
Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 266

IMPACT: An Architectural Framework for

Multiple-Instruction-Issue Processors

Pohua P. Chang Scott A. Mahlke William Y. Chen Nancy J. Warter Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana, IL 61801

Abstract

The performance of multiple-instruction-issue processors
can be severely limited by the compiler's ability to gen-
erate e�cient code for concurrent hardware. In the IM-
PACT project, we have developed IMPACT-I, a highly
optimizing C compiler to exploit instruction level concur-
rency. The optimization capabilities of the IMPACT-I
C compiler are summarized in this paper. Using the
IMPACT-I C compiler, we ran experiments to analyze
the performance of multiple-instruction-issue processors ex-
ecuting some important non-numerical programs. The
multiple-instruction-issue processors achieve solid speedup
over high-performance single-instruction-issue processors.

We ran experiments to characterize the following archi-
tectural design issues: code scheduling model, instruction
issue rate, memory load latency, and function unit resource
limitations. Based on the experimental results, we pro-
pose the IMPACT Architectural Framework, a set of ar-
chitectural features that best support the IMPACT-I C
compiler to generate e�cient code for multiple-instruction-
issue processors. By supporting these architectural fea-
tures, multiple-instruction-issue implementations of exist-
ing and new architectures receive immediate compilation
support from the IMPACT-I C compiler.

1 Introduction

Computer engineers have been striving to improve unipro-
cessor performance since the invention of computers. This
paper is concerned with exploiting instruction level concur-
rency to achieve high performance. The traditional ap-
proach to exploiting concurrency is to provide the nec-

0

essary support for instruction pipelining and overlapping
[Kogge 81]. By optimizing a simple instruction pipeline
structure, current pipelined processors can execute nearly
one operation per cycle [Hennessy 81]. A natural extension
to instruction pipelining is to provide parallel datapaths in
order to fetch, decode, and execute several operations per
cycle. Such processors have been referred to as multiple-

instruction-issue processors in recent literature.

An important problem in the design of multiple-
instruction-issue processors is to ensure that the compiler
can generate e�cient code for the hardware. To solve this
problem, we have constructed the IMPACT-I C compiler, a
retargetable compiler with code optimization components
especially developed for multiple-instruction-issue proces-
sors. These code improving techniques include function in-
line expansion, instruction placement, loop unrolling, loop
peeling, memory disambiguation, register renaming, branch
prediction, critical path depth reduction, and an integrated
register allocation and code scheduling algorithm.

Using the IMPACT-I C compiler, we conducted experi-
ments to characterize the performance implications of en-
gineering tradeo�s including alternative code scheduling
models, instruction issue rate, memory load latency, and
function unit resource limitations. All experimental results
are derived from important non-numerical programs with
realistic input data. Based on the experimental results, we
have identi�ed a set of architectural features that best sup-
port the IMPACT-I C compiler to generate e�cient code for
multiple-instruction-issue processors. We call the collection
of these architectural features the IMPACT Architectural
Framework.

1.1 Related Work

In a multiple-instruction-issue machine it is important to
increase the scheduling scope in order to expose more par-
allelism. In processors with hardware support for dynamic
code scheduling, the scope of instruction scheduling is lim-
ited by the instruction fetch mechanism [Patt 85] [Hwu 86]
[Smith 89]. However, simple in-order execution architec-
tures rely on aggressive compile-time optimizations to in-
crease the scope. Trace scheduling has been proposed which
combines basic blocks that tend to execute in sequence



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 267

into a trace and then schedules operations within traces
[Fisher 81] [Ellis 86] [Howland 87]. Several researches have
used loop unrolling, software pipelining, and other tech-
niques to enlarge the scheduling scope. Weiss and Smith
showed that loop unrolling and software pipelining e�ec-
tively improve the performance of a deeply pipelined pro-
cessor [Weiss 87]. Lam described a software pipelining tech-
nique which handles loops with conditional branches and
showed its e�ectiveness for a VLIW architecture [Lam 88].
Anantha and Long use loop peeling and branch replica-
tion to increase the scope for parallel code compaction
[Anantha 90].
For numerical applications, the above techniques expose

