
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

TCP Nice: A Mechanism for Background Transfers
Arun Venkataramani Ravi Kokku Mike Dahlin

�

Laboratory of Advanced Systems Research
Department of Computer Sciences

University of Texas at Austin, Austin, TX 78712�
arun, rkoku, dahlin � @cs.utexas.edu

Abstract

Many distributed applications can make use of large
background transfers � transfers of data that humans
are not waiting for � to improve availability, reliability,
latency or consistency. However, given the rapid fluc-
tuations of available network bandwidth and changing
resource costs due to technology trends, hand tuning the
aggressiveness of background transfers risks (1) compli-
cating applications, (2) being too aggressive and inter-
fering with other applications, and (3) being too timid
and not gaining the benefits of background transfers.
Our goal is for the operating system to manage network
resources in order to provide a simple abstraction of near
zero-cost background transfers. Our system, TCP Nice,
can provably bound the interference inflicted by back-
ground flows on foreground flows in a restricted network
model. And our microbenchmarks and case study appli-
cations suggest that in practice it interferes little with
foreground flows, reaps a large fraction of spare net-
work bandwidth, and simplifies application construction
and deployment. For example, in our prefetching case
study application, aggressive prefetching improves de-
mand performance by a factor of three when Nice man-
ages resources; but the same prefetching hurts demand
performance by a factor of six under standard network
congestion control.

1 Introduction

Many distributed applications can make use of large
background transfers � transfers of data that humans are
not waiting for � to improve service quality. For exam-
ple, a broad range of applications and services such as
data backup [29], prefetching [50], enterprise data dis-
tribution [20], Internet content distribution [2], and peer-
to-peer storage [16, 43] can trade increased network

�
This work was supported in part by an NSF CISE grant (CDA-

9624082), the Texas Advanced Technology Program, the Texas Ad-
vanced Research Program, and Tivoli. Dahlin was also supported by
an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan Re-
search Fellowship.

bandwidth consumption and possibly disk space for im-
proved service latency [15, 18, 26, 32, 38, 50], improved
availability [11, 53], increased scalability [2], stronger
consistency [53], or support for mobility [28, 41, 47].
Many of these services have potentially unlimited band-
width demands where incrementally more bandwidth
consumption provides incrementally better service. For
example, a web prefetching system can improve its hit
rate by fetching objects from a virtually unlimited col-
lection of objects that have non-zero probability of ac-
cess [8, 10] or by updating cached copies more fre-
quently as data change [13, 50, 48]; Technology trends
suggest that “wasting” bandwidth and storage to im-
prove latency and availability will become increasingly
attractive in the future: per-byte network transport costs
and disk storage costs are low and have been improv-
ing at 80-100% per year [9, 17, 37]; conversely net-
work availability [11, 40, 54] and network latencies im-
prove slowly, and long latencies and failures waste hu-
man time.

Current operating systems and networks do not provide
good support for aggressive background transfers. In
particular, because background transfers compete with
foreground requests, they can hurt overall performance
and availability by increasing network congestion. Ap-
plications must therefore carefully balance the benefits
of background transfers against the risk of both self-
interference, where applications hurt their own perfor-
mance, and cross-interference, where applications hurt
other applications’ performance. Often, applications at-
tempt to achieve this balance by setting “magic num-
bers” (e.g., the prefetch threshold in prefetching algo-
rithms [18, 26]) that have little obvious relationship to
system goals (e.g., availability or latency) or constraints
(e.g., current spare network bandwidth).

Our goal is for the operating system to manage net-
work resources in order to provide a simple abstrac-
tion of zero-cost background transfers. A self-tuning
background transport layer will enable new classes of
applications by (1) simplifying applications, (2) reduc-
ing the risk of being too aggressive, and (3) making

it easier to reap a large fraction of spare bandwidth to
gain the advantages of background transfers. Self-tuning
resource management seems essential for coping with
network conditions that change significantly over peri-
ods of seconds (e.g., changing congestion [54]), hours
(e.g., diurnal patterns), and months (e.g., technology
trends [9, 37]). We focus on managing network re-
sources rather than processors, disks, and memory both
because other work has provided suitable end-station
schedulers for these local resources [10, 24, 33, 39, 45]
and because networks are shared across applications,
users, and organizations and therefore pose the most crit-
ical resource management challenge to aggressive back-
ground transfers.

