
Analysis and Optimization of Financial Analytics
Benchmark on Modern Multi- and Many-core

IA-Based Architectures
Mikhail Smelyanskiy,

Jason Sewall,
Dhiraj D. Kalamkar,

Nadathur Satish,
Pradeep Dubey

Intel Labs

Nikita Astafiev,
Ilya Burylov,

Andrey Nikolaev,
Sergey Maidanov,

Shuo Li,
Sunil Kulkarni

Intel Software and Services Group

Charles H. Finan
Intel Data Center Group

Ekaterina Gonina
UC Berkeley

Abstract—In the past 20 years, computerization has driven
explosive growth in the volume of financial markets and in the
variety of traded financial instruments. Increasingly sophisticated
mathematical and statistical methods and rapidly expanding
computational power to drive them have given rise to the field of
computational finance. The wide applicability of these models,
their computational intensity, and their real-time constraints
require high-throughput parallel architectures.

In this work, we have assembled a financial analytics work-
load for derivative pricing, an important area of computa-
tional finance. We characterize and compare our workload’s
performance on two modern, parallel architectures: the Intel R©

Xeon R© Processor E5-2680, and the recently announced Intel R©

Xeon Phi
TM 1 (formerly codenamed ‘Knights Corner’) coproces-

sor. In addition to analysis of the peak performance of the
workloads on each architecture, we also quantify the impact of
several levels of compiler and algorithmic optimization.

Overall, we find that large caches on both architectures, out-of-
order cores on Intel R© Xeon R© processor, and large compute and
memory bandwidth on Intel R© Xeon Phi

TM
coprocessor deliver

high level of performance on financial analytics.

I. INTRODUCTION

To evaluate developments in computer architecture and
assess the capabilities of new compilers, languages, and pro-
gramming tools, computing disciplines have traditionally used
workload benchmarks that are representative of their domains
and stress different components of a computing environment.

Over the past few decades, the financial industry has re-
quired ever more computation to power sophisticated mod-
els of financial instruments, yet computational finance has
relatively few such benchmarks. This is perhaps due to the
relative secrecy of these financial models; interested parties in
the world of finance are rarely willing to divulge the details
of their models, so it is difficult to identify common ground
among them.

There has been some effort to develop such benchmarks.
Premia [1] was developed in the 1990s for option pric-
ing, hedging and financial model calibration. More recently,

1Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the
U.S. and/or other countries.

STAC [2] was proposed for testing compute-intensive ana-
lytic workloads such as risk management and pricing, real-
time/near-real-time model calibration, and strategy backtest-
ing. While other published work has examined the perfor-
mance of individual financial workloads on several architec-
tures (for example, [3] and [4]), to our knowledge, no attempt
has been made to quantify and analyze performance of a
diverse set of financial workloads on the IA-architecture. This
paper aims to rectify that; to that end, we make the following
contributions:

• The definition, mapping, and analysis of a representa-
tive finance benchmark for option pricing on two mod-
ern multi- and many-core IA architectures: the Intel R©

Xeon R© Processor E5-2680 (codenamed ‘Sandy Bridge’,
hereafter SNB-EP) and the Intel R© Xeon Phi

TM
(formerly

codenamed ‘Knights Corner’) coprocessor (KNC).
• Novel algorithms for tiling and vectorizing two of these

benchmarks: binomial tree and Crank-Nicolson.
• Quantification of the extent of the ‘Ninja Gap’ [5] —

the performance gap between naı̈vely-written C/C++ code
and fully optimized, peak-performance code.

• The first examination of the performance characteristics
of the forthcoming KNC on financial workloads.

Modern IA-based multi-core architectures deliver hundreds of
gigaflops (Gflops) of double-precision performance and tens
of gigabytes per second (GB/s) in memory bandwidth. Backed
up by an aggressive out-of-order execution unit and large
last-level caches, they deliver competitive single-thread and
parallel performance on a wide spectrum of applications, from
medical imaging [6] to graph problems [7] and beyond. The
forthcoming KNC delivers a considerable improvement in both
compute and memory bandwidth performance to meet the fast-
growing demands of modern throughput workloads.

The rest of the paper is organized as follows: Sec. II reviews
derivative pricing and its associated numerical methods and
introduces the six kernels analyzed in this paper. Sec. III
introduces the two hardware configurations used in our studies,
as well as our optimization methodology. Sec. IV provides
results and analysis of each kernel, and we provide qualitative

Fig. 1: Pricing methods in derivative pricing

discussion of the results and conclusion in Sec. V.

II. DERIVATIVE PRICING

An option is a derivative financial instrument that specifies
a contract between two parties for a future transaction on an
underlying: an asset, such as a stock or bond. The holder of
an option has the right— but not an obligation — to buy
(call) or sell (put) the asset by a certain date (the expiry
date) at a certain price (the strike price). The payoff of an
option describes the value of the option as a function of the
underlying asset at the time of (or before) expiry.

The two most popular types of options are European-style
options, which can be exercised only at expiry, and American-
style options, exercised at any time up to expiry. As an
example, the payoff of a European put depends on the price
of the underlying asset at expiry T and strike price K; call
this future price ST . Then, the put payoff P (ST) is expressed
as P (ST , T) = max (K − ST , 0).

There are many methods for pricing options; they fall into
four categories, as shown in Fig. 1. Analytical techniques pro-
vide closed-form solutions to underlying mathematical model
of an option — examples of such techniques are the Black-
Scholes [8] equation for pricing European options. While
closed-form solutions are computationally efficient, such so-
lutions are rarely available, and other numerical methods are
needed to price options.