large amounts of parallelism and code scheduling is rel-
atively straight forward. However, non-numerical code
tends to be control intensive. Jouppi and Wall have
measured the instruction-level parallelism of some non-
numerical Modula-2 and C programs using an optimizing
compiler that performs local code scheduling. Assuming
unit-time operation latencies, they report that there are
between 1.6 and 2.1 concurrently executable operations per
cycle [Jouppi 89]. This suggests the need for more aggres-
sive code scheduling techniques. Nicolau presented a per-
colation code scheduling method to support parallel exe-
cution [Nicolau 85]. Smith, Lam, and Horowitz have pro-
posed a speculative execution technique which allows opera-
tions to be moved across a preceding branch operation. Us-
ing a four-issue microarchitecture and a single-instruction-
issue compiler, they report about 1.63 speedup against a
scalar processor which executes approximately 0.9 instruc-
tions per cycle. These results reinforce the need for more
aggressive compile-time optimizations to improve the per-
formance of multiple-instruction-issue processors.
The architectural support for these code optimizations

and code scheduling techniques has been investigated
by several researchers [Acosta 86] [Golumbic 90] [Rau 81]
[Rau 89]. Colwell et. al., use non-trapping instructions
in the Multi
ow Trace Computer to enable more compiler
code motion and optimization than a traditional approach
to exception handling would have allowed [Colwell 87]. Sev-
eral researchers have analyzed the architectural tradeo�s of
multiple-instruction-issue processors. Sohi and Vajapeyam
investigated tradeo�s in instruction format design [Sohi 89].
Cohn, Gross, Lam, and Tseng studied resource performance
tradeo�s for the iWarp processor [Cohn 89]. These studies
have focused on numerical applications.
In this paper we present an architectural framework

based on an aggressive multiple-instruction-issue compiler
for non-numerical programs. Non-numerical programs are
characterized by increased frequency of branches, smaller
loop bodies, and fewer loop iterations.

1.2 Organization Of This Paper

This paper is organized into �ve sections. Section 2 presents
our compiler technology and static code scheduling tech-
niques. Section 3 presents experimental results. Section 4
describes the IMPACT Architectural Framework. Section

name description

cccp GNU C preprocessor

cmp compare �les
compress compress �les
eqn typeset mathematical formulas for tro�

eqntott boolean minimization
espresso boolean minimization
grep string search

lex lexical analysis program generator
qsort quick sort
tbl format tables for tro�

wc word count
yacc parsing program generator

Table 1: Benchmarks.

5 provides concluding remarks.

2 The IMPACT-I C Compiler

The IMPACT-I C compiler serves two important purposes.
First, it is intended to generate highly optimized code for
existing commercial microprocessors. We have constructed
code generators for the MIPS-R2000, SPARC, AMD29K,
and the i860 processors. Second, it provides a platform for
studying new code optimization techniques for multiple-
instruction-issue architectures. These new code optimiza-
tion techniques, once validated, can be immediately applied
to the multiple-instruction-issue implementations of exist-
ing and new commercial architectures.

2.1 Traditional Code Optimizations

Code improving techniques in the IMPACT-I C compiler
can be roughly categorized into two groups: machine-
independent optimizations and machine-dependent opti-
mizations. Machine-independent optimizations include
classical local and global code optimizations [Aho 86], func-
tion inline expansion [Hwu 89.2], instruction placement op-
timization [Chang 88] [Hwu 89.1], loop unrolling, intelli-
gent generation of switch statements [Chang 89.2], and
jump optimization. Machine-dependent optimizations in-
clude pro�le-based branch prediction, constant preload-
ing, graph-coloring-based register allocation [Chaitin 82]
[Chow 84], and code scheduling. A pro�ler has been inte-
grated into the IMPACT-I C compiler. When hardware re-
sources are scarce, the pro�le information helps to identify
the most frequently executed program sections and vari-
ables.

2.2 Base Performance



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 268

name IMPACT -O5 MIPS -O4 GNU -O

cccp 1.00 1.08 1.09
cmp 1.00 1.05 1.05
compress 1.00 1.02 1.06

eqn 1.00 1.15 1.15
eqntott 1.00 1.04 1.33
espresso 1.00 1.02 1.15

grep 1.00 1.03 1.24
lex 1.00 1.01 1.04
qsort 1.00 1.01 1.08

tbl 1.00 1.02 1.07
wc 1.00 1.04 1.15
yacc 1.00 1.00 1.11

Table 2: Execution time comparison.