Our system, TCP Nice, dramatically reduces the inter-
ference inflicted by background flows on foreground
flows. It does so by modifying TCP congestion con-
trol to be more sensitive to congestion than traditional
protocols such as TCP Reno [30] or TCP Vegas [7] by
detecting congestion earlier, reacting to it more aggres-
sively, and allowing much smaller effective minimum
congestion windows. Although each of these changes is
simple, the combination is carefully constructed to prov-
ably bound the interference of background flows on fore-
ground flows while still achieving reasonable throughput
in practice. Our Linux implementation of Nice allows
senders to select Nice or standard Reno congestion con-
trol on a connection-by-connection basis, and it requires
no modifications at the receiver.

Our goals are to minimize damage to foreground flows
while reaping a significant fraction of available spare
network capacity. We evaluate Nice against these goals
using theory, microbenchmarks, and application case
studies.

Because our first goal is to avoid interference regardless
of network conditions or application aggressiveness, our
protocol must rest on a sound theoretical basis. In Sec-
tion 3, we argue that our protocol is always less aggres-
sive than Reno, and we prove under a simplified net-
work model that Nice flows interfere with Reno flows’
bandwidth by a factor that falls exponentially with the
size of the buffer at the bottleneck router independent of
the number of Nice flows in the network. Our analysis
shows that all three features described above are essen-
tial for bounding interference.

Our microbenchmarks comprise both ns [36] simula-
tions to stress test the protocol and Internet measure-
ments to examine the system’s behavior under realistic
conditions. Our simulation results in Section 4 indicate
that Nice avoids interfering with Reno or Vegas flows
across a wide range of background transfer loads and
spare network capacity situations. For example, in one
microbenchmark, 16 Nice background flows slow down

the average demand document transfer time by less than
10% and reap over 70% of the spare network bandwidth.
But in the same situation, 16 backlogged Reno (or Ve-
gas) flows slow demand requests by more than an order
of magnitude.

Our Internet microbenchmarks in Section 5 measure
the performance of simultaneous foreground and back-
ground transfers across a variety of Internet links. We
find that background flows cause little interference to
foreground traffic: the foreground flows’ average latency
and bandwidth are little changed between when fore-
ground flows compete with background flows and when
they do not. Furthermore, we find that there is suffi-
cient spare capacity that background flows reap signifi-
cant amounts of bandwidth throughout the day. For ex-
ample, during most hours Nice flows between London
England and Austin Texas averaged more than 80% of
the bandwidth achieved by Reno flows; during the worst
hour observed they still saw more than 30% of the Reno
flows’ bandwidth.

Finally, our case study applications seek to examine the
end-to-end effectiveness, the simplicity, and the useful-
ness of Nice. We examine two services. First, we im-
plement a HTTP prefetching client and server and use
Nice to regulate the aggressiveness of prefetching. Sec-
ond, we study a simplified version of the Tivoli Data
Exchange [20] system for replicating data across large
numbers of hosts. In both cases, Nice allows us to (1)
simplify the application by eliminating magic numbers,
(2) reduce the risk of interfering with demand transfers,
and (3) improve the effectiveness of background trans-
fers by using significant amounts of bandwidth when
spare capacity exists. For example, in our prefetching
case study, when applications prefetch aggressively, they
can improve their performance by a factor of 3 when
they use Nice, but if they prefetch using TCP-Reno in-
stead, they overwhelm the network and increase total de-
mand response times by more than a factor of six.