The three most common techniques are lattice methods,
finite difference methods and Monte Carlo methods. Lattice
methods form a lattice of all possible price paths of the under-
lying asset, and compute an expectation value that represents
the price of the option. Finite difference methods compute
solutions to the Black-Scholes equation by discretizing the
differentials; the solution is then marched backwards. The
limitation of both lattice and finite difference methods is
their high computational and space complexity, which scales
exponentially with the number of underlyings. As a result,
these methods are used only for problems with a small number
of underlyings (≤ 3). For the most complex options, Monte
Carlo approaches are employed. This technique uses stochastic
integration to simulate random price paths for each underlying.

Methods for pricing options reply on a relatively small set
of low-level mathematical techniques. Examples of these are
shown in the right column of Fig. 1. The focus of this paper is
on several representative methods and mathematical kernels,
shown by the shaded boxes — each of these methods is further
described below.

A. Black-Scholes

The Black-Scholes equation [8] is a second-order partial
differential equation for the evolution of an option price over
time:

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1)

This equation describes how the option value V (S, t) depends
on the stock price S and time t. σ is the volatility of the
underlying, and r is the interest rate. Both σ and r are
considered given, while V is the quantity being computed (or
approximated). For European options, a closed-form solution
exists for this PDE — we describe this in Sec. IV-A1.

B. 1D binomial tree

The binomial option pricing method models the price evo-
lution of an option over the option’s validity period using a
recombining tree.

For American options (where options may be exercised any
time until expiry), there is no known closed-form solution that
predicts price over time; the binomial option method provides
a very close approximation. As shown in Fig. 2a, the binomial
model represents the price evolution of an option’s underlying
as a binomial tree of all possible prices at equally-spaced time
steps from the current date. It assumes that at each step, each
node price can only increase by u or decrease by d with
probabilities Pu and Pd, respectively. Hence, each node has
two children, and the process repeats over N time steps. This
results in a tree: the root of the tree represents the current
price, and each level below represents all possible prices at
specific points in the future.

time step 0

V0 = max
(K−S,
pV0 + qV 1)

time step 1

V0 = max
(K−Su,
pV0 + qV 1)

V1 = max
(K−Sd,
pV1 + qV 2)

time step 2

V0 = max(
K−Su2,

pV0 + qV 1)

V1 = max
(K−Sud,
pV1 + qV 2)

V2 = max(
K−Sd2,

pV2 + qV 3)

time step 3

Su3

V0 = max(
K−Su3,0

)
Su2d

V1 = max(
K−Su2d,0

)
Sud2

V2 = max(
K−Sud2,0

)
Sd3

V3 = max(
K−Sd3,0

)
(a) Binomial tree for four time steps

N + 1

TS

(b) Tiling scheme for binomial
tree reduction

Fig. 2: Binomial tree computation patterns

The value at a leaf node can be directly calculated as
max(Sn −K, 0) for a call option and max(K − Sn, 0) for a
put option, where K is the exercise price and Sn is the stock
price at the leaf. The tree is then walked backwards and the

option price at each intermediate node at time t is computed
as the average of its prices from t+1. In the case of American
options, the maximum of the computed option price at each
node and the early exercise payoff is also taken. This process
repeats until the entire tree is reduced to a single node; this
contains the expected option price at the current date.

While this method is most useful for pricing American
options, it can be also used to price European options. As
the two computations are very similar in the binomial tree
model, we have opted to focus on European options.

C. Crank-Nicolson

Crank-Nicolson is a finite difference method that can be
used for option pricing. The following focuses on American
options, which do not have explicit formulas and for which
numerical methods are essential. Option prices are modeled
using a lattice un

j , where n represents discretized time from 0
to maturity, and j represents the discretized price of underlying
asset. Each option is valued using an average of explicit and
implicit methods [9] using the equations (∀ j, n):

u
n+1/2
j = (1− α)un

j +
α

2
(un

j+1 + un
j−1) (explicit)

u
n+1/2
j = (1 + α)un+1

j − α

2
(un+1

j−1 + un+1
j+1) (implicit)

where α is the ratio of the temporal discretization to the square
of the price discretization.

While the explicit half step can be analytically computed,
the implicit step is solved using iterative methods — such
methods iteratively update the solution, stopping when a
desired accuracy is reached. Gauss-Seidel Successive Over-
Relaxation (GSOR) is one such method, and has been shown
to converge faster than traditional methods [10]. Here a system
of linear equations of the form Aun+1 = bn+1/2 (A is a j× j
matrix, b a vector of length j) is solved with the following
equation (for iteration k):

un+1,k+1
j =

1
1 + α

(bn+1/2
j +

α

2
(un+1,k+1

j−1 + un+1,k
j+1)) (2)

For American options, these options can be exercised at any
timestep — this is done if the payoff values at each timestep
gn

j exceeds un
j . As such, a maximum of these two values is

taken to be the next un
j value. This modification of GSOR for

pricing American options is called Projected SOR [11].

D. Monte Carlo options pricing

For many types of financial derivatives (such as American
options) the closed-form solution to Black-Scholes (Eq. (1))
cannot applied due to uncertain, time-varying factors. In
such scenarios, Monte Carlo integration techniques can be
applied [12].

These techniques operate by discretizing the time interval
[0, T) into P discrete intervals, then integrating the Black-
Scholes formula over each subinterval to obtain the next price
S(ti) from S(ti−1). Here, P is known as the path length for
the integration.