It is important to measure the performance of multiple-
instruction-issue architectures using highly optimized code,
because a naive compiler may produce redundant opera-
tions that show deceptive parallelism. To calibrate the
quality of the code used in our experiments, we compare the
execution time of code generated by IMPACT-I with code
generated by a leading commercial compiler (MIPS CC re-
lease 2.1) and a leading public domain compiler (GNU CC
release 1.37.1) on a DEC 3100 workstation.
Table 1 shows the benchmark programs that are used

in this paper. Table 2 shows the execution time ratio of
the MIPS CC (-O4) and the Gnu CC (-O) compilers over
the IMPACT-I C (-O5). The quality of the code gener-
ated by the IMPACT-I C compiler is comparable to that of
the MIPS C compiler which is known for its excellent code
optimization capabilities. Therefore, the speedup numbers
that we report for multiple-instruction-issue architectures
in Section are based on very e�cient sequential code.

2.3 Multiple-Instruction-Issue Code

Optimization

The IMPACT-I C compiler performs several code transfor-
mations that enlarge the scope of static scheduling, includ-
ing function inline expansion, instruction placement, loop
unrolling, loop peeling, and branch expansion [Chang 90].
The compiler also performs several code transformations
that reduce the depth of critical paths, including induction
variable expansion, register renaming, global variable regis-
ter allocation, operation combining, operation folding, and
memory disambiguation [Chang 90].

2.4 Code Scheduling Algorithm

Prepass code scheduling is performed prior to register al-
location to reduce the e�ect of arti�cial data dependen-
cies that are introduced by register assignment [Hwu 88]

[Goodman 88]. Postpass code scheduling is performed af-
ter register allocation.
Both prepass and postpass code scheduling algorithms

consist of the following steps: 1) Form traces from basic
blocks that are likely to be executed as a sequence. 2)
Form a large superblock from each trace of basic blocks by
code duplication. A superblock has a unique entry point,
and one or more exit points. Basic blocks within a su-
perblock are placed sequentially in memory. 3) Construct
a dependence graph for each superblock. 4) Improve the
dependence graph by removing dependence arcs that can
be resolved at compile-time. 5) Compute live-variable in-
formation. For each branch path, live-variable information
tells us what variables must not be destroyed when that
branch path is taken. 6) Schedule the re�ned dependence
graph according to machine constraints.

2.5 Code Scheduling Models

Our code scheduler moves code both upward and down-
ward across branch operations within a superblock. With
the exception of branch operations, the order of any two
operations may be reversed if there are no data dependen-
cies between the two operations. Let X and Y denote two
operations where X is the operation to move and Y is a
branch operation. Also, let live-out(Y) be the set of vari-
ables which may be used before de�ned when Y is taken.
For downward code motion, e.g., X precedes Y , if Y does

not depend on X then X can be moved below Y . Note that
if X is to be scheduled after Y and the destination register
ofX is in live-out(Y), a copy of X must be inserted between
Y and its target instruction.
For upward code motion there are two major restrictions.

Restriction 1: The destination register ofX is not in live-

out(Y).

Restriction 2: X must not cause an exception that may
terminate the program execution.

For example, it is not safe to move a division operation
above a branch because of the possibility of dividing by
zero. As another example, it is not safe to move a memory
load operation above a branch because it may cause a mem-
ory access violation. We have implemented a code schedul-
ing algorithm that enforces the above two restrictions. We
refer to this algorithm as restricted code percolation.
The restricted code percolation model assumes that the

processor supports conventional non-trapping instructions.
It is possible to completely free the code scheduler from the
second restriction if a comprehensive set of non-trapping in-
structions are available. We refer to this code scheduling
model as general code percolation. Instead of trapping on
divide by zero or illegal memory access, a garbage value is
returned. There are two possible scenarios when an excep-
tion occurs. First, when the branch is taken Restriction 1
ensures that the garbage value will not be used. The sec-
ond case is when the branch is not taken. Normally, the
program would trap and halt on a divide by zero or mem-
ory access violation. In our execution model, the program



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 269

model Restricted General Speculative

restrictions 1 and 2 1 none
hardware conven- non-trapping shadow
support tional instructions structures
page fault handle as usual as soon as it occurs

divide trap ignore trap if
by zero branch taken

access trap ignore trap if
violation branch taken

Table 3: Features of the code scheduling models.

does not trap and thus the output will likely be incorrect.
This is not wrong since the program is faulty. However, it
does make the program more di�cult to debug. As is done
for many compiler optimizations, the programmer should
debug the program without general code percolation.