The primary limitation of our analysis is that we eval-
uate our system when competing against Reno and Ve-
gas TCP flows, but we do not systematically evaluate
it against other congestion control protocols such as
equation-based [22] or rate-based [42]. Our protocol is
strictly less aggressive than Reno, and we expect that it
causes little interference with other demand flows, but
future work is needed to provide evidence to support
this assertion. A second concern is incentive compati-
bility: will users use low priority flows for background
traffic when they could use high priority flows instead?
We observe that most of the “aggressive replication” ap-
plications cited above do, in fact, voluntarily limit their
aggressiveness by, for example, prefetching only objects
whose priority of use exceeds a threshold [18, 50]. Two

factors may account for this phenomenon. First, good
engineers may consider the social costs of background
transfers and therefore be conservative in their demands.
Second, most users have an incentive to at least avoid
self-interference where a user’s background traffic inter-
feres with that user’s foreground traffic from the same
or different application. We thus believe that Nice is a
useful tool for both responsible and selfish engineers and
users.

The rest of this paper proceeds as follows. Section 2
describes the Nice congestion control algorithm. Sec-
tions 3, 4, and 5 describe our analytic results, NS mi-
crobenchmark results, and Internet measurement results
respectively. Section 6 describes our experience with
case study applications. Finally, Section 7 puts this work
in context with related work, and Section 8 presents our
conclusions.

2 Design and Implementation

In designing our system, we seek to balance two con-
flicting goals. An ideal system would (1) cause no inter-
ference to demand transfers and (2) consume 100% of
available spare bandwidth. In order to provide a simple
and safe abstraction to applications, we emphasize the
former goal and will be satisfied if our protocol makes
use of a significant fraction of spare bandwidth. Al-
though it is easy for an adversary to construct scenarios
where Nice does not get any throughput in spite of there
being sufficient spare capacity in the network, our exper-
iments confirm that in practice, Nice obtains a significant
fraction of the throughput of Reno or Vegas when there
is spare capacity in the network.

2.1 Background: Existing Algorithms

Congestion control mechanisms in existing transmission
protocols are composed of a congestion signal and a re-
action policy. The congestion control algorithms in pop-
ular variants of TCP (Reno, NewReno, Tahoe, SACK)
use packet loss as a congestion signal. In steady state,
the reaction policy uses additive increase and multiplica-
tive decrease (AIMD) in which the sending rate is con-
trolled by a congestion window that is multiplicatively
decreased by a factor of two upon a packet drop and is
increased by one per window of data acknowledged. The
AIMD framework is believed to be fundamental to the
robustness of the Internet [12, 30].

However, with respect to our goal of minimizing inter-
ference, this congestion signal � a packet loss � arrives
too late to avoid damaging other flows. In particular,
overflowing a buffer (or filling a RED router enough to
cause it to start dropping packets) may trigger losses in

other flows, forcing them to back off multiplicatively
and lose throughput.

In order to detect incipient congestion due to interfer-
ence we monitor round-trip delays of packets and use
increasing round-trip delays as a signal of congestion.
In this respect, we draw inspiration from TCP Vegas [7],
a protocol that differs from TCP-Reno in its congestion
avoidance phase. By monitoring round-trip delays, each
Vegas flow tries to keep between � (typically 1) and

�
(typically 3) packets buffered at the bottleneck router.
If fewer than � packets are queued, Vegas increases the
window by one per window of data acknowledged. If
more than

�
packets are queued, the algorithm decreases

the window by one per window of data acknowledged.
Vegas adjusts the window � once every round as fol-
lows (�����	��
�
 is the minimum value of all measured
round-trip delays and �����������������
�
 is the round-trip
delay experienced by a distinguished packet in the pre-
vious round):

��� ����! #"%$&$ // Expected throughput

' � �(*)�+-,/.102,/3�"%4 // Actual throughput

Diff
�657� � '98;: �<���	��
�

if (Diff =>�)
� � �@?BA

else if (Diff C �)
� � � �DA

Bounding the difference between the actual and ex-
pected throughput translates to maintaining between �
and

�
packets in the bottleneck router. Although Vegas

seems a promising candidate protocol for background
flows, it has some drawbacks: (i) Vegas has been
designed to compete for throughput approximately
fairly with Reno, (ii) Vegas backs off when the number
of queued packets from its flow increases, but it does
not necessarily back off when the number of packets
enqueued by other flows increase, (iii) each Vegas flow
tries to keep 1 to 3 packets in the bottleneck queue,
hence a collection of background flows could cause
significant interference.