Brownian sequence

C
om

p.
se

q.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

(a) Depth-level Brownian bridge

Brownian sequence

C
om

p.
se

q.

t0 t16

t0 t8 t16

t0 t4 t8 t12 t16

t0 t2 t4 t6 t8 t10 t12 t14 t16

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

(b) Depth-level Brownian bridge
compute arrays

Fig. 3: Brownian bridge compute pattern

SNB KNC
Sockets×Cores×SMT 2× 8× 2 1× 60× 4

Clock (GHz) 2.7 1.09
Single Precision GFLOP/s2 691 2127
Double Precision GFLOP/s2 346 1063

L1 / L2 / L3 Cache (KB) 32 / 256 / 20,480 32 / 512 / -
DRAM 128 GB 4 GB GDDR

Bandwidth from STREAM [14] 76 GB/s 150 GB/s

PCIe
TM

Bandwidth 6 GB/s
Compiler Version Intel R© v13.0.030

MPI Version Intel R© v4.0.3

TABLE I: System configuration.

The resulting technique typically consumes P normally-
distributed random numbers Z0, Z1, . . ., Zp−1 and estimates
the value of the option with error that is O(P−1/2).

Monte Carlo methods are valuable in a benchmarking envi-
ronment for their ability to stress random-number generation
facilities and mathematical functions.

E. Brownian bridge

The ‘random walk’ of investment fame [13] is closely
related to the concept of Brownian motion. In these processes,
the variation of a variable over time is modeled by applying a
random perturbation over a series of discrete time steps; such
variables classically represent the motion of a particle in space,
but have applications in more abstract domains — such as the
evolving value of an asset or investment.

Conceptually, Brownian motion is the Wiener process; given
the initial value v(0), successive v(ti) are computed by adding
scaled, normally-distributed samples Zi:

v(ti) = v(ti−1) +
√
ti − ti−1Zi (3)

While the above process generates increasing ti, the Brownian
bridge technique allows individual steps in a Brownian motion
to be computed more flexibly; it is based on a property of
Brownian motion that given two points v(r) and v(t) in a
Brownian motion, if there are no points v(s)∀s ∈ (r, t), any
such v(s) can computed based on v(r) and v(t). So, for
example, when both the initial value v(0) and final value v(tk)
are known, the Brownian motion between these points can be
reconstructed in arbitrary detail through the bridge process.
The properties of the Wiener process that give rise to the
Brownian bridge technique are lucidly described in [12].

Brownian bridge is a valuable candidate in a benchmark, as
it stresses the ability of a computing environment to deal with
indirection and large working sets.

III. ANALYSIS TESTBED

A. Hardware Platforms

In our experiments, we have used the following systems:
Intel R© Xeon R© Processor E5-2680 “SNB-EP”: This is an
x86-based multi-core server architecture featuring a super-
scalar, out-of-order micro-architecture supporting 2-way hyper
threading. In addition to scalar units, it has a 256 bit-wide
SIMD unit that executes the AVX instruction set. Separate
multiply and add ports allow for the execution of one multiply
and one addition instruction (each 4-wide, double-precision)
in a single cycle.
Intel R© Xeon Phi

TM
coprocessor “KNC”3: This features

many in-order cores on a single die; each core has 4-way
hyper-threading support to help hide memory and multi-cycle
instruction latency. To maximize area and power efficiency,
these cores are less aggressive — that is, they have lower
single-threaded instruction throughput — than SNB-EP cores
and run at a lower frequency. However, their vector units
are 512 bits wide and execute 8-wide double-precision SIMD
instructions.

KNC is physically mounted on a PCIe card and has dedi-
cated GDDR memory. Communication between the host CPU
and KNC is therefore done explicitly through message passing.
However, unlike many other coprocessors, it runs a complete
Linux-based operating system, with full paging and virtual
memory support, and features a shared memory model across
all threads and hardware cache coherence. Thus, in addition
to common programming models for coprocessors, such as
OpenCL*, KNC supports more traditional multiprocessor pro-
gramming models such as pthreads and OpenMP* API.

Additional details can be found in Tab. I. Note that L1/L2
cache sizes for both SNB-EP and KNC are per core, while
L3 cache size for SNB-EP is per chip and shared among all
cores. Lastly, in terms of peak compute, KNC is 3.2x faster,
compared to SNB-EP (60

16 × 512
256 × 1.09

2.7).

B. Optimization Methodology

We have have categorized every optimization taken on each
benchmark into three levels:
Basic optimizations rely on the compiler and require mini-
mal changes to the reference code; only compiler directives
such as #pragma unroll, for loop unrolling, #pragma simd for
autovectorization, #pragma omp for thread-level parallelism are
permitted at this level.4

Intermediate optimizations require some changes to the ref-
erence code; examples of this are outer loop vectorization
using F64vec8 notation (see below), manual loop unrolling,
and manual insertion of software prefetches for data structures
that do not fit in the cache. Another example is replacing some

2Results have been estimated based on internal Intel analysis and are
provided for informational purposes only. Any difference in system hardware
or software design or configuration may affect actual performance.

3Evaluation card only and not necessarily reflective of production card
specifications

4Most pragmas and compilation options behave the same across SNB-EP
and KNC.

Listing 1: Black-Scholes reference code
1 double sig22 = sig*sig/2;
2 for(int i = 0; i < nopt; ++i) {
3 double qlog = log(opts[i].S/opts[i].X);
4 double denom = 1/(sig*sqrt(opts[i].T));
5 double d1 = (qlog+(r+sig22)*opts[i].T)*denom
6 double d2 = (qlog+(r-sig22)*opts[i].T)*denom;
7 double xexp = opts[i].X*exp(-r*opts[i].T);
8 opts[i].call = -xexp*cnd(d2)-opts[i].S*cnd(d1);
9 opts[i].put = xexp*cnd(-d2)-opts[i].S*cnd(-d1);

10 }

functions with an optimized library calls from the Intel R© Math
Kernel Library.
Advanced optimizations entail algorithmic restructuring, such
as modifying data structure layout to improve SIMD ef-
ficiency (for example, to ‘transpose’ an array-of-structures
into a structure-of-arrays, also known as an AOS to SOA
transformation), and blocking/tiling to reduce working sets.

