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ABSTRACT
How can we describe a large, dynamic graph over time? Is it ran-
dom? If not, what are the most apparent deviations from random-
ness – a dense block of actors that persists over time, or perhaps a
star with many satellite nodes that appears with some fixed period-
icity? In practice, these deviations indicate patterns – for example,
botnet attackers forming a bipartite core with their victims over
the duration of an attack, family members bonding in a clique-like
fashion over a difficult period of time, or research collaborations
forming and fading away over the years. Which patterns exist in
real-world dynamic graphs, and how can we find and rank them
in terms of importance? These are exactly the problems we focus
on in this work. Our main contributions are (a) formulation: we
show how to formalize this problem as minimizing the encoding
cost in a data compression paradigm, (b) algorithm: we propose
TIMECRUNCH, an effective, scalable and parameter-free method
for finding coherent, temporal patterns in dynamic graphs and (c)
practicality: we apply our method to several large, diverse real-
world datasets with up to 36 million edges and 6.3 million nodes.
We show that TIMECRUNCH is able to compress these graphs by
summarizing important temporal structures and finds patterns that
agree with intuition.
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1. INTRODUCTION
Given a large phonecall network over time, how can we describe

it to a practitioner with just a few phrases? Other than the tradi-
tional assumptions about real-world graphs involving degree skew-
ness, what can we say about the connectivity? For example, is the
dynamic graph characterized by many large cliques which appear
at fixed intervals of time, or perhaps by several large stars with
dominant hubs that persist throughout? Our work aims to answer
these questions, and specifically, we focus on constructing concise
summaries of large, real-world dynamic graphs in order to better
understand their underlying behavior.
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This problem has numerous practical applications. Dynamic graphs
are ubiquitously used to model the relationships between various
entities over time, which is a valuable feature in almost all appli-
cations in which nodes represent users or people. Examples in-
clude online social networks, phone-call networks, collaboration
and coauthorship networks and other interaction networks.

Though numerous graph algorithms suitable for static contexts
such as modularity-based community detection, spectral cluster-
ing, and cut-based partitioning exist, they do not offer direct dy-
namic counterparts. Furthermore, the traditional goals of clustering
and community detection tasks are not quite aligned with the en-
deavor we propose. These algorithms typically produce groupings
of nodes which satisfy or approximate some optimization function.
However, they do not offer characterization of the outputs – are
the detected groupings stars or chains, or perhaps dense blocks?
Furthermore, the lack of explicit ordering in the groupings leaves
a practitioner with limited time and no insights on where to begin
understanding his data.

In this work, we propose TIMECRUNCH, an effective approach
to concisely summarizing large, dynamic graphs which extend be-
yond traditional dense and isolated “cavemen” communities. Our
method works by leveraging MDL (Minimum Description Length)
in order to identify and appropriately describe graphs over time
using a lexicon of temporal phrases which describe temporal con-
nectivity behavior. Figure 1 shows several interesting results found
from applying TIMECRUNCH to real-world dynamic graphs.
• Figure 1a shows a constant near-clique with 55% density of

40 users in the Yahoo! messaging network over 4 weeks in
April 2008. These users are likely bots messaging each other
in an effort to appear normal and avoid suspension.
• Figure 1b depicts a periodic star of 111 callers in the phone-

call network of a large, anonymous Asian city during the last
week of December 2007. Notice that the star behavior oscil-
lates over time – specifically, odd-numbered timesteps have
stronger star structure than the even-numbered ones. Further-
more, the appearance of the star is strongest on Dec. 25th and
31st, corresponding to major holidays.
• Lastly, Fig. 1c shows a ranged near clique of 43 authors in

the DBLP network who jointly published in biotechnology
journals such as Nature and Genome Research from 2005-
2012, agreeing with intuition as works in this field typically
have many co-authors. The first and last timesteps serve only
to demarcate the range of activity.

In this work, we seek to answer the following informally posed
problem:

PROBLEM 1 (INFORMAL). Given a dynamic graph, find a
set of possibly overlapping temporal subgraphs to concisely de-
scribe the given dynamic graph in a scalable fashion.



(a) 40 users of Yahoo! Messenger forming a con-
stant near clique with unusually high 55% density,
over 4 weeks in April 2008.

(b) 111 callers in a large phonecall network, form-
ing a periodic star, over the last week of December
2007 – note the heavy activity on holidays

(c) 43 collaborating biotechnology authors forming
a ranged near clique in the DBLP network, jointly
publishing through 2005-2012.

Figure 1: TIMECRUNCH finds coherent, interpretable temporal structures. We show the reordered subgraph adjacency matrices, over
the timesteps of interest, each outlined in gray; edges are plotted in alternating red and blue, for discernibility.

Table 1: Feature-based comparison of TIMECRUNCH with alternative approaches.

Temporal Time-consecutive Time-agnostic Dense blocks Stars Chains Interpretable Scalable Parameter-free

GraphScope [25] 4 4 8 4 8 8 8 4 4
Com2 [4] 4 4 4 4 4 8 8 4 8
VoG [15] 8 8 8 4 4 4 4 4 4

Graph partitioning
[13, 17, 3] 8 8 8 4 8 8 8 4 8

Community detection
[23, 19, 5] 8 8 8 4 8 8 8 ? ?

TIMECRUNCH 4 4 4 4 4 4 4 4 4

Our main contributions are as follows:
1. Problem Formulation: We show how to define the problem

of dynamic graph understanding in in a compression context.
2. Effective and Scalable Algorithm: We develop TIMECRUNCH,

a fast algorithm for dynamic graph summarization.
3. Practical Discoveries: We evaluate TIMECRUNCH on mul-

tiple real, dynamic graphs and show quantitative and qualita-
tive results.

Reproducibility: Our code for TIMECRUNCH is open-sourced at
www.cs.cmu.edu/~neilshah/code/timecrunch.tar.