Note that even setting � and
�

to very small values does
not prevent Vegas from interfering with cross traffic. The
linear decrease on the “Diff C �

” trigger is not respon-
sive enough to keep from interfering with other flows.
We confirm this intuition using simulations and Internet
experiments, and it also follows as a conclusion from the
theoretical analysis.

2.2 TCP Nice

The Nice extension adds three components to Vegas:
first, a more sensitive congestion detector; second, mul-
tiplicative reduction in response to increasing round trip
times; and third, the ability to reduce the congestion win-
dow below one. These additions are simple, but our
analysis and experiments demonstrate that the omission
of any of them would fundamentally increase the inter-
ference caused by background flows.

A Nice flow monitors round-trip delays, estimates the
total queue size at the bottleneck router, and signals con-
gestion when this total queue size exceeds a fraction
of the estimated maximum queue capacity. Nice uses
�<� �	��
�
 , the minimum observed round trip time, as the
estimate of the round trip delay when queues are empty,
and it uses � ��� ��
�
 as an estimate of the round trip
time when the bottleneck queue is full. If more than
fraction of the packets Nice sends during a RTT window
encounter delays exceeding �<���	��
�
 ? 5 � ��� ��
�
 �
�<� �	��
�
 8 :���� � � � � 	� � , our detector signals congestion.
Round-trip delays of packets are indicative of the current
bottleneck queue size and the threshold represents the
fraction of the total queue capacity that starts to trigger
congestion. The Nice congestion avoidance mechanism
incorporating the interference trigger with threshold

�
and fraction
 can be written as follows (���&� ��
�
 is the
round-trip delay experienced by each packet):

per ack operation:
if (���4����
�
 C 5 A � �/8 : �����	��
�
 ? � : � ��� ��
�
 8

��4��� ���� ++;
per round operation:

if
5 ��&��� ���� C f

: � 8
� � �����

else �
. . . // Vegas congestion avoidance follows�

If the congestion condition does not trigger, Nice falls
back on Vegas’ congestion avoidance rules. If a packet is
lost, Nice falls back on Reno’s rules. The final change to
congestion control is to allow the window sizes to multi-
plicatively decrease below one, if so dictated by the con-
gestion trigger and response. In order to affect window
sizes less than one, we send a packet out after waiting for
the appropriate number of smoothed round-trip delays.

Maintaining a window of less than one causes us to lose
ack-clocking, but the flow continues to send at most as
many packets into the network as it gets out. In this
phase the packets act as network probes waiting for con-
gestion to dissipate. By allowing the window to go be-
low one, Nice retains the non-interference property even
for a large number of flows. Both our analysis and our
experiments confirm the importance of this feature: this

optimization significantly reduces interference, particu-
larly when testing against several background flows. A
similar optimization has been suggested even for regular
flows to handle cases when the number of flows starts to
approach the bottleneck router buffer size [35].

When a Nice flow signals congestion, it halves its cur-
rent congestion window. In contrast Vegas reduces its
window by one packet each round that encounters long
round trip times and only halves its window if packets
are lost (falling back on Reno-like behavior.) The com-
bination of more aggressive detection and more aggres-
sive reaction may make it more difficult for Nice to max-
imize utilization of spare capacity, but our design goals
lead us to minimize interference even at the potential
cost of utilization. Our experimental results show that
even with these aggressively timid policies, we achieve
reasonable levels of utilization in practice.