Using aggressive hardware support, the �rst restriction
can also be removed. Smith, Lam, and Horowitz have de-
scribed such a scheme [Smith 90]. This scheme requires
a shadow register �le and a shadow store bu�er. These
shadow structures hold the results of percolated operation
until the branch is committed. Once the direction of the
branch is known, the percolated operations are either com-
mitted or nulli�ed if the branch is not taken or taken respec-
tively. In this scheme, exceptions are handled after a branch
commits. We have implemented a scheduling method where
operations can be freely moved above N branch operations
in the same superblock, where N is a design parameter. We
refer to this scheduling model as speculative execution.

A side e�ect of code percolation is that the number of
page faults may increase. An instruction that is moved
above a branch may cause a page fault. For a branch that
is taken, this page fault does not occur before percolation
and thus it degrades performance. Since most working sets
can be kept in memory, it is unlikely to have a page fault on
a legal instruction or data access. We suspect that a page
fault will most likely occur for out-of-bound array refer-
ences. We are currently studying the impact of page faults
on the performance for code percolation scheduling.

Table 3 summarizes the features of the three static code
scheduling models. In the next section, we show the relative
performance of the three static code scheduling models.

2.6 Code Generation

A machine description �le has been written to describe
the instruction set, the microarchitecture, and the code
scheduling model of each processor architecture under
study. A code generator for this parameterized multiple-
instruction-issue architecture has been implemented. The
code generator performs pro�le-based branch prediction

fn base MIPS-R3000 SPARC i860

integer alu 1 1 1 1

barrel shifter 1 1 1 1
integer mul 3 12 47 11
integer div 25 35 - 59

load 2 2 2 2
store - - - -
FP alu 3 6 10 3

FP conv 3 4 10 4
FP mul 4 6 12 5
FP div 25 12 64 38

Table 4: Operation latencies.

to support the squashing branch scheme [McFarling 86]
[Chang 89.1].

3 Experiments

3.1 Evaluation Methodology

Using a pro�ler, we measure the execution count of every
operation and collect branch statistics. Compile-time deci-
sions are based on a composite of 20 pro�les (i.e., a di�erent
input per pro�le). Using another input, we derive the best
and the worst case execution time of each superblock, as-
suming ideal cache. The worst case is due to long operation
latencies that protrude from one superblock to another su-
perblock. For the benchmark programs used in this paper,
the di�erence between the best case and the worst case exe-
cution time is always negligible. In the following discussion,
we use the worst case execution time measure.
The experiment is to study the speedup of multiple-

instruction-issue processors versus a single-instruction-issue
processor for various scheduling models, memory load la-
tencies, and function unit resource limitations. For the
speculative execution model, instructions are scheduled
within a superblock with N set to 32. We report the har-
monic mean of the speedup numbers of all benchmarks1 .

3.2 Base Architecture

The base architecture is a single-instruction-issue proces-
sor that uses the general code percolation model. We have
chosen an instruction set that is a superset of the MIPS
instruction set to establish a strong single-instruction-issue
base architecture. All function units are pipelined. The
base column of Table 4 2 shows the operation latencies.
We assume in-order execution and deterministic operation

1To report results conservatively, the harmonic mean is used

instead of the arithmetic mean.
2The integer multiplication and division latencies of the com-

mercial processors are based on software implementation.



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 270

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Issue Rate

Speculative execution 3

3

3

3

3

General percolation +

+

+

+

+

Restricted percolation 2

2

2

2

2

Figure 1: Comparison of scheduling models for load

delay 1

latencies. Each processor includes a 64-entry integer regis-
ter bank and a 32-entry 
oating-point register bank. The
architecture uses a squashing branch scheme and pro�le-
based branch prediction. One branch slot (one instruction)
is automatically allocated for each instruction that contains
a predict-taken branch operation.