2. RELATED WORK
The related work falls into three main categories: static graph

mining, temporal graph mining, and graph compression and sum-
marization. Table 1 gives a visual comparison of TIMECRUNCH
with existing methods.
Static Graph Mining. Most works find specific, tightly-knit struc-
tures, such as (near-) cliques and bipartite cores: eigendecompo-
sition [23], cross-associations [6], modularity-based optimization
methods [19, 5]. Dhillon et al. [9] propose information theoretic
co-clustering based on mutual information optimization. However,
these approaches have limited vocabularies and are unable to find
other types of interesting structures such as stars or chains. [13,
17] propose cut-based partitioning, whereas [3] suggests spectral
partitioning using multiple eigenvectors – these schemes seek hard
clustering of all nodes as opposed to identifying communities, and
are not usually parameter-free. Subdue [7] and other fast frequent-
subgraph mining algorithms [11] operate on labeled graphs. Our
work involves unlabeled graphs and lossless compression.
Temporal Graph Mining. [2] aims at change detection in stream-
ing graphs using projected clustering. This approach focuses on
anomaly detection rather than finding recurrent temporal patterns.
GraphScope [25] uses graph search for hard-partitioning of tem-
poral graphs to find dense temporal cliques and bipartite cores.

Com2 [4] uses CP/PARAFAC tensor decomposition with MDL for
the same. [10] uses incremental cross-association for change detec-
tion in dense blocks over time, whereas [21] proposes an algorithm
for mining cross-graph quasi-cliques (though not in a temporal con-
text). These approaches have limited vocabularies and do not of-
fer temporal interpretability. Dynamic clustering [27] aims to find
stable clusters over time by penalizing deviations from incremen-
tal static clustering. Our work focuses on interpretable structures,
which may not appear at every timestep.
Graph Compression and Summarization. SlashBurn [12] is a re-
cursive node-reordering approach to leverage run-length encoding
for graph compression. [26] uses structural equivalence to collapse
nodes/edges to simplify graph representation. These approaches do
not compress the graph for pattern discovery, nor do they operate
on dynamic graphs. VoG [15] uses MDL to label subgraphs in
terms of a vocabulary on static graphs, consisting of stars, (near)
cliques, (near) bipartite cores and chains. This approach only ap-
plies to static graphs and does not offer a clear extension to dynamic
graphs. Our work proposes a suitable lexicon for dynamic graphs,
uses MDL to label temporally coherent subgraphs and proposes an
effective and scalable algorithm for finding them.

3. PROBLEM FORMULATION
In this section, we give the first main contribution of our work:

formulation of dynamic graph summarization as a compression prob-
lem, using MDL. For clarity, see Table 2 for a reference of the re-
current symbols used in this section.

The Minimum Description Length (MDL) principle aims to be a
practical version of Kolmogorov Complexity [18], often associated
with the motto Induction by Compression. MDL states that given
a model family M, the best model M ∈ M for some observed
dataD is that which minimizes L(M)+L(D|M), where L(M) is
the length in bits used to describe M and L(D|M) is the length in



Table 2: Frequently used symbols and definitions

Symbol Definition

G, A dynamic graph and adjacency tensor resp.
V, n node-set, # of nodes of G resp.
E,m edge-set, # of edges of G resp.
Gx,Ax xth timestep, adjacency matrix of G resp.
Ex,mx edge-set and # of edges of Gx resp.
∆ set of temporal signatures
Ω set of static identifiers
Φ lexicon, set of temporal phrases Φ = ∆× Ω
× Cartesian set product
M, s model M , temporal structure s ∈M resp.
|S| cardinality of set S
|s| # of nodes in structure s
u(s) timesteps in which structure s appears
v(s) temporal phrase of structure s, v(s) ∈ Φ
st, ch star, chain resp.
fc, nc full, near clique resp.
bc, nb full, near bipartite core resp.
o, c oneshot, constant resp.
r, p, f ranged, periodic, flickering resp.
M approximation of A induced by M
E error matrix E = M⊕ E
⊕ exclusive OR
L(G,M) # of bits used to encode M and G given M
L(M) # of bits to encode M

bits used to describe D encoded using M . MDL enforces lossless
compression for fairness in the model selection process.

We focus on analysis of undirected dynamic graphs using fixed-
length, discretized time intervals. However, our notation will re-
flect the treatment of the problem as one with a series of individ-
ual snapshots of graphs, rather than a tensor, for readability pur-
poses. We consider a dynamic graph G(V, E) with n = |V| nodes,
m = |E| edges and t timesteps, without self-loops. Here, G =
∪xGx(V, Ex), whereGx andEx correspond to the graph and edge-
set for the xth timestep. The ideas proposed in this work, however,
can easily be generalized to other types of dynamic graphs.

For our summary, we consider the set of temporal phrases Φ =
∆ × Ω, where ∆ corresponds to the set of temporal signatures,
Ω corresponds to the set of static structure identifiers and × de-
notes Cartesian set product. Though we can include arbitrary tem-
poral signatures and static structure identifiers into these sets de-
pending on the types of temporal subgraphs we expect to find in
a given dynamic graph, we choose 5 temporal signatures which
we anticipate to find in real-world dynamic graphs [4] : oneshot
(o), ranged (r), periodic (p), flickering (f ) and constant (c), and 6
very common structures found in real-world static graphs [14, 23]
– stars (st), full and near cliques (fc, nc), full and near bipartite
cores (bc, nb) and chains (ch) . Summarily, we have the signatures
∆ = {o, r, p, f, c}, static identifiers Ω = {st, fc, nc, bc, nb, ch}
and temporal phrases Φ = ∆ × Ω. We will further describe these
signatures, identifiers and phrases after formalizing our objective.

In order to use MDL for dynamic graph summarization using
these temporal phrases, we next define the model family M, the
means by which a model M ∈ M describes our dynamic graph
and how to quantify the cost of encoding in terms of bits.

3.1 Using MDL for Dynamic Graph Summa-
rization

We consider models M ∈M to be composed of ordered lists of
temporal graph structures with node, but not edge overlaps. Each
s ∈ M describes a certain region of the adjacency tensor A in
terms of the interconnectivity of its nodes. We will use area(s,M,A)
to describe the edges (i, j, x) ∈ A which s induces, writing only
area(s) when context for M and A is clear.