As in TCP Vegas, maintaining running measures of
�<� �	��
�
 and � ��� ��
�
 have their limitations - for ex-
ample, if the network is in a state of persistent conges-
tion, a bad estimate of �<���	��
�
 is likely to be obtained.
However, past studies [1, 44] have indicated that a good
estimate of the minimum round-trip delay can typically
be obtained in a short time; our experience supports this
claim. The use of minimum and maximum values makes
the prototype sensitive to outliers. Using the first and
ninety-ninth percentile values could improve the robust-
ness of this algorithm, but we have not tested this opti-
mization. Route changes during a transfer can also con-
tribute to inaccuracies in RTT estimates. However such
changes are uncommon [40] and we speculate that they
can be handled by maintaining exponentially decaying
averages for �����	��
�
 and � ��� ��
�
 estimates.

2.3 Prototype Implementation

We implement a prototype Nice system by extending an
existing version of the Linux kernel that supports Vegas
congestion avoidance. Like Vegas, we use microsecond
resolution timers to monitor round-trip delays of packets
to implement a congestion detector. In our implementa-
tion of Nice, we set the corresponding Vegas parameters
� and

�
to 1 and 3 respectively. After the first round-trip

delay estimate, maxRTT is initialized to � : �<���	��
�
 .

The Linux TCP implementation maintains a minimum
window size of two in order to avoid delayed acknowl-
edgements by receivers that attempt to send one ac-
knowledgement every two packets. In order to allow the
congestion window to go to one or below one, we add a
new timer that runs on a per-socket basis when the con-
gestion window for the particular socket is below two.
When in this phase, the flow waits for the appropriate
number of RTTs before sending two packets into the net-
work. Thus, a window of 1/16 means that the flow sends

out two packets after waiting for 32 smoothed round-trip
times. We limit the minimum window size to A � ��� in our
prototype.

Our congestion detector signals congestion when more
than fraction �����
	 packets during an RTT encounter
delays exceeding

��� ��� � � 	�7������ � . We discuss the sen-
sitivity to

��� ��� � � 	�7� in more detail in Section 3. The
fraction does not enter directly into our analysis; our ex-
perimental studies in Section 4 indicate that the inter-
ference is relatively insensitive to the fraction parameter
chosen. Since packets are sent in bursts, most packets in
a round observe similar round-trip times. In the future
we plan to study pacing packets across a round in order
to obtain better samples of prevailing round-trip delays.

Our prototype provides a simple API to designate a flow
as a background flow through an option in the setsockopt
system call. By default, flows are foreground flows.

3 Analysis

Experimental evidence alone is insufficient to allow us
to make strong statements about Nice’s non-interference
properties for general network topologies, background
flow workloads, and foreground flow workloads. We
therefore analyze it formally to bound the reduction in
throughput that Nice imposes on foreground flows. Our
primary result is that under a simplified network model,
for long transfers, the reduction in the throughput of
Reno flows is asymptotically bounded by a factor that
falls exponentially with the maximum queue length of
the bottleneck router irrespective of the number of Nice
flows present.

Theoretical analysis of network protocols, of course, has
limits. In general, as one abstracts away details to gain
tractability or generality, one risks omitting important
behaviors. Most significantly, our formal analysis as-
sumes a simplified fluid approximation and synchronous
network model, as described below. Also, our formal
analysis holds for long background flows, which are
the target workload of our abstraction. But it also as-
sumes long foreground Reno flows, which are clearly
not the only cross-traffic of interest. Finally, in our anal-
ysis, we abstract detection by assuming that at the end
of each RTT epoch, a Nice sender accurately estimates
the queue length during the previous epoch. Although
these assumptions are restrictive, the insights gained in
the analysis lead us to expect the protocol to work well
under more general circumstances. The analysis has also
guided our design, allowing us to include features that
are necessary for noninterference while excluding those
that are not. Our experience with the prototype has sup-
ported the benefit of using theoretical analysis to guide
our design: we encountered few surprises and required

maxRTT= τ + Β/µ

B

q = t.B
 t

µ

Decrease
Multiplicative

minRTT= τ

Increase
Additive Linear

Decrease

Figure 1: Nice Queue Dynamics

no topology or workload-dependent tuning during our
experimental effort.