To justify the need for intermediate and advanced opti-
mizations, we analyze the basic performance using the Intel R©

Inspector XE and VTune
TM

Amplifier XE tools available on
both architectures. For some kernels, we also develop intutitive
performance models to understand the gap between achievable
and deliverable performance.

Outer loop vectorization — such as a loop over a num-
ber of options — is often the most natural way to exploit
SIMD. However, it frequently requires data reformatting to
reduce non-coalesced memory accesses, reduces the amount
of coarse-grain parallelism available to threads, and potentially
enlarges the working set by the vector width. These are
occasional drawbacks; this technique proved useful in several
kernels. Outer loop vectorization can be realized in three
different ways: 1) Using the #pragma simd on the outer loop,
2) using the Intel R© CilkPlus array notation extension [15]
and 3) replacing scalar types with C++ classes for SIMD
operations. These classes simply wrap intrinsic functions for
vector operations and provide convenient infix operator syntax
— the resulting code appears practically identical to the scalar
code. An example is shown in Lis. 3 for KNC; here, F64vec8 is
a vector class, which represents an 8-wide vector of 64-byte
double-precision quantities. For, SNB-EP the corresponding
vector class is called F64vec4. Since one is merely substituted
for the other when moving between platforms, we refer to
these interchangeably throughout the text.

IV. DERIVATIVE PRICING BENCHMARK OPTIMIZATIONS &
PERFORMANCE RESULTS

This section provides details on the implementation and
optimization of each benchmark, as well as performance
results and analysis.

A. Black-Scholes

1) Reference implementation: Our reference implementa-
tion of the closed-form solution to Black-Scholes model is
shown in Lis. 1; it computes call and put prices of nopt

European-style options and depends on 5 input parameters: the
current option price S, the strike price X, the time to expiration
T, risk free interest rate r, and the implied volatility of the

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Intel® Xeon® E5-2680 (SNB-EP) Intel® Xeon Phi™ (KNC)

M
ill

io
n

s
o

f
O

p
ti

o
n

s
P

e
r

Se
co

n
d

Bandwidth-bound

Advanced (Using VML)

Intermediate (AOS to SOA
conversion)

Basic (Reference)

Fig. 4: Performance5,6 of Black-Scholes

underlying sig — we assume that r and sig are the same for
all options. cnd is the cumulative normal distribution function.
Lis. 1 spends a large fraction of its time in transcendental
functions; each option is priced using a sequence of opera-
tions that compute the inverse cumulative normal distribution
function, followed by math operations involving exp, log, sqrt
and division operations. The total computation performed is
about 200 ops, while streaming in 24 bytes writing out 16
bytes for each option.

2) Our implementation: Our implementation exploits
SIMD across options, assigning one option per SIMD lane.
To reduce some arithmetic complexity, we also combine
call and put options together to take advantage of call/put
parity [16]. Furthermore, to take advantage of the fast, vec-
torized math function implementations in the Intel Short
Vector Math Library (SVML), we replace cnd with the error
function erf utilizing the following equivalence: cnd(x) =
(1 + erf(x/

√
2))/2. erf is less computationally intensive than

cnd, while this substitution provides the same accuracy. To
further improve SIMD efficiency, we have transposed the data
layout (from AOS to SOA, as in [5]).

3) Performance: The performance for Black-Scholes is
shown in Fig. 4; throughout the paper, performance data is
organized as a stacked bar-chart that shows the incremental
performance improvement for each level of optimization.

On KNC, the reference version is 3x slower than on SNB-
EP; this is due to the fact that the reference data is in
AOS format, which requires gathering (scattering) data spread
across as many as vector length cachelines. This makes both
SNB-EP and KNC implementation instruction- or compute-
bound. However, with only a vector length of 4 and superscalar
execution, on SNB-EP the overhead of AOS format is less
pronounced. In contrast, on KNC, gathering (scattering) data
across 8 cachelines for each access to the input (output) data

5 Software and workloads used in performance tests may have been optimized for performance only on Intel micropro-
cessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more information go to http://www.intel.com/performance

6 Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice. Notice revision #20110804

Listing 2: Reference code for binomial tree options pricing
1 for(int o=0; o < noptions; o++)
2 {
3 for(int i = N; i > 0; i--)
4 for(int j = 0; j <= i - 1; j++)
5 opt[o].Call[j] = puByDf*opt[o].Call[j+1]+pdByDf*

opt[o].Call[j];
6 opt[o].callResult = opt[o].Call[0];
7 }

results in more than 10x increase in the number of instructions.
This problem is mitigated on KNC by applying an AOS to
SOA data conversion — performance improves by 10x. Using
the Intel VML is more efficient on SNB-EP than on KNC,
where it shows no benefit over SVML. The highly-tuned
transcendental math functions are unrolled and inlined by the
autovectorizing compiler in SVML, which outperforms the
VML version which has a larger cache footprint and requires
algorithmic restructuring of both code and data. This is not
always the case, as for other workloads VML is faster than
SVML.

We use five double-precision parameters to price each
option: three for input and two for output. Assuming stream-
ing stores (available on both architectures), the bandwidth-
bound performance is B/40 options per second, where B is
STREAM bandwidth — found in Tab. I. SNB-EP achieves
84% of the bound, while KNC achieves 60% and is thus more
compute-bound.