Our model family M consists of all possible permutations of
subsets of C, where C = ∪vCv and Cv denotes the set of all possible
temporal structures of phrase v ∈ Φ over all possible combinations
of timesteps. That is,M consists of all possible models M , which
are ordered lists of temporal phrases v ∈ Φ such as flickering stars
(fst), periodic full cliques (pfc), etc. over all possible subsets of V
and G1 · · ·Gt. Through MDL, we seek the model M ∈ M which
best mediates between the encoding length of the modelM and the
adjacency tensor A given M .

Our fundamental approach for transmitting the adjacency tensor
A via the model M is described next. First, we transmit M . Next,
given M , we induce the approximation of the adjacency tensor M
as described by each temporal structure s ∈M – for each structure
s, we induce the edges in area(s) in M accordingly. Given that
M is a summary approximation to A, M 6= A most likely. Since
MDL requires lossless encoding, we must also transmit the error
E = M⊕A, obtained by taking the exclusive OR between M and
A. Given M and E, a recipient can construct the full adjacency
tensor A in a lossless fashion.

Thus, we formalize the problem we tackle as follows:

PROBLEM 2 (MINIMUM DYNAMIC GRAPH DESCRIPTION).
Given a dynamic graph G with adjacency tensor A and temporal
phrase lexicon Φ, find the smallest model M which minimizes the
total encoding length

L(G,M) = L(M) + L(E)

where E is the error matrix computed by E = M ⊕A and M is
the approximation of A induced by M .

In the following subsections, we further formalize the task of
encoding the model M and the error matrix E.

3.2 Encoding the Model
To fully describe a model M ∈M, we have the following:

L(M) = LN(|M |+ 1) + log2

(
|M |+ |Φ| − 1

|Φ− 1|

)
+
∑
s∈M

(−log2P (v(s)|M) + L(c(s)) + L(u(s)))

We begin by transmitting the total number of temporal structures
in M using LN, Rissanen’s optimal encoding for integers greater
than or equal to 1 [22]. Next, we optimally encode the number of
temporal structures for each phrase v ∈ Φ in M . Then, for each
structure s, we encode the type v(s) for each structure s ∈M using
optimal prefix codes [8], the connectivity c(s) and the temporal
presence of the s, consisting of the ordered list of timesteps u(s) in
which s appears.

In order to have a coherent model encoding scheme, we next
define the encoding for each phrase v ∈ Φ such that we can com-
pute L(c(s)) and L(u(s)) for all structures inM . The connectivity
c(s) corresponds to the edges in area(s) which are induced by s,
whereas the temporal presence u(s) corresponds to the timesteps
in which s is present. We consider the connectivity and tempo-
ral presence separately, as the encoding for a temporal structure s
described by a phrase v is the sum of encoding costs for the con-
nectivity of the corresponding static structure identifier in Ω and its
temporal presence as indicated by a temporal signature in ∆.

3.2.1 Encoding Connectivity
In this section, we describe how to compute the encoding cost

L(c(s)) for the connectivity for each type of static structure identi-
fier in our identifier set Ω.



Stars: A star is characteristic of a single “hub” node connected to
a set of 2 or more “spoke” nodes. We compute L(st) of a star st as
follows:

L(st) = LN(|st| − 1) + log2n+ log2

(
n− 1

|st| − 1

)
First, we identify the number of spokes of the star. Next, we iden-
tify the hub out of n nodes using an index over the combinatorial
number system. Lastly, we identify the spokes from the remainder.
Cliques: Cliques are comprised of densely connected sets of nodes.
For a full clique fc, in which all nodes are directly connected to all
other nodes in the clique, we give the cost L(fc) as follows:

L(fc) = LN(|fc|) + log2

(
n

|fc|

)
In this case, we encode the number of nodes in the clique followed
by their ids. Note that as M is an approximation of G, fc need not
actually be a full clique in G. If only a few edges of the full clique
are not present in G, it may be worthwhile from a compression
standpoint to describe it as such. In this case, each falsely repre-
sented edge will add to the error cost E. Errors in connectivity
encoding will be elaborated on in Sec. 3.3.1.

Less dense near-cliques are still interesting from a graph under-
standing perspective, provided they stand out from the background.
For a near clique nc, we give L(nc) as follows:

L(nc) = LN(|nc|) + log2

(
n

|nc|

)
+ log2(|area(nc)|)

+||nc||ρ1 + ||nc||′ρ0
Here, we encode the number of nodes and their ids as in the full
clique case. However, we additionally encode the edges in the near
clique by encoding the number of total edges in area(nc) by opti-
mal prefix codes. We use ||nc|| and ||nc||′ to denote the counts
for existing and non-existing edges in area(nc). Then, ρ1 =
−log(||nc||/(||nc|| + ||nc||′)) and ρ0 = −log(||nc||′/(||nc|| +
||nc||′)) represent the length of the optimal prefix codes for the ex-
isting and non-existing edges respectively. Intuitively, the more
sparse or dense the near clique is, the cheaper its encoding be-
comes. As the encoding in this case is exact, we do not add any
edges to E.
Bipartite Cores: Bipartite cores consist of non-empty, non-inter-
secting node-sets L and R for which there only exist edges from L
and R, but not within L or R. Note that stars can be construed as a
fixed case of bipartite cores in which |L| = 1. The encoding cost
L(bc) for a full bipartite core bc is as follows:

L(fb) = LN(|L|) + LN(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
In this case, we encode the number of nodes in L and R followed
by the node ids in each set.

As with near cliques, near bipartite cores are also interesting if
they stand out from the background. In this case, encoding is given
analogously as follows:

L(nb) = LN(|L|) + LN(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
+log2(|area(nb)|) + ||nb||ρ1 + ||nb||′ρ0

Furthermore, as with near-cliques, encoding in this case is exact so
we do not add any edges to E.

Chains: A chain is characterized by series of nodes in which each
node has an edge connecting it to the next node – for example, con-
sider the node-set {1, 2, 3, 4} in which 1 is connected to 2, 2 is
connected to 3, and 3 is connected to 4. Given the right permuta-
tion, a perfect chain in an undirected graph will have edges only
along two diagonals of the adjacency matrix. For a chain ch, we
have the encoding cost L(ch) as follows:

L(ch) = LN(|ch| − 1) +

|ch|∑
i=1

log2(n− i+ 1)

We first encode the number of nodes in the chain, followed by their
node ids in order of connection.