We use a simplified fluid approximation model of the
network to help us model the interaction of multiple
flows using separate congestion control algorithms. This
model assumes infinitely small packets. We simplify the
network itself to a source, destination, and a single bot-
tleneck, namely a router that performs drop-tail queuing
as shown in Figure 1. Let � denote the service rate of
the queue and � the buffer capacity at the queue. Let
� be the round-trip delay of packets between the source
and destination excluding all queuing delays. We con-
sider a fixed number of connections, � following Reno
and � following Nice, each of which has one continu-
ously backlogged flow between a source and a destina-
tion. Let

�
be the Nice threshold and �����

��:
� be

the corresponding queue size that triggers multiplicative
backoff for Nice flows. The connections are homoge-
neous, i.e. they experience the same propagation delay
� . Moreover, the connections are synchronized so that
in the case of buffer overflow, all connections simultane-
ously detect a loss and multiply their window sizes by � .
Models assuming flow synchronization have been used
in previous analyses [6]. We model only the congestion
avoidance phase to analyze the steady-state behavior.

We obtain a bound on the reduction in the throughput of
Reno flows due to the presence of Nice flows by analyz-
ing the dynamics of the bottleneck queue. We achieve
this goal by dividing the duration of the flows into peri-
ods. In each period we bound the decrease in the number
of Reno packets processed by the router due to interfer-
ing Nice packets. In the following we give an outline of
this analysis. The complete analysis with detailed proofs
appears in the our technical report [49].

Let � . 5 �/8 and � 5 �/8 denote respectively the total num-
ber of outstanding Reno and Nice packets in the network
at time

�
. � 5 �/8

, the total window size, is � . 5 �/8 ? � 5 �/8 .
We trace these window sizes across periods. The end of
a period and the beginning of the next is marked by a
packet loss, at which time each flow reduces its window
size by a factor of � . � 5 �/8 ��� � ?�� just before a

loss and � 5 �/8 � 5 � � ? � 8 : � just after. Let
� � be the

beginning of one such period after a loss. Consider the
case when � 5 � � 8 � 5 � � ? � 8 � = � � and � C � . For
ease of analysis we assume that the “Vegas

�
” parame-

ter for the Nice flows is � , i.e. the Nice flows additively
decrease upon observing round-trip times greater than
� . The window dynamics in any period can be split into
three intervals as described below.

Additive Increase, Additive Increase: In this interval� � ��� �����
both Reno and Nice flows increase linearly.

� 5 �/8
increases from � 5 � � 8 to � 5 ����8

� � � , at which
point the queue starts building.

Additive Increase, Additive Decrease: This inter-
val

� � � � �
	��
is marked by additive increase of � . , but

additive decrease of � as the “Diff C �
” rule triggers

the underlying Vegas controls for the Nice flows. The
end of this interval is marked by � 5 ��	�8

� � � ? � � .

Additive Increase, Multiplicative Decrease: In this
interval

� ��	 � �
��
, � 5 �/8 multiplicatively decreases in

response to observing queue lengths above � � . However,
the rate of decrease of � 5 �/8 is bounded by the rate of
increase of � . 5 �/8 , as any faster a decrease will cause the
queue size to drop below � � . At the end of this interval
� 5 � 8 � � � ? � . At this point, each flow decreases its
window size by a factor of � , thereby entering into the
next period.

In order to quantify the interference experienced by
Reno flows because of the presence of Nice flows,
we formulate differential equations to represent the
variation of the queue size in a period. We then show
that the values of � . and � at the beginning of
periods stabilize after several losses, so that the length
of a period converges to a fixed value. It is then straight-
forward to compute the total amount of Reno flow sent
out in a period. We show in the technical report [49]
that the interference � , defined as the fractional loss in
throughput experienced by Reno flows because of the
presence of Nice flows, is given as follows.