Considering one cycle branch latency, the base architec-
ture has achieved an execution rate of better than 0.95 op-
erations per cycle for the benchmark programs.

3.3 Comparison Of The Three Schedul-

ing Models

Figures 1 through 3 show the speedup of all three code
scheduling models over the base architecture for issue rates
from one to eight. By issue rate we mean that the proces-
sor can issue up to that many instructions per cycle. The
graphs show the speedup when the memory load operation
latency is one, two, and three cycles respectively. Except
for the memory load latency, operation latencies are the
same as that of the base architecture. No limitation has
been placed on the function unit resources. Every opera-
tion code can be executed from every operation slot of an
instruction.

The experimental results show that general code percola-
tion and speculative execution substantially out-perform re-
stricted code percolation. They also show that speculative
execution consistently performs better than general code
percolation, but the improvement is insigni�cant. This is
true for all three memory latencies.

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Issue Rate

Speculative execution 3

3

3

3

3

General percolation +

+

+

+

+

Restricted percolation 2
2

2

2
2

Figure 2: Comparison of scheduling models for load

delay 2

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Issue Rate

Speculative execution 3

3

3

3

3

General percolation +

+

+

+
+

Restricted percolation 2

2

2

2 2

Figure 3: Comparison of scheduling models for load

delay 3



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 271

3.4 Limited Resource

The cost to replicate all function units for each additional
operation slot in the instruction format can be very high.
Therefore, we have evaluated performance degradations
due to limited function unit resources. The results are
shown in Figures 4 and 5. These results motivate our ar-
chitectural framework decisions in Section 4.

4 The IMPACT Architectural

Framework

Based on the experimental results, in this section we
identify a set of architectural features that best support
the IMPACT-I C compiler to generate e�cient code for
multiple-instruction-issue processors.

4.1 Instruction Issue Rate

Figures 4 and 5 show that there is signi�cant speedup as the
issue rate increases from 2 to 4. After 4 instructions per cy-
cle, the speedup starts to level o�. For example, assuming
load delay 1 and no resource constraints, the performance
of a four-issue processor is 45% higher than a two-issue pro-
cessor. However, an eight-issue processor only improves the
performance by 12% over a four-issue processor. For load
delays 2 and above, the performance improvement from a
four-issue processor to an eight-issue processor is even less.
For the current compiler technology and the benchmarks
analyzed, the most e�cient issue rate included in the IM-
PACT Architectural Framework is 4.

4.2 Limited Function Unit Resources

The experimental results in Figures 4 and 5 show the con-
sequences of limiting the function unit resources. Limiting
the number of stores per cycle to one does not signi�cantly
degrade the performance. However, if in addition the num-
ber of loads is limited to one per cycle the performance
degrades signi�cantly. Note that in cache design it is easier
to provide multiple load ports than multiple store ports.
Therefore, it is cost e�ective to support multiple memory
loads per cycle.
Limiting the number of branches to one per cycle also

signi�cantly degrades the performance. Furthermore, when
the branches are limited to one per cycle and there is at
most one store or load per cycle, the performance of a four-
issue machine approaches that of a two-issue machine.
The IMPACT-I C compiler is designed to support multi-

ple branch operations per cycle. We have developed a vari-
ant of the squashing branch, called inline target insertion

[Hwu 90] [Chang 89.1] which allows concurrent execution
of branch operations. Furthermore, inline target insertion
allows branch operations to be fetched from branch slots
and independent of the length of the control unit pipeline,
only one program counter needs to be saved in order to re-
turn from an interrupt. A new set of branches supporting

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Issue Rate

Load Delay 1 3

3

3

3

3

Load Delay 2 +

+

+

+

+

Load Delay 3 2
2

2

2
2

Figure 6: Comparison of load delays for general perco-

lation

inline target insertion can be added to existing commercial
architectures as an upward compatible feature.

4.3 Code Scheduling Model

The experimental results show that general code percola-
tion signi�cantly out-performs restricted code percolation.
They also show that speculative execution achieves very
little speedup beyond general code percolation. Consid-
ering the extra hardware overhead of supporting specula-
tive execution, general code percolation is the most cost
e�ective scheduling model in the IMPACT Architectural
Framework The hardware support for this model includes
disabling exceptions for non-trapping instructions. Many
recent processors, such as MIPS-R2000, already support
a set of arithmetic operations that do not signal over
ow
exception [Kane 87].