3.2.2 Encoding Temporal Presence
For a given phrase v ∈ Φ, it is not sufficient to only encode

the connectivity of the underlying static structure. We must also
encode the temporal presence u(s), consisting of a set of ordered
timesteps in which s appears, for each structure. In this section, we
describe how to compute the encoding cost L(u(s)) for each of the
temporal signatures in the signature set ∆.

We note that describing a set of timesteps u(s) in terms of tem-
poral signatures in ∆ is yet another model selection problem for
which we can leverage MDL. As with connectivity encoding, la-
beling u(s) with a given temporal signature may not be precisely
accurate – however, any mistakes will add to the cost of transmit-
ting the error. Errors in temporal presence encoding will be further
detailed in Sec. 3.3.2.
Oneshot: Oneshot structures appear at only one timestep inG1 · · ·Gt

– that is, |u(s)| = 1. These structures represent graph anomalies,
in the sense that they are non-recurrent interactions which are only
observed once. The encoding cost L(o) for the temporal presence
of a oneshot structure o can be written as:

L(o) = log2(t)

As the structure occurs only once, we only have to identify the
timestep of occurrence from the t observed timesteps.
Ranged: Ranged structures are characterized by a short-lived exis-
tence. These structures appear for several timesteps in a row before
disappearing again – they are defined by a single burst of activity.
The encoding cost L(r) for a ranged structure r is given by:

L(r) = LN(|u(s)|) + log2

(
t

2

)
We first encode the number of timesteps in which the structure oc-
curs, followed by the timestep ids of both the start and end timestep
marking the span of activity.
Periodic: Periodic structures are an extension of ranged structures
in that they appear at fixed intervals. However, these intervals are
spaced greater than one timestep apart. As such, the same encoding
cost function we use for ranged structures suffices here. That is,
L(p) for a periodic structure p is given by L(p) = L(r).

For both ranged and periodic structures, periodicity can be in-
ferred from the start and end markers along with the number of
timesteps |u(s)|, allowing reconstruction of the original u(s).
Flickering: A structure is flickering if it appears only in some
of the G1 · · ·Gt timesteps, and does so without any discernible
ranged/periodic pattern. The encoding cost L(f) for a flickering
structure f is as follows:

L(f) = LN(|u(s)|) + log2

(
n

|u(s)|

)



We encode the number of timesteps in which the structure occurs
in addition to the ids for the timesteps of occurrence.
Constant: Constant structures persist throughout all timesteps. That
is, they occur at each timestep G1 · · ·Gt without exception. In this
case, our encoding cost L(c) for a constant structure c is defined as
L(c) = 0. Intuitively, information regarding the timesteps in which
the structure appears is “free,” as it is already given by encoding the
phrase descriptor v(s).

3.3 Encoding the Errors
Given that M is a summary and the M induced by M is only

an approximation of A, it is necessary to encode errors made by
M . In particular, there are two types of errors we must consider.
The first is error in connectivity – that is, if area(s) induced by
structure s is not exactly the same as the associated patch in A, we
encode the relevant mistakes. The second is the error induced by
encoding the set of timesteps u(s) with a fixed temporal signature,
given that u(s) may not precisely follow the temporal pattern used
to encode it.

3.3.1 Encoding Errors in Connectivity
We encode the error tensor E = M⊕A as two different pieces

– specifically, we encode E+ and E− where the former refers to
the area of A which M models and M includes extraneous edges
not present in the original graph, and the latter consists of the area
of A which M does not model and therefore does not describe.
Our reasoning for encoding these two separately is that they likely
have different error distributions. Given that near cliques and near
bipartite cores are encoded exactly per our model, we ignore the
associated areas when encoding E+. The encoding for E+ and
E−, denoted as L(E+) and L(E−) respectively is as follows:

L(E+) = log2(|E+|) + ||E+||ρ1 + ||E+||′ρ0
L(E−) = log2(|E−|) + ||E−||ρ1 + ||E−||′ρ0

In both cases, we encode the number of 1s in E+ (or E−), followed
by the actual 1s and 0s using optimal prefix codes.

3.3.2 Encoding Errors in Temporal Presence
For encoding errors induced by identifying u(s) as one of the

temporal signatures, we turn to optimal prefix codes applied over
the error distribution for each structure s. Given the information
encoded for each signature type in ∆, we can reconstruct an ap-
proximation ũ(s) of the original timesteps u(s) such that |u(s)| =
|ũ(s)|. Using this approximation, the encoding cost L(eu(s)) for
the error eu(s) = u(s)− ũ(s) is defined as:

L(eu(s)) =
∑

k∈h(eu(s))

(
log2(k) + log2c(k) + c(k)ρk

)
where h(eu(s)) denotes the set of elements with unique magni-
tude in eu(s), c(k) denotes the count of element k in eu(s) and
ρk denotes the length of the optimal prefix code for k. For each
magnitude error, we encode the magnitude of the error, the num-
ber of times it occurs and the actual errors using optimal prefix
codes. Using the model in conjunction with temporal presence and
connectivity errors, a recipient can first recover the u(s) for each
s ∈ M , approximate A with M induced by M , produce E from
E+ and E−, and finally recover A losslessly through A = M⊕E.

Remark: For a dynamic graph G of n nodes, the search spaceM
for the best model M ∈ M is intractable, as it consists of all per-
mutations of all possible temporal structures over the lexicon Φ,

Algorithm 1 TIMECRUNCH

1: Generating Candidate Static Structures: Generate static subgraphs for each
G1 · · ·Gt using traditional static graph decomposition approaches.

2: Labeling Candidate Static Structures: Label each static subgraph as a static
structure corresponding to the identifier x ∈ Ω which minimizes the local encod-
ing cost.

3: Stitching Candidate Temporal Structures: Stitch the static structures from
G1 · · ·Gt together to form temporal structures with coherent connectivity be-
havior and label them according to the the phrase p ∈ Φ which minimizes tem-
poral presence encoding cost. Populate the candidate set C.