B. 1D binomial tree

1) Reference implementation: The core compute kernel for
binomial option pricing for European Options is shown in
Lis. 2. The outer loop iterates over options, two inner loops
compute price of the option, o. puByDf and pdByDf are the
scaled probabilities Pu and Pd, respectively (see Sec II-B).
The procedure starts from the leaves and moves backward in
time; each time step, the Call array is updated with values
computed at a previous step — eventually, Call[0] contains
the option price. This kernel requires ≈ 3N(N+1)/2 floating
point computations. The compiler is able to autovectorize and
unroll the j loop of the reference code on both SNB-EP and
KNC; however, the resulting code contains an unaligned load
for Call[j+1]. Additionally, there is a small loss of SIMD
efficiency at the end of the j loop when i is not a multiple of
the SIMD width.

2) Our implementation: To improve SIMD efficiency and
avoid unaligned memory accesses, we compute one option
per SIMD lane — thus, on SNB-EP processors we process
4 double-precision options, and on KNC, 8. This requires
vectorization of the outer loop, which is accomplished using
the F64vec8 classes.

We also propose a new tiling scheme to tune the problem
based on register file size, cache size, or both. The scheme,
shown in Lis. 3, reduces both the working set and instruction
overhead of the binomial tree loop. To tile for registers, we
pick a tile size TS such that the Tile array may be allocated in
a processor’s register file. We then perform the computation in
two steps: first, we copy the first TS values from the Call array

Listing 3: Tiling Algorithm for Binomial Tree Reduction
1 F64vec8 Call[NUM_STEPS+1] = ...;
2 F64vec8 Tile[TS], m1, m2, m3;
3 for(m = N; m >= TS; m -= TS) {
4 ...
5 for(i = TS; i <= m; i++) {
6 m1 = Call[i];
7 for(j = TS-1; j >= 0; j--) {
8 m2 = puByDf * m1 + pdByDf * Tile[j];
9 Tile[j] = m1;

10 m1 = m2;
11 }
12 Call[i-TS] = m1;
13 }
14 }
15 return Call[0];

0

50

100

150

200

250

300

350

400

450

500

1024 2048 1024 2048

Intel® Xeon® E5-2680 (SNB-EP) Intel® Xeon Phi™ (KNC)

Th
o

u
n

sa
n

d
s

o
f

O
p

ti
o

n
s

P
e

r
Se

co
n

d

Basic (Reference)

Intermediate (SIMD Across options)

Advanced (Register Tiling)

Basic (Unrolled)

Compute-bound

Fig. 5: Performance5,6 of Binomial Tree European Options
Pricing using 1024/2048 time steps (maximum width of the
binomial tree)

into Tile array and reduce it within register file (see the lower-
triangular portion in Fig. 2b). Secondly, we read successive
values from the Call array, reduce it by TS time steps, and
store it back to Call[i-TS] (the shaded trapezoidal portion).
Thus, for TS time steps, we read each call value only once
and store it back once; the rest of the computation happens
entirely within the register file; this significantly increases the
arithmetic intensity of the code.

A second-level of tiling can be done similarly, save that Tile
is now chosen to reside in cache rather in the register file. The
inner loop in Lis. 3 is further unrolled and the register move
eliminated.

3) Performance: The performance for the binomial tree
workload is shown in Fig 5. In the reference code with basic
optimizations (autovectorization of the inner loop, OpenMP
pragmas over outer loop), we see that KNC is 1.4x faster than
SNB-EP.

Applying the intermediate-level optimization of SIMD
across options hardly improves performance on either plat-
form, but when combined with register tiling, performance
increases by more than 2x on both architectures. This is
due to the fact that register tiling eliminates extra load/store
instructions.

Loop unrolling has little effect on the superscalar SNB-EP,
which dynamically exposes a large amount of instruction-level
parallelism (ILP). KNC, on the other hand, with its in-order

Listing 4: Brownian bridge reference code
1 for(int s = 0; s < sim_n; ++s) {
2 src[0] = 0.0;
3 src[1] = r[i++] * last_sig;
4 for(int d = 0; d < bridge_depth; ++d) {
5 dst[0] = src[0];
6 for(int c = 0; c < (1 << d); ++c) {
7 dst[2*c+1] = src[c] *w_l[d][c]
8 + src[c+1]*w_r[d][c]
9 + sig[d][c]*r[i++];

10 dst[2*c+2] = src[c+1];
11 }
12 swap(src, dst);
13 }
14 for(int c = 0; c < 1<<bridge_depth+1; ++c)
15 sim[s][c] = dst[c];
16 }

pipeline, sees as high as 1.4x speedup.
The upper bar shows the upper bound for achievable perfor-

mance based on the minimum flops to price one option; SNB-
EP comes within 10% and KNC comes within 30% of this
performance bound. Overall, KNC is 2.6x faster than SNB-
EP for both 1K and 2K time steps, which is commensurate
with the difference in their peak flops (see Tab. I).

C. Brownian bridge

1) Reference implementation: The reference code for
Brownian bridge is shown in Lis. 4; this is the depth-level
variation (see Fig. 3) similar to what is found in [12]. Each
simulation has 2bridge depth+1 steps (that is, 1<<bridge_depth+1
), and the coefficients for each quantity to be computed at level
d are stored in w_l[d], w_r[d], and sig[d] — these are constant
and depend only on the length of the simulation. The input
array r is a stream of normally-distributed random numbers,
and the solution for each simulation s is stored in sim[s].

A key challenge for this code is keeping the working set
that is ping-ponged between the buffers src and dst in cache.

2) Our implementation: Vectorization of the outermost
loop cannot be automatically applied because of the way
random numbers are consumed across iterations; to utilize
SIMD on both architectures, minor modifications are needed
to ensure that random numbers are loaded in vector-width
chunks, and then F64vec8 can be introduced to achieve the
vertical vectorization with one simulation per SIMD lane; this
is an intermediate-level optimization.