4.4 Memory Load Latency

For higher issue rates, the IMPACT-I C compiler can
most e�ectively schedule instructions if the load delay is
1. For single-issue architectures there is a su�cient num-
ber of independent operations available to the scheduler to
hide long memory load latencies. However, the demand for
independent operations to schedule after a load grows as
a multiple of the issue rate. As a result, for higher issue
rates the limited supply of independent instructions can no
longer hide a high memory load latency. This is clearly
shown in Figure 6.

Most existing commercial RISC architectures assume
load delay 2. Reducing load delay to 1 without stretching



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 272

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Issue Rate

No constraints 3

3

3

3

3

At most 1 store +

+

+

+

+

At most 1 branch 2

2

2

2
2

At most 1 store or load �

�

�

�
�

At most 1 store or load and at most 1 branch 4

4

4

4 4

Figure 4: E�ects of limited resources for load delay 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Issue Rate

No constraints 3

3

3

3

3

At most 1 store +

+

+

+
+

At most 1 branch 2

2

2

2 2

At most 1 store or load �

�

�

� �

At most 1 store or load and at most 1 branch 4

4

4
4 4

Figure 5: E�ects of limited resources for load delay 2



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 273

cycle time poses di�cult engineering problems. However,
the performance payo� for high issue rate processors is sig-
ni�cant. We are currently studying various techniques to
achieve this goal.

5 Conclusion

Our approach to the design of multiple-instruction-issue
processors can be summarized into three steps. In step
one, we constructed IMPACT-I, a highly optimizing C com-
piler for multiple-instruction-issue processors. In step two,
we conducted experiments to derive the IMPACT Archi-
tectural Framework. Multiple-instruction-issue processors
designed within this framework receive e�ective compila-
tion support from the IMPACT-I C compiler. In step
three, we veri�ed that multiple-instruction-issue proces-
sors designed within the IMPACTArchitectural Framework
have achieved solid speedup over a high-performance single-
instruction-issue processor.

The IMPACT Architectural Framework consists of the
following features. First, for scheduling general code perco-
lation provides substantial performance improvement over
restricted code percolation without the hardware cost of
speculative execution. Second, as the instruction issue
rate increases, the memory load delay becomes the ma-
jor limiting factor of processor performance. Unlike single-
instruction-issue architectures, decreasing the load delay
from 2 to 1 cycles signi�cantly improves performance in
multiple-instruction-issue architectures. For example, re-
ducing load delay from 2 to 1 cycles improves the per-
formance of a four-issue processor by approximately 30%.
Third, multiple-instruction-issue processors should have
the ability to execute multiple branch and load operations
in each cycle. For example, for a four-issue machine, limit-
ing to one memory load and one branch per cycle reduces
the performance by about 30%.

Future directions of the IMPACT Architectural Frame-
work project include supporting multiple-instruction-
issue implementations of major commercial architec-
tures, enhancing the code optimization capabilities of the
IMPACT-I C compiler, analyzing scienti�c applications,
and extending the framework to support multiprocessor
architectures. In addition, we are analyzing the e�ects
of: code expansion due to optimizations on the instruc-
tion cache design, page faults on performance of percolation
code scheduling, and register �le size on the architectural
framework design decisions.

Acknowledgements

The authors would like to thank Bob Horst, Andy Glew,
Roland Ouelette, James Smith at CRAY Research and all
members of the IMPACT research group for their support,
comments, and suggestions. This research has been sup-
ported by the National Science Foundation (NSF) under
Grant MIP-8809478, Dr. Lee Hoevel at NCR, the AMD

29K Advanced Processor Development Division, the Na-
tional Aeronautics and Space Administration (NASA) un-
der Contract NASA NAG 1-613 in cooperation with the
Illinois Computer laboratory for Aerospace Systems and
Software (ICLASS), and the O�ce of Naval Research un-
der Contract N00014-88-K-0656.

References

[Acosta 86] R. D. Acosta, J. Kjelstrup, and H. C.
Torng, \An Instruction Issuing Approach to
Enhancing Performance in Multiple Func-
tional Unit Processors", IEEE Transactions
on Computers, vol.C-35, no.9, pp.815-828,
September, 1986.