4: Composing the Summary: Compose a model M of important, non-redundant
temporal structures which summarize G using the VANILLA, TOP-10, TOP-100
and STEPWISE heuristics. Choose M associated with the heuristic that produces
the smallest total encoding cost.

over all possible subsets over the node-set V and over all possi-
ble graph timesteps G1 · · ·Gt. Furthermore, M is not easily ex-
ploitable for efficient search. As a result, we propose several prac-
tical approaches for the purpose of finding good and interpretable
temporal models/summaries for G.

4. PROPOSED METHOD: TIMECRUNCH
Thus far, we have described our strategy of formulating dynamic

graph summarization as a problem in a compression context for
which we can leverage MDL. Specifically, we have detailed how to
encode a model and the associated error which can be used to loss-
lessly reconstruct the original dynamic graph G. Our models are
characterized by ordered lists of temporal structures which are fur-
ther classified as phrases from the lexicon Φ – that is, each s ∈M
is identified by a phrase p ∈ Φ – over the node connectivity c(s)
(an induced set of edges depending on the static structure identifier
st, fc, etc.) and the associated temporal presence u(s) (ordered
list of timesteps captured by a temporal signature o, r, etc. and de-
viations) in which the temporal structure is active, while the error
consists of those edges which are not covered by M, or the approx-
imation of A induced by M .

Next, we discuss how we find good candidate temporal struc-
tures to populate the candidate set C, as well as how we find the
best model M with which to summarize our dynamic graph. The
pseudocode for our algorithm is given in Alg. 1 and the next sub-
sections detail each step of our approach.

4.1 Generating Candidate Static Structures
TIMECRUNCH takes an incremental approach to dynamic graph

summarization. Our approach begins by considering potentially
useful subgraphs over static graphs G1 · · ·Gt. Sec. 2 mentions
several such algorithms for community detection and clustering in-
cluding EigenSpokes, METIS, SlashBurn, etc. Summarily, for each
G1 · · ·Gt, a set of subgraphs F is produced.

4.2 Labeling Candidate Static Structures
Once we have the set of static subgraphs from G1 · · ·Gt, F ,

we next seek to label each subgraph in F according to the static
structure identifiers in Ω that best fit the connectivity for the given
subgraph. That is, for each subgraph construed as a set of nodes
L ∈ V for a fixed timestep, does the adjacency matrix of L best
resemble a star, near or full clique, near or full bipartite core or a
chain? To answer this question, we leverage the encoding scheme
discussed in Sec. 3.2.1: we try encoding the subgraph L using each
of the static identifiers in Ω and label it with the identifier x ∈ Ω
which minimizes the encoding cost.

Consider the model ω which consists of only the subgraph L
and a yet to be determined static identifier. In practice, instead
of computing the global encoding cost L(G,ω) when encoding L



as each static identifier in Ω to find the best fit, we compute the
local encoding cost defined as L(ω) + L(E+

ω ) + L(E−ω ) where
L(E+

ω ) and L(E−ω ) indicate the encoding costs for the extraneous
and unmodeled edges for the subgraph L respectively. This is done
for purpose of efficiency – intuitively, however, the static identifier
that best describes L is independent of the edges outside of L.

The challenge in this labeling step is that before we can encodeL
as any type of identifier, we must identify a suitable permutation of
nodes in the subgraph so that our model encodes the correct edges.
For example, if L is a star, which is the hub? Or if L is a bipartite
core, how can we distinguish the parts?

For stars, we identify the highest-degree node as the hub and all
other nodes as spokes. For near and full bipartite cores, finding the
right permutation can be reduced to finding the maximum bipartite
subgraph, which is equivalent to finding the maximum cut and is
NP-hard. As a result, we use a heuristic approach which formu-
lates the problem as a two-class classification task. To this end, we
initialize L to contain the highest-degree node in L, and R to con-
tain its neighbors. We then use Fast Belief Propagation [16] with
heterophily (assuming connected nodes belong to different classes)
to propagate the class labels and determine L and R. For near and
full cliques, any permutation is equally good. Lastly, for chains,
finding the right permutation is equivalent to finding the longest
path, which is NP-hard. As a result, we again employ a heuris-
tic approach in which we select a node in L at random, use BFS
to find the furthest node away, and repeat with the resulting node
while extending the chain through local search iteratively. For both
near cliques and bipartite cores, we do not encode E+

nc and E+
nb as

L(nc) and L(nb) encode the relevant edges exactly.

4.3 Stitching Candidate Temporal Structures
Thus far, we have a set of static subgraphs F over G1 · · ·Gt

labeled with the associated static identifiers which best represent
subgraph connectivity (from now on, we refer to F as a set of
static structures instead of subgraphs as they have been labeled
with identifiers). From this set, our goal is to find meaningful tem-
poral structures – namely, we seek to find static subgraphs which
have the same patterns of connectivity over one or more timesteps
and stitch them together. Thus, we formulate the problem of find-
ing coherent temporal structures in G as a clustering problem over
F . Though there are several criteria we could use for clustering
static structures together, we employ the following based on their
intuitive meaning: two structures in the same cluster should have
(a) substantial overlap in the node-sets composing their respective
subgraphs, and (b) exactly the same, or similar (full and near clique,
or full and near bipartite core) static structure identifiers. These cri-
teria, if satisfied, allow us to find groups of nodes that share inter-
esting connectivity patterns over time.

Conducting the clustering by naively comparing each static struc-
ture inF to the others will produce the desired result, but is quadratic
on the number of static structures and is thus undesirable from a
scalability point of view. Instead, we propose an incremental ap-
proach using repeated rank-1 Singular Value Decomposition (SVD)
for clustering the static structures, which offers linear time com-
plexity on the number of edges m in G.

We begin by defining B as the structure-node membership ma-
trix (SNMM) of G. B is defined to be of dimensions |F| × |V|,
where Bi,j indicates whether the ith row (structure) in F (B) con-
tains node j in its node-set. Thus, B is a matrix indicating the
membership of nodes in V to each of the static structures in F .
We note that any two equivalent rows in B are characterized by
structures that share the same node-set (but possibly different static
identifiers). As our clustering criteria mandate that we cluster only

structures with the same or similar static identifiers, in our algo-
rithm, we construct 4 SNMMs – Bst, Bcl, Bbc and Bch corre-
sponding to the associated matrices for stars, near and full cliques,
near and full bipartite cores and chains respectively. Now, any two
equivalent rows in Bcl are characterized by structures that share
the same-node set and the same, or similar static identifiers, and
analogue for the other matrices. Next, we utilize SVD to cluster
the rows in each SNMM, effectively clustering the structures in F .