Theorem 1: The interference � is given by

���
� � : �����������
����� �! "
5 � � ? � 8 � (1)

The derivation of � indicates that all three design fea-
tures of Nice are fundamentally important for reducing
interference. The interference falls exponentially with
� 5 A � �/8

or � � � � , which reflects the time that Nice has
to multiplicatively back off before packet losses occur.
Intuitively, multiplicative decrease allows any number of
Nice flows to get out of the way of additively increasing
demand flows. The dependence on the ratio #� suggests

that as the number of demand flows approaches the max-
imum queue size the non-interference property starts to
break down. This breakdown is not surprising as each
flow barely gets to maintain one packet in the queue
and TCP Reno is known to behave anomalously under
such circumstances [35]. In a well designed network,
when �%$ � , it can be seen that the dependence on the
threshold

�
is weak, i.e. interference is small when

�
is,

and careful tuning of the exact value of
�

in this region
is unnecessary. Our full analysis shows that the above
bound on � holds even for the case when �'& � . Al-
lowing window sizes to multiplicatively decrease below
one is crucial in this proof.

4 ns Controlled Tests

The goal of our simulation is to validate our hypotheses
in a controlled environment. In particular, we wish to
i) test the non-interference property of Nice and ii) de-
termine if Nice gets any useful bandwidth for the work-
loads considered. By using controlled ns [36] simula-
tions in this phase of the study we can stress test the
system by varying network configurations and load to
extreme values. We can also systematically compare the
Nice algorithm against others. Overall, the experiments
support our theses:

(Nice flows cause almost no interference irrespec-
tive of the number of flows.

(Nice gets a significant fraction of the available
spare bandwidth.

(Nice performs better than other existing protocols,
including Reno, Vegas, and Vegas with reduced �
and

�
parameters.

4.1 Methodology

We use ns 2.1b8a for our simulation experiments. The
topology used is a bar-bell in which) TCP senders
transmit through a shared bottleneck link * to an equal
number of receivers. The router connecting the senders
to * becomes the bottleneck queue. Routers perform
drop-tail FIFO queueing except in experiments with
RED turned on. The buffer size is set to the bandwidth
delay product. Packets are 512 bytes in size and the
propagation delay is set to 50ms. We vary the capac-
ity of the link in order to simulate different amounts of
spare capacity.

We use a 15 minute section of a Squid proxy trace logged
at UC Berkeley as the foreground traffic over L. The
number of flows fluctuates as clients enter and leave the
system as specified by the trace. On average there are

0.1

1

10

100

1000

1 10 100

D
oc

um
en

t L
at

en
cy

 (
se

c)

Spare Capacity

Reno

Vegas

Vegas-0

Nice

Router Prio

Figure 2: Spare capacity vs Latency

about 12 active clients. In addition to this foreground
load, we introduce permanently backlogged background
flows. For the initial set of experiments we fix the band-
width of the link to twice the average demand bandwidth
of the trace. The primary metric we use to measure in-
terference is the average transfer latency of a document
i.e., the time between its first packet being sent and the
receipt of the ack corresponding to the last packet. We
use the total number of bytes transferred by the back-
ground flows as the measure of its utilization of spare
capacity.

Unless otherwise specified, the values of the
��� � � � � 	�7�

and
4� � � � �-�� for Nice are set to 0.1 and 0.5 respectively.
We compare the performance of Nice to several other
strategies for sending background flows. First, we com-
pare with router prioritization that services a background
packet only if there are no queued foreground packets.
Router prioritization is the ideal strategy for background
flow transmission, as background flows never interfere
with foreground flows. In addition, we compare to Reno,
Vegas(� � A � � ���), Vegas(� � � � � � �).
4.2 Results

Experiment 1: In this experiment we fix the number
of background flows to 16 and vary the spare capacity,�

. To achieve a spare capacity
�

, we set the bottle-
neck link bandwidth * � 5 A ? � 8%: averageDemandBW,
where averageDemandBW is the total number of bytes
transferred in the trace divided by the duration of the
trace. Figure 2 plots the average document transfer la-
tency for foreground traffic as a function of the spare
capacity in the network. Different lines represent differ-
ent runs of the experiments using different protocols for
background flows. It can be seen that Nice is hardly dis-
tinguishable from router prioritization whereas, the other
protocols cause a significant increase in foreground la-
tency. Note that the Y-axis is on a log scale, which means
that in some cases Reno and Vegas increase foreground

