging etc. This approach is
similar to the user-level multithreading library we used in
this project. 2) Light in memory footprint. However, such
approach has two major drawbacks: first, it usually falls back
to conventional context switch approach when dealing with

I/O events; second, bypassing system-level scheduling may
stall other programs and lead to inefficiency.

VI. CONCLUSION

In this work, we measure the context switch overhead
under different working set sizes and memory access stride
sizes. In the kernel level experiment, OS controls the context
switch work. It uses several system call functions such as
read() and write() to ping-pong message between two
threads. In the user level experiment, we go through the same
flow as kernel level experiment. From the results, the context
switch time of user level is larger than that of kernel level.
Although the user level threads are supposed to be lightweight
without calling OS functions, the scheduling mechanism is not
optimized in our implementation because we directly adopted
the functions in the gtthread library. However, since usually
the programmers can have better knowledge about the events
in the user level programs than in kernel level ones, the
overhead in the user-level programs can be easily reduced.
In addition, a more aggressive scheduling mechanism can be
adopted to achieve further speedup.

There are two peaks demonstrated in the cost of kernel-
level context switch plot. The peak at array size 32KB is due
to L1-dCache load miss; the peak at array size 256KB is due to
dTLB load miss, which results in even more latency penalty
than L1-dCache load miss does. The cache inclusion policy
also impacts on the context switch latency when the array
size is at the edge of L1 cache size. There is a peak at array
size 256KB in user-level context switch graph as well. We
showed that the cache and TLB misses contribute to the most
part of the indirect cost of context switch. By implementing
user level threads, the percentage of cache load misses can be
significantly reduced, since the TLB flush due to the switch
of virtual address space can be avoided. Hardware solutions
could be enlarging TLB or page size to reduce the context
switch time.

VII. CONTRIBUTIONS

The workloads in this project include:
• Background research
• Research and adapt kernel-level and user-level context

switch codes
• Set up script and run simulations on Xeon server
• Gather and analyze the experiment statics

And we partitioned the workload equally.
Shibo Chen 25%
Yu Wu 25%
Xinyun Jiang 25%
Wen-Jye Hu 25%

REFERENCES

[1] Li Chuanpeng, Chen Ding, and Kai Shen. ”Quantifying the cost of
context switch.” Proceedings of the 2007 workshop on Experimental
computer science. ACM, 2007.

[2] LancelotGT. ”GTThread–A User Level Thread Library”, v1.0. (2019).
Available: https://github.com/LancelotGT/gtthread



[3] John D. McCalpin. ”Notes on the mystery of hardware cache perfor-
mance counters.” https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-
the-mystery-of-hardware-cache-performance-counters/. 2013.

[4] Smith, B. A pipelined shared-resource MIMD computer. Chapter in
Advanced Computer Architecture. D.P. Agrawal, Ed. IEEE Computer
Society Press, Los Alamitos, CA, 1986, 3941.

[5] Alverson, R. et al. The Tera computer system. In Proceedings of the
Fourth International Conference on Supercomputing (Amsterdam, The
Netherlands, June 1115). ACM Press, New York, 1990, 16.

[6] Erlang. Erlang User’s Guide Version 8.0. Processes;
http://erlang.org/doc/efficiency guide/processes.html

[7] Golang.org. Effective Go. Goroutines;
https://golang.org/doc/effective go.html#goroutines