Recall that the rank-k SVD of an m× n matrix A factorizes A
into 3 matrices – the m × k matrix of left-singular vectors U, the
k×k diagonal matrix of singular values Σ and the n×k matrix of
right-singular vectors V, such that A = UΣVT. A rank-k SVD
effectively reduces the input data into the best k-dimensional rep-
resentation, each of which can be mined separately for clustering
and community detection purposes. However, one major issue with
using SVD in this fashion is that identifying the desired number of
clusters k upfront is a non-trivial task. To this end, [20] evidences
that in cases where the input matrix is sparse, repeatedly clustering
using k rank-1 decompositions and adjusting the input matrix ac-
cordingly approximates the batch rank-k decomposition. This is a
valuable result in our case – as we do not initially know the num-
ber of clusters needed to group the structures in F , we eliminate
the need to define k altogether by repeatedly applying rank-1 SVD
using power iteration and removing the discovered clusters from
each SNMM until all clusters have been found (when all SNMMs
are fully sparse and thus deflated). However, in practice, full defla-
tion is unneeded for summarization purposes, as most “important”
clusters are found in early iterations due to the nature of SVD. For
each of the SNMMs, the matrix B used in the (i+ 1)th iteration of
this iterative process is computed as

Bi+1 = Bi − IGi ◦Bi

where Gi denotes the set of row ids corresponding to the structures
which were clustered together in iteration i, IGi denotes the in-
dicator matrix with 1s in rows specified by Gi and ◦ denotes the
Hadamard matrix product. This update to B is needed between
iterations, as without subtracting out the previously-found cluster,
repeated rank-1 decompositions would find the same cluster ad in-
finitum and the algorithm would not converge.

Although this algorithm works assuming we can remove a clus-
ter in each iteration, the question of how we find this cluster given
a singular vector has yet to be answered. First, we sort the singular
vector, permuting the rows by magnitude of projection. The intu-
ition is that the structure (rows) which projects most strongly to that
cluster is the best representation of the cluster, and is considered a
base structure which we attempt to find matches for. Starting from
the base structure, we iterate down the sorted list and compute the
Jaccard similarity, defined as J(L1,L2) = |L1∩L2|/|L1∪L2| for
node-sets L1 and L2, between each structure and the base. Other
structures which are composed of the same, or similar node-sets
will also project strongly to the cluster, and be stitched to the base.
Once we encounter a series of structures which fail to match by a
predefined similarity criterion, we adjust the SNMM and continue
with the next iteration.

Having stitched together the relevant static structures, we label
each temporal structure using the temporal signature in ∆ and re-
sulting phrase in Φ which minimizes its encoding cost using the
temporal encoding framework derived in Sec. 3.2.2. We use these
temporal structures to populate the candidate set C for our model.

4.4 Composing the Summary
Given the candidate set of temporal structures C, we next seek

to find the model M which best summarizes G. However, actually



Table 3: Dynamic graphs used for empirical analysis

Graph Nodes Edges Timesteps

Enron [24] 151 20 thousand 163 weeks
Yahoo-IM [28] 100 thousand 2.1 million 4 weeks
Honeynet 372 thousand 7.1 million 32 days
DBLP [1] 1.3 million 15 million 25 years

Phonecall 6.3 million 36.3 million 31 days

finding the best model is combinatorial, as it involves consider-
ing all possible permutations of subsets of C and choosing the one
which gives the smallest encoding cost. As a result, we propose
several heuristics that give fast and approximate solutions without
entertaining the entire search space. To reduce the search space,
we associate with each temporal structure a metric by which we
measure quality, called the local encoding benefit. The local encod-
ing benefit is defined as the ratio between the cost of encoding the
given temporal structure as error and the cost of encoding it using
the best phrase (local encoding cost). Large local encoding benefits
indicate high compressibility, and thus meaningful structure in the
underlying data. Our proposed heuristics are as follows:
VANILLA: This is the baseline approach, in which our summary
contains all the structures from the candidate set, or M = C.
TOP-K: In this approach, M consists of the top k structures of C,
sorted by local encoding benefit.
STEPWISE: This approach involves considering each structure of
C, sorted by local encoding benefit, and adding it toM if the global
encoding cost decreases. If adding the structure to M increases the
global encoding cost, the structure is discarded as redundant or not
worthwhile for summarization purposes.

In practice, TIMECRUNCH uses each of the heuristics and identi-
fies the best summary for G as the one that produces the minimum
encoding cost.

5. EXPERIMENTS
In this section, we evaluate TIMECRUNCH and seek to answer

the following questions: Are real-world dynamic graphs well-struc-
tured, or noisy and indescribable? If they are structured, how so –
what temporal structures do we see in these graphs and what do
they mean? Lastly, is TIMECRUNCH scalable?

5.1 Datasets and Experimental Setup
For our experiments, we use 5 real dynamic graph datasets – they

are summarized in Table 3 and described below.
Enron: The Enron e-mail dataset is publicly available. It con-
tains 20 thousand unique links between 151 users based on e-mail
correspondence, over 163 weeks (May 1999 - June 2002).
Yahoo! IM: The Yahoo-IM dataset is publicly available. It con-
tains 2.1 million sender-receiver pairs between 100 thousand users
over 5709 zip-codes selected from the Yahoo! messenger network
over 4 weeks starting from April 1st, 2008.
Honeynet: The Honeynet dataset is not publicly available. It
contains information about network attacks on honeypots (i.e., com-
puters which are left intentionally vulnerable to attackers) It con-
tains source IP, destination IP and attack timestamps of 372 thou-
sand (attacker and honeypot) machines with 7.1 million unique
daily attacks over a span of 32 days starting from December 31st,
2013.
DBLP: The DBLP computer science bibliography is publicly avail-
able, and contains yearly co-authorship information, indicating joint
publication. We used a subset of DBLP spanning 25 years, from

1990 to 2014, with 1.3 million authors and 15 million unique author-
author collaborations over the years.
Phonecall: The Phonecall dataset is not publicly available. It
describes the who-calls-whom activity of 6.3 million individuals
from a large, anonymous Asian city and contains a total of 36.3
million unique daily phonecalls. It spans 31 days, starting from
December 1st, 2007.