For small- to modest-length sequence generation, the work-
ing set (the buffers src and dst, and the coefficients w_l

, w_r, s) fit in cache on both architectures, even after the
vertical vectorization. However, each sequence step consumes
a random number and the problem can become bandwidth-
bound when the random numbers are streamed from main
memory. It is possible to reduce bandwidth usage and im-
prove overall performance by interleaving the computation
of random numbers with the construction of the bridge; a
chunk of numbers small enough to fit into lowest-level cache
(LLC) is generated and then consumed from LLC by the
bridge construction. This process continues, alternating until
the bridge construction is complete and alleviating the memory
bandwidth bottleneck. We consider this an advanced-level
optimization.

0

30

60

90

120

150

180

210

240

270

300

Intel® Xeon® E5-2680 (SNB-EP) Intel® Xeon Phi™ (KNC)

M
ill

io
n

s
o

f
Si

m
u

la
ti

o
n

 P
at

h
s

P
e

r
Se

co
n

d

Advanced (cache-to-cache)

Advanced (interleaved RNG)

Intermediate (SIMD across paths)

Basic (pragma simd, omp, unroll)

Fig. 6: Performance5,6 of 64-step, double-precision Brownian
bridge for KNC and SNB-EP

Even when interleaving random number generation and
bridge construction, the results of each constructed bridge is
often written out to memory. In the event that the computed
Brownian sequence is to be used immediately and discarded,
the sequence can also be divided into chunks and left in LLC
for the next compute stage, thus further reducing amount of
memory traffic. This is an advanced optimization, and applies
only in situations where it is acceptable to immediately use
the simulation results without streaming them back out to
memory.

3) Performance: In Fig. 6, we show the performance of the
Brownian bridge algorithm at different levels of optimization,
on various architectures. The graph demonstrates the number
of double-precision, 64-step simulations that can be performed
per second. At the basic level of optimization, SIMD has not
been brought to bear on the problem; KNC is 25% slower than
SNB-EP. With intermediate optimizations, the performance on
KNC improves over SNB-EP— at this point, both architectures
are memory bandwidth-bound, and the performance of KNC
exceeds that of SNB-EP by the difference their memory band-
widths. The advanced optimizations allow both architectures
to become compute-bound. KNC is 2x faster than SNB-EP
which is less than the difference in compute flops between
both architectures; this is due to the lack of FMAs in the core
compute.

Normally-distributed random numbers are a crucial part
of any Brownian motion calculation; while the timings in
Fig. 6 do not account for the time taken for random number
generation, they cover both the case where numbers are
streamed from memory and the case where there are generated
into the cache and used directly. Tab. II gives timings for
normally-distributed random numbers to give an idea of what
the combined computation costs would be.

D. Monte Carlo options pricing

1) Reference implementation: Lis. 5 shows a listing of a
reference implementation of European options pricing. For
each of nopt options, we compute npath paths based on the
input per-option strike prices X[o], stock prices S[o], and
option years T[o], and we store the output in result[o] and
confidence[o]. We assume the input vol and mu are constant

Listing 5: European options pricing reference code
1 for(int o = 0; o < nopt; o++) {
2 const double v_rt_t = sqrt(T[o]) * vol;
3 const double mu_t = T[o] * mu;
4 double v0 = 0, v1 = 0, result;
5 for(int p = 0; p < npath; ++p) {
6 const double r = STREAM ? (m_r[p] : NormalRNG());
7 res = max(0, S[o]*exp(v_rt_t*r + mu_t)-X[o]);
8 v0 += res;
9 v1 += res*res;

10 }
11 result [o] += v0;
12 confidence[o] += v1;
13 }

(vol is volatility, while mu is derived from the risk-free interest
rate and volatility).

Typically, npath � nopt — the inner loop dominates the
performance of this algorithm. In particular, the transcendental
function call exp accounts for the bulk of the runtime of the
code.

The code consumes one random number per path step. Two
practical implementations are considered. In the first, if STREAM

is true, random numbers are streamed from memory (m_r), and
the same set of numebrs is used for all options. In the second,
if STREAM is false, they are dynamically computed by NormalRNG

(which is also vectorized), while the new set of random
numbers is generated for each option., When streaming, the
instruction overhead of computing the double-precision exp is
high enough such that code remains compute-bound.

2) Our implementation: The inner loop in the European op-
tions pricing code shown in Fig. 5 consists of 3 multiplications,
4 adds, a max operation, and an exp call. Peak performance is
achieved through the following basic optimization tools; we
apply autovectorization to the innermost loop, resulting in a
4x performance gain due to SIMD on SNB-EP and 8x on
KNC. Note that the autovectorizer also handles the reduction
of v0 and v1 across iterations.

With the help of #pragma unroll, the compiler unrolls the
loop, eliminates back-to-back dependencies, and exposes more
ILP to hardware.

European option pricing is easily made to achieve maximum
throughput on both SNB-EP and KNC; only a handful of
compiler pragmas are needed to parallelize across cores, take
advantage of SIMD, and achieve high IPC.

3) Performance: Random number generation is an essential
part of any Monte Carlo integration technique, and it is
possible to utilize the wide vector units and many cores
present on both SNB-EP and KNC to generate the normally-
distributed random numbers crucial to this and other financial
workloads. We use the Intel R© MKL Mersenne twister[17]
(2203 variant) as the basis for our random number generation
(this is ultimately transformed into the appropriate normal
distribution).