[Aho 86] A. V. Aho, R. Sethi, and J. D. Ullman, Com-

pilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1986.

[Anantha 90] K. Anantha and F. Long, \Code Compaction
for Parallel Architectures", Software Prac-
tice & Experience, vol.20, no.6, pp.537-554,
June, 1990.

[Chaitin 82] G. J. Chaitin, \Register Allocation &
Spilling Via Graph Coloring", ACM SIG-
PLAN Notice, vol.17-6, June 1982.

[Chang 88] P. P. Chang and W. W. Hwu, \Trace Se-
lection for Compiling Large C Application
Programs to Microcode", Proceedings of the
21st Annual Workshop on Microprogram-
ming and Microarchitectures, pp.21-29, San
Diego, California, November, 1988.

[Chang 89.1] P. P. Chang and W. W. Hwu, \Forward
Semantic: A Compiler-Assisted Instruction
Fetch Method For Heavily Pipelined Proces-
sors", Proceedings of the 22nd Annual In-
ternational Workshop on Microprogramming
and Microarchitecture, Dublin, Ireland, Au-
gust, 1989.

[Chang 89.2] P. P. Chang and W. W. Hwu, \Con-
trol Flow Optimization for Supercomputer
Scalar Processing", Proceedings, 1989 In-
ternational Conference on Supercomputing,
Crete, Greece, June 5-9, 1989.

[Chang 90] P. P. Chang, S. A. Mahlke, W. Y. Chen,
and W. W. Hwu, \Code Optimization Tech-
niques for Multiple-instruction-issue Archi-
tectures," Center for Reliable and High-
Performance Computing Report, Uiversity
of Illinois, in preparation.

[Chow 84] F. Chow and J. Hennessy, \Register Alloca-
tion by Priority-based Coloring", Proceed-
ings of the ACM SIGPLAN Symposium on
Compiler Constructions, June, 1984.



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 274

[Cohn 89] R. Cohn, T. Gross, M. Lam, and P.S. Tseng,
\Architecture and Compiler Tradeo�s for
a Long Instruction Word Microprocessors",
Proceedings of the Third International Con-
ference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, April, 1989.

[Colwell 87] R. P. Colwell, R. P. Nix, J. J. O'Donnell,
D. B. Papworth, P. K. Rodman, \A VLIW
Architecture for a Trace Scheduling Com-
piler", Proceedings of the Second Interna-
tional Conference on Architectural Support
for Programming Languages and Operat-
ing Systems, Palo Alto, California, October,
1987.

[Ellis 86] J. R. Ellis, Bulldog: A Compiler for VLIW
Architectures, The MIT Press, 1986.

[Fisher 81] J. A. Fisher, \Trace scheduling: A technique
for global microcode compaction", IEEE
Transactions on Computers, vol.c-30, no.7,
July 1981.

[Golumbic 90] M.C. Golumbic and V. Rainish, \In-
struction Scheduling Beyond Basic Blocks",
IBM Journal of Research and Development,
Vol.34, No.1, pp.93-97, January, 1990.

[Goodman 88] J. R. Goodman and W.-C. Hsu, \Code
Scheduling and Register Allocation in Large
Basic Blocks", Proceedings of the 1988 In-
ternational Conference on Supercomputing,
St. Malo, July, 1988.

[Hennessy 81] J. L. Hennessy, N. Jouppi, F. Baskett, and
J. Gill, \MIPS: A VLSI Processor Architec-
ture", Proceedings of the CMU Conference
on VLSI Systems and Computations, Octo-
ber 1981.

[Howland 87] M. A. Howland, R. A. Mueller, and P. H.
Sweany, \Trace Scheduling Optimization in
a Retargetable Microcode Compiler", Pro-
ceedings of the 20th International Micropro-
gramming Workshop, Colorado Springs, De-
cember, 1987.

[Hwu 86] W. W. Hwu and Y. N. Patt, \HPSm, a
High Performance Restricted Data Flow Ar-
chitecture Having Minimal Functionality",
The 13th International Symposium on Com-
puter Architecture Conference Proceedings,
pp. 297-306, June, 1986.