In our experiments, we use “SlashBurn” for generating candidate
static structures, as it is scalable and designed to extract structure
from real-world, non-“cavemen” graphs. We note that including
other graph decomposition methods can only improve results given
MDL. Furthermore, when clustering each sorted singular vector
during the stitching process, we move on with the next iteration
of matrix deflation after 10 failed matches with a Jaccard similar-
ity threshold of 0.5 – we choose 0.5 based on experimental results
which show that it gives the best encoding cost and balances be-
tween excessively terse and overlong (error-prone) models. Lastly,
we run TIMECRUNCH for a total of 5000 iterations for all graphs
(each iteration uniformly selects one SNMMs to mine, resulting in
5000 total temporal structures), except for the Enron graph which
is fully deflated after 563 iterations and the Phonecall graph
which we limit to 1000 iterations for efficiency.

5.2 Quantitative Analysis
In this section, we use TIMECRUNCH to summarize each of the

real-world dynamic graphs from Table 3 and report the resulting
encoding costs. Specifically, evaluation is done by comparing the
compression ratio between encoding costs of the resulting models
to the null encoding (ORIGINAL) cost, which is obtained by encod-
ing the graph using an empty model.

We note that although we provide results in a compression con-
text, compression is not our main goal for TIMECRUNCH, but rather
the means to our end for identifying suitable structures with which
to summarize dynamic graphs and route the attention of practition-
ers. For this reason, we do not evaluate against other, compression-
oriented methods which prioritize leveraging any correlation within
the data to reduce cost and save bits. Other temporal clustering and
community detection approaches which focus only on extracting
dense blocks are also not compared to for similar reasons.

In our evaluation, we consider (a) ORIGINAL and (b) TIME-
CRUNCH summarization using the proposed heuristics. In the ORIG-
INAL approach, the entire adjacency tensor is encoded using the
empty model M = ∅. As the empty model does not describe
any part of the graph, all the edges are encoded using L(E−).
We use this as a baseline to evaluate the savings attainable using
TIMECRUNCH. For summarization using TIMECRUNCH, we ap-
ply the VANILLA, TOP-10, TOP-100 and STEPWISE model selec-
tion heuristics. We note that we ignore small structures of <5 nodes
for Enron and <8 nodes for the other, larger datasets.

Table 4 shows the results of our experiments in terms of encod-
ing costs of various summarization techniques as compared to the
ORIGINAL approach. Smaller compression ratios indicate better
summaries, with more structure explained by the respective mod-
els. For example, STEPWISE was able to encode the Enron dataset
using just 78% of the bits compared to 89% using VANILLA. In our
experiments, we find that the STEPWISE heuristic produces mod-
els with considerably fewer structures than VANILLA, while giving
even more concise graph summaries (Fig. 2). This is because it is
highly effective in pruning redundant, overlapping or error-prone
structures from the candidate set C, by evaluating new structures in
the context of previously seen ones.



Graph ORIGINAL
TIMECRUNCH

(bits) VANILLA TOP-10 TOP-100 STEPWISE

Enron 86, 102 89% (563) 88% 81% 78% (130)
Yahoo-IM 16, 173, 388 97% (5000) 99% 98% 93% (1523)
Honeynet 72, 081, 235 82% (5000) 96% 89% 81% (3740)
DBLP 167, 831, 004 97% (5000) 99% 99% 96% (1627)
Phonecall 478, 377, 701 100% (1000) 100% 99% 98% (370)

Table 4: TIMECRUNCH finds temporal structures that can compress real graphs. ORIGINAL denotes the cost in bits for encoding each
graph with an empty model. Columns under TIMECRUNCH show relative costs for encoding the graphs using the respective heuristic (size
of model is parenthesized). The lowest description cost is bolded.
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Figure 2: TIMECRUNCH-STEPWISE summarizes Enron using
just 78% of ORIGINAL’s bits and 130 structures compared to
89% and 563 structures of TIMECRUNCH-VANILLA by prun-
ing unhelpful structures from the candidate set.

OBSERVATION 1. Real-world dynamic graphs are not unstruc-
tured. TIMECRUNCH gives better encoding cost than ORIGINAL,
indicating the presence of temporal graph structure.

5.3 Qualitative Analysis
In this section, we discuss qualitative results from applying TIME-

CRUNCH to the graphs mentioned in Table 3.
Enron: The Enron graph is characteristic of many periodic, ranged
and oneshot stars and several periodic and flickering cliques. Peri-
odicity is reflective of office e-mail communications (e.g. meetings,
reminders). Figure 3a shows an excerpt from one flickering clique
which corresponds to the several members of Enron’s legal team,
including Tana Jones, Susan Bailey, Marie Heard and Carol Clair –
all lawyers at Enron. Figure 3b shows an excerpt from a flickering
star, corresponding to many of the same members as the flickering
clique – the center of this star was identified as the boss, Tana Jones
(Enron’s Senior Legal Specialist). Note that the satellites of the
star oscillate over time. Interestingly, the flickering star and clique
extend over most of the observed duration. Furthermore, several
of the oneshot stars corresponds to company-wide emails sent out
by key players John Lavorato (Enron America CEO), Sally Beck
(COO) and Kenneth Lay (CEO/Chairman).
Yahoo! IM: The Yahoo-IM graph is composed of many tem-
poral stars and cliques of all types, and several smaller bipartite
cores with just a few members on one side (indicative of friends
who share mostly similar friend-groups but are themselves uncon-
nected). We observe several interesting patterns in this data – Fig. 3d
corresponds to a constant star with a hub that communicates with