Tab. II, shows the performance of European options pric-
ing and random number generation on both architectures;
the first row demonstrates the number of double-precision
options of path length 256k that can be performed per second,
assuming that pre-generated random numbers are streamed
from memory. The second row shows the performance when
random numbers are generated along with the path integration

SNB-EP KNC
options/sec (stream RNG) 29,813 92,722
options/sec (comp. RNG) 5,556 16,366

normally-dist. DP RNG/sec 1.79e9 5.21e9
uniform DP RNG/sec 13.31e9 25.134e9

TABLE II: Performance5,6 of double-precision European op-
tions pricing (path length 256k) on SNB-EP and KNC, along
normally-distributed double-precision random number gener-
ation performance.

Listing 6: Crank-Nicolson algorithm
1 int oldloops = 10000, loops;
2 double omega = 1.0; double domega = 0.05;
3 double alpha = 0.73;
4 double alpha1 = 1.0-alpha; alpha2 = alpha/2;
5 for(int j = jmin; j <= jmax; ++j)
6 U[j] = u_payoff(j*dx, 0);
7 for(int n = 1; n <= nmax; ++n) {
8 double tau = n*dt;
9 for(int j=jmin+1; j<=jmax-1; ++i) {

10 G[j] = u_payoff(j*dx, tau);
11 B[j] = alpha1*U[j]+alpha2*(U[j+1]+U[j-1]);
12 }
13 U[jmin] = G[jmin] = u_payoff(xmin, tau);
14 U[jmax] = G[jmax] = u_payoff(xmax, tau);
15 loops = GSOR(B, U, G, omega);
16 if(loops > oldloops) {
17 omega += domega;
18 oldloops = loops;
19 }
20 }

— here, the random-number generation process dominates
the performance. The third and fourth rows show the raw
performance of the random-number generation algorithm for
normal- and uniform-distributed quantities, respectively. For
all four of these workloads, both architectures are compute-
bound, and the wider SIMD width and FMA advantage of
KNC is demonstrated.

E. Crank-Nicolson

1) Reference implementation: As described in Sec. II-C, the
Crank-Nicolson method computes option prices on a lattice;
the basic algorithm (based on the description in [9] and [11])
is shown in Fig. 6.

The runtime of the loop containing the explicit method
is very small. Apart from the explicit method, computation
of the payoff values G also occurs in this loop. The cost
of computing payoffs is dominated by the cost of math
operations, primarily exponent. The exponent occurs inside

Listing 7: Implicit GSOR algorithm. Dependencies across the
u array prevent auto-vectorization.

1 extern double alpha; // global variable
2 int GSOR(double *B, double *U, double *G, double om) {
3 double error, coeff = 1/(1+2*alpha);
4 int loops = 0;
5 do {
6 ++loops;
7 error = 0;
8 for(int j = jmin+1; j < jmax; ++j) {
9 double y = coeff*(B[j]+alpha*(U[j-1]+U[j+1]));

10 y = max(G[j], G[j]+om*(y-U[j]));
11 double err = y - U[j];
12 error += err*err;
13 U[j] = y;
14 }
15 } while(error > epsilon);
16 return loops;
17 }

1 2 3

Initialize “triangle”

1 2 3 …
1 2 3 …

1 2 3 …

ra
tio

ns

1 2 3 …
1 2 3 …

1 2 3 …rg
en

ce
 it
er

1 2 3 …
1 2 3 …Co

nv
e

U[j] = f(U[j‐1] U[j+1])X i t (256 1024) U[j] = f(U[j‐1], U[j+1])X points (~256‐1024)

Fig. 7: Vectorization of GSOR in Crank Nicolson. Computa-
tion of matrix elements shown with the same number are done
is SIMD. There is a prologue and epilogue triangular regions
that must be separately vectorized.

lines 5 and 9 in Listing 6, where u_payoff is called. alpha

is a global variable denoting Autovectorizion works well on
this loop, generating SVML instrinsics. Typically, this is only
about 10% of overall time and does not benefit much from
further optimizations.

The implicit method is computed using a GSOR iterative
solver. This code (shown in Fig. 7), is not easily vectorized
since both the inner j-loop over asset prices and the outer
do-while convergence loop both have dependencies. The de-
pendence pattern of this code is as shown in Fig. 7; vectorizing
requires algorithmic and data-structure changes.

2) Our implementation: Here, we focus on the implicit
GSOR computation. We parallelize the computation across
different options using OpenMP pragmas. To vectorize a single
option computation, we first unroll the convergence loop by
a factor of the vector width. Since this can increase the
number of iterations in the convergence loop — we now
check for convergence every 4 or 8 iterations, as opposed
to every iteration in original code — this optimization can
not be performed by the compiler. We then observe the
pattern of the dependencies in the convergence and space loops
(shown using the arrows in Fig. 7), and manually vectorize
the code as shown in Fig. 7. This requires initial prologue
and epilogue triangular regions plus a steady state trapezoidal
region. Furthermore, vectorization requires irregular accesses
to the B, G and U arrays in our algorithm (Fig. 7). As a final
optimization step, we reorder the B, G and U arrays so that
accesses during GSOR are consecutive. Note that the working
set of the algorithm fits comfortably into L2 caches for the
problem sizes we consider.

An alternative approach would be to vectorize over different
options, which would require that all three arrays B, G and U

to be replicated, as in binomial tree, for example. This would
increase the working set beyond cache capacity, require tiling
(similar to binomial tree), and reduce the amount of thread-
level parallelism available for a small number of options. Our
approach — which exploits SIMD parallelism within options
and thread-level parallelism (TLP) across options — has both
a small working set and scales well even for small number of
options.