[Hwu 88] W. W. Hwu and P. P. Chang, \Exploiting
Parallel Microprocessor Microarchitectures
with a Compiler Code Generator", Pro-
ceedings, 15th Annual International Sympo-
sium on Computer Architecture, Honolulu,
Hawaii, May, 1988.

[Hwu 89.1] W. W. Hwu and P. P. Chang, \Achieving
High Instruction Cache Performance with

an Optimizing Compiler", Proceedings, 16th
Annual International Symposium on Com-
puter Architecture, Jerusalem, Israel, June,
1989.

[Hwu 89.2] W. W. Hwu and P. P. Chang, \Inline
Function Expansion for Compiling Realis-
tic C Programs", Proceedings, ACM SIG-
PLAN'89 Conference on Programming Lan-
guage Design and Implementation, Portland,
Oregon, June 21-23, 1989.

[Hwu 90] W. W. Hwu and P. P. Chang, \E�-
cient Instruction Sequencing with Inline Tar-
get Insertion", Coordinated Science Labora-
tory Report, UILU-ENG-90-2215, CSG-123,
May, 1990.

[Jouppi 89] N. P. Jouppi and D. W. Wall, \Available
Instruction-Level Parallelism for Superscalar
and Superpipelined Machines", Proceedings
of the Third International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems, April, 1989.

[Kane 87] G. Kane, MIPS R2000 RISC Architecture,
Prentice Hall, Englewood Cli�s, NJ, 1987.

[Kogge 81] P. M. Kogge, The Architecture of Pipelined
Computers, pp.237-243, McGraw-Hill, 1981.

[Lam 88] M. Lam, \Software Pipelining: An E�ective
Scheduling Technique for VLIW Machines",
Proceedings, ACM SIGPLAN'88 Conference
on Programming Language Design and Im-
plementation, pp.318-327, Atlanta, Georgia,
June, 1988.

[McFarling 86] S. McFarling and J. L. Hennessy, \Reduc-
ing the Cost of Branches", The 13th In-
ternational Symposium on Computer Archi-
tecture Conference Proceedings, pp.396-403,
Tokyo, Japan, June, 1986.

[Nicolau 85] A. Nicolau, \Uniform Parallelism Exploita-
tion in Ordinary Programs", Proceedings of
the International Conference on Parallel Pro-
cessing, pp.614-618, August, 1985.

[Patt 85] Y. N. Patt, W. W. Hwu, and M. C. She-
banow, \HPS, A New Microarchitecture:
Rationale and Introduction", Proceedings of
the 18th International Microprogramming
Workshop, pp.103-108, Asilomar, CA, De-
cember, 1985.

[Rau 81] B.R. Rau and C.D. Glaeser, \Some schedul-
ing techniques and an easily schedulable hor-
izontal architecture for high performance sci-
enti�c computing", Proceedings of the 14th
Annual Workshop on Microprogramming,
pp.183-198, October, 1981.

[Rau 89] B. Rau, D. Yen, W. Yen, and R.A.
Towle, \The Cydra 5 departmental su-
percomputer", Computer, vol.22, pp.12-35,
January, 1989.



Proceedings of the 18th International Symposium on Computer Architecture, pp. 266-275, 1991 275

[Smith 89] M. D. Smith, M. Johnson, and M. A.
Horowitz, \Limits on Multiple Instruction
Issue", Proceedings of the 3rd International
Conference on Architectural Support for
Programming Languages and Operating Sys-
tems, April 1989.

[Smith 90] M. D. Smith, M. S. Lam, and M. A.
Horowitz, \Boosting Beyond Static Schedul-
ing in a Superscalar Processor", Proceed-
ings of the 17th International Symposium on
Computer Architecture, June, 1990.

[Sohi 89] G. S. Sohi and S. Vajapeyam, \Tradeo�s
in Instruction Format Design for Horizon-
tal Architectures", Proceedings of the Third
International Conference on Architectural
Support for Programming Languages and
Operating Systems, April, 1989.

[Weiss 87] S. Weiss and J. E. Smith, \A Study of
Scalar Compilation Techniques for Pipelined
Supercomputers", Proceedings of the Sec-
ond International Conference on Architec-
tural Support for Programming Languages
and Operating Systems, October, 1987.