70 users consistently over 4 weeks. We suspect that these users are
part of a small office network, where the boss uses group messag-
ing to notify employees of important updates or events – we notice
that very few edges of the star are missing each week and the aver-
age degree of the satellites is roughly 4, corresponding to possible
communication between employees. Figure 3c depicts a constant
clique between 40 users, with an average density over 55% – we
suspect that these may be spam-bots messaging each other in an
effort to appear normal.
Honeynet: Honeynet is a bipartite graph between attacker and
honeypot (victim) machines. As such, it is characterized by tempo-
ral stars and bipartite cores. Many of the attacks only span a single
day, as indicated by the presence of 3512 oneshot stars, and no at-
tacks span the entire 32 day duration. Interestingly, 2502 of these
oneshot star attacks (71%) occur on the first and second observed
days (Dec. 31 and Jan. 1st) indicating intentional “new-year” at-
tacks. Figure 3e shows a ranged star, lasting 15 consecutive days
and targeting 589 machines for the entire duration of the attack.
DBLP: Agreeing with intuition, DBLP consists of a large num-
ber of oneshot temporal structures corresponding to many single
instances of joint publication. However, we also find numerous
ranged/periodic stars and cliques which indicate coauthors pub-
lishing in consecutive years or intermittently. Figure 3f shows a
ranged clique spanning from 2007-2012 between 43 coauthors who
jointly published each year. The authors are mostly members of
the NIH NCBI (National Institute of Health National Center for
Biotechnology Information) and have published their work in vari-
ous biotechnology journals such as Nature, Nucleic Acids Research
and Genome Research. Figure 3g shows another ranged clique
from 2005 to 2011, consisting of 83 coauthors who jointly pub-
lish each year, with an especially collaborative 3 years (timesteps
18-20) corresponding to 2007-2009 before returning to status quo.
Phonecall: The Phonecall dataset is largely comprised of tem-
poral stars and few dense clique and bipartite structures. Again, we
have a large proportion of oneshot stars which occur only at sin-
gle timesteps. Further analyzing these results, we find that 111 of
the 187 oneshot stars (59%) are found on Dec. 24, 25 and 31st,
corresponding to Christmas Eve/Day and New Year’s Eve holi-
day greetings. Furthermore, we find many periodic and flickering
stars typically consisting of 50-150 nodes, which may be associ-
ated with businesses regularly contacting their clientele, or public
phones which are used consistently by the same individuals. Fig-
ure 3h shows one such periodic star of 111 users over the last week
of December, with particularly clear star structure on Dec. 25th and
31st and other odd-numbered days, accompanied by substantially
weaker star structure on the even-numbered days. Figure 3i shows
an oddly well-separated oneshot near-bipartite core which appears
on Dec. 31st, consisting of two roughly equal-sized parts of 402



(a) 8 employees of the Enron legal team forming a
flickering near clique

(b) 10 employees of the Enron legal team forming
a flickering star with the boss as the hub

(c) 40 users in Yahoo-IM forming a constant near
clique with 55% density over the observed 4 weeks

(d) 82 users in Yahoo-IM forming a constant star
over the observed 4 weeks

(e) 589 honeypot machines were attacked on
Honeynet over 2 weeks, forming a ranged star

(f) 43 authors that publish together in biotechnology
journals forming a ranged near clique on DBLP

(g) 82 authors forming a ranged near clique
on DBLP, with burgeoning collaboration from
timesteps 18-20 (2007-2009)

(h) 111 callers in Phonecall forming a periodic
star appearing strongly on odd numbered days, es-
pecially Dec. 25 and 31

(i) 792 callers in Phonecall forming a oneshot
near bipartite core appearing strongly on Dec. 31

Figure 3: TIMECRUNCH finds meaningful temporal structures in real graphs. We show the reordered subgraph adjacency matrices over
multiple timesteps. Individual timesteps are outlined in gray, and edges are plotted with alternating red and blue color for discernibility.

Table 5: Frequency of each temporal structure type discovered using TIMECRUNCH-STEPWISE for each dataset.

st fc ch

r 9 - -
p 93 7 1
f 3 1 -
c - - -
o 15 1 -

(a) Enron

st fc nc bc nb ch

r 147 43 - 1 45 6
p 59 25 - - 42 3
f 179 55 - 1 62 3
c 185 118 - - 66 -
o 295 129 1 2 56 -

(b) Yahoo-IM

st bc

r 56 -
p 125 1
f 39 -
c - -
o 3512 7

(c) Honeynet

st fc nb ch

r 43 80 - 5
p 19 26 - -
f 1 - - -
c - - - -
o 516 840 97 -

(d) DBLP

st fc nc bc

r 15 - - -
p 68 - - 1
f 88 - - -
c 5 - - -
o 187 4 1 1

(e) Phonecall

and 390 callers. Though we do not have ground truth to interpret
these structures, we note that a practitioner with the appropriate
information could better interpret their meaning.

5.4 Scalability
All components of TIMECRUNCH are carefully designed to be

linear or near-linear on the number of nonzero edges. Figure 4
shows the near-linear runtime of TIMECRUNCH on several induced
temporal subgraphs (up to 14M edges) taken from the DBLP dataset
at varying time-intervals. Our experiments were conducted on a
machine with 80 Intel Xeon(R) 4850 2GHz cores and 256GB RAM.
We use MATLAB for candidate subgraph generation and temporal
stitching and Python for model selection heuristics.

Furthermore, much of the TIMECRUNCH pipeline (per-timestep
summarization) is embarassingly parallelizable and can be easily

split over nodes. Distributed eigensolver implementations also ex-
ist in practice for the stitching component.

6. CONCLUSION
In this work, we tackle the problem of identifying significant

and structurally interpretable temporal patterns in large, dynamic
graphs. Specifically, we formalize the problem of finding impor-
tant and coherent temporal structures in a graph as minimizing the
encoding cost of the graph from a compression standpoint. To
this end, we propose TIMECRUNCH, a fast and effective, incre-
mental technique for building interpretable summaries for dynamic
graphs which involves generating candidate subgraphs from each
static graph, labeling them using static identifiers, stitching them
over multiple timesteps and composing a model using practical ap-
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Figure 4: TIMECRUNCH scales near-linearly on the number of
edges in the graph. Here, we use several induced temporal sub-
graphs from DBLP, up to 14M edges in size.

proaches. Finally, we apply TIMECRUNCH on several large, dy-
namic graphs and find numerous patterns and anomalies which in-
dicate that real-world graphs do in fact exhibit temporal structure.
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