3) Performance: Performance for the Crank-Nicolson
method is shown in Fig 8 as American option pricing per-
formance (in double precision) in thousands of options per

0

2

4

6

8

10

12

Intel® Xeon® E5-2680 (SNB-EP) Intel® Xeon Phi™ (KNC)

P
e

rf
o

rm
an

ce
 (

K
 o

p
ti

o
n

s/
se

co
n

d
)

Advanced (Data structure transform for SIMD)

Advnaced(Manual SIMD for implicit step)

Basic (Reference)

Fig. 8: Performance5,6 of Crank-Nicolson American options
pricing using 256 underlying prices and 1000 time steps.

second under various optimizations. The lowest bar for both
SNB-EP and KNC shows the performance of the reference
algorithm. Since most of the time is spent in GSOR code that
is not vectorized, KNC is only 1.3x faster than SNB-EP.

With unrolling and vectorization, the performance improves
to about 4.4K options/second for SNB-EP and 7.3K option-
s/second for KNC. This speedup from SIMD is smaller than
the theoretical peak for both architectures; this is because the
data structures are irregularly accessed and need to be gathered
from different cache lines. Once we perform a data structure
transformations, performance increases to 6.4K options/second
on SNB-EP and 11.4K options/second on KNC— the gain
due to SIMD on the two architectures is about 3.1X and 4.1X
respectively.

The remaining difference with respect to the peak of 4x
and 8x SIMD scaling is due to the overhead of data structure
transformations (the cost of physically rearranging the B, G

and U arrays for contiguous access), as well as the fact that
a small portion of the computation (the explicit step) was
autovectorized in the reference code.

V. CONCLUSION

In this work, we have analyzed the performance of two
IA-based architectures, the Intel R© Xeon R© Processor E5-2680
(SNB-EP) and the forthcoming Intel R© Xeon Phi

TM
coprocessor

(KNC), on a small but representative set of compute kernels
for derivative pricing in computational finance. We have inves-
tigate the Ninja performance gap between basic optimizations
done by the compiler alone and more advanced algorithmic
optimizations that result in peak-performance code.

On average, the Ninja gap is 1.9x for SNB-EP and 4x for
KNC. Wide-issue, out of order cores of SNB-EP are more
forgiving to extra instruction overhead compared to smaller
and less aggressive KNC cores. Nevertheless, for three of
the kernels — binomial tree, Monto Carlo option pricing,
and Crank-Nicolson — the reference implementation on KNC
achieves higher performance than on SNB-EP. For Black-
Scholes, the key optimization which bridges the Ninja gap
is converting input data from AOS, which is limited by gather
overhead, to a SIMD-friendly SOA format. If the data is
already provided in SOA format by the previous stage of

computation, the compiler will generate SIMD-friendly code
on KNC. Similarly, for Brownian Bridge the key benefit comes
from outer loop vectorization across options. Once RNG is
modified to load data in vector-width chunks, the compiler will
produce SIMD-friendly code that achieves bandwidth-bound
performance on KNC. The other two kernels, binomial tree
and Crank-Nicolson, require algorithmic changes to achieve
their best performance. Such changes may not be readily
obvious to a programmer, but they demonstrate that highly
optimized codes achieve close to the hardware potential on
both architectures. In particular, the best-optimized code on
KNC achieves on average 2.5x on compute bound kernels
and 2x on bandwidth-bound kernels, which is commensurate
with the compute and bandwidth differences between the
architectures.

REFERENCES

[1] C. Martini and A. Zanette, “Premia: Overview version 9,” Aug. 2012.
[Online]. Available: https://www.rocq.inria.fr/mathfi/Premia/index.html

[2] “STAC benchmark domains,” Aug. 2010. [Online]. Available:
http://www.stacresearch.com/benchmarkdomains.pdf

[3] NVIDIA, “Computational finanace on the GPU,” in GPU Technology
Conference, Sept. 2009.

[4] V. Agarwal, L.-K. Liu, and D. Bader, “Financial modeling on the cell
broadband engine,” in Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, april 2008, pp. 1 –12.

[5] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey, “Can traditional programming bridge the
Ninja performance gap for parallel computing applications?” in Proceed-
ings of the 39th International Symposium on Computer Architecture, ser.
ISCA ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 440–451.

[6] D. D. Kalamkar, J. D. Trzaskoz, S. Sridharan, M. Smelyanskiy, D. Kim,
A. Manduca, Y. Shu, M. A. Bernstein, B. Kaul, and P. Dubey, “High per-
formance non-uniform FFT on modern x86-based multi-core systems,”
in Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, may 2012, pp. 449 –460.

[7] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and
efficient graph traversal algorithm for CPUs: Maximizing single-node
efficiency,” in Parallel Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, may 2012, pp. 378 –389.

[8] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” Journal of Political Economy, vol. 81, no. 3, pp. 637–654,
1973.

[9] J. Kerman, “Numerical Methods for Option Pricing: Binomial and
Finite-difference Approximations,” Master’s thesis, Courant Institute of
Mathematical Sciences, New York University, 2002.

[10] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial
Derivatives: A Student Introduction. Cambridge University Press, 1995.

[11] ——, The Mathematics of Financial Derivatives: a student introduction.
Cambridge University Press, 2002.

[12] P. Glasserman, Monte Carlo Methods in Financial Engineering, ser.
Applications of mathematics. New York: Springer Science, 2004,
vol. 53.

[13] B. Malkiel, A Random Walk Down Wall Street. W. W. Norton &
Company, Inc., 1973.

[14] J. McCalpin, “STREAM: Sustainable memory bandwidth in
high performance computers,” Aug. 2012. [Online]. Available:
https://www.cs.virginia.edu/stream/

[15] Intel, “A quick, easy and reliable way to improve threaded performance,”
Aug. 2012. [Online]. Available: http://software.intel.com/en-
us/articles/intel-cilk-plus/

[16] J. C. Hull, Options, Futures, and Other Derivatives, 6th ed. Upper
Saddle River, N.J.: Prentice-Hall, 2006.

[17] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