0.1

1

10

100

1000

1 10 100

D
oc

um
en

t L
at

en
cy

 (
se

c)

Num BG flows

Vegas

Vegas-0

Nice

Router Prio

Reno

Figure 3: Number of BG flows vs Latency

0

10000

20000

30000

40000

50000

60000

70000

80000

1 10 100

B
G

 T
hr

ou
gh

pu
t (

K
B

)

Num BG flows

Router Prio

Vegas

Vegas-0

Reno

Nice

Figure 4: Number of BG flows vs BG throughput

document transfer latencies by over an order of magni-
tude.

Experiment 2: Sensitivity to number of BG flows In
this experiment we fix the spare capacity

�
of the net-

work to 1 and vary the number of background flows.
Figure 3 plots the latency of foreground document trans-
fers against the number of background flows. Even
with 100 background Nice flows, the latency of fore-
ground documents is hardly distinguishable from the
ideal case when routers provide strict prioritization. On
the other hand, Reno and Vegas background flows can
cause foreground latencies to increase by orders of mag-
nitude. Figure 4 plots the number of bytes the back-
ground flows manage to transfer. A single background
flow reaps about half the spare bandwidth available un-
der router prioritization; this background throughput im-
proves with increasing number of background flows but
remains below router prioritization. The difference is
the price we pay for ensuring non-interference with an
end-to-end algorithm. Note that although Reno and Ve-
gas obtain better throughput, even for a small number of
flows they go beyond the router prioritization line, which
means they steal bandwidth from foreground traffic.

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

F
G

 L
at

en
cy

Threshold

Figure 5: Threshold vs FG latency

0.1

1

10

100

1 10 100

D
oc

um
en

t L
at

en
cy

 (
se

c)

Spare Capacity

Router Prio
Nice-0.03

Nice

Reno

Vegas

Figure 6: Spare capacity vs Latency with RED

We also examine experiments where we do not allow
Nice’s congestion window to fall below 1 (graph omit-
ted). In this case, when the number of background flows
exceeds about 10, the latency of foreground flows begins
to increase noticeably; the increase is about a factor of
two when the number of background flows is �

�
.

Experiment 3: Sensitivity to parameters In this ex-
periment we trace the effect of the threshold and trigger
fraction parameters described in Section 2.2. Figure 5
shows the document transfer latencies as a function of
the threshold for the same trace as above, with

�
� A

and 16 background flows. As expected, as the thresh-
old value increases, the interference caused by Nice in-
creases until the protocol finally reverts to Vegas behav-
ior as the threshold approaches 1. It is interesting to note
that there is large range of threshold values yielding low
interference, which suggests that its value need not be
manually tuned for each network. We examine the trig-
ger fraction in the same way, and find little change in
foreground latency as we vary this fraction from 0.1 to
0.9 (graph omitted).

0.1

1

10

100

1000

1 10 100

D
oc

um
en

t L
at

en
cy

 (
se

c)

Num BG flows

Reno

Vegas

Router Prio

Nice

Nice-0.03

Figure 7: Number of BG flows vs Latency with RED

Experiment 4: Nice with RED queueing We repeat
experiments 1 and 2, but with routers performing RED
queueing. The RED parameters are set as recommended
in [23] with the “gentle” mode on. The minimum and
maximum RED thresholds are set to one-third and two-
third of the buffer size. Packets are probabilistically
marked with ECN support from the senders. Figure 6
plots the foreground document transfer latency against
the spare capacity with 16 background flows. Though
Nice still performs as much as an order of magnitude
better than other protocols, it causes up to a factor of 2
increase in document transfer latencies for large spare
capacities. As figure 7 indicates, under RED, Nice
closely approximates router prioritization regardless of
the number of flows when the spare capacity is one, i.e.
the demand workload consumes half of the network ca-
pacity.

The relatively poor performance of Nice under RED
when spare capacities are large appears to reflect the
sensitivity of Nice’s interference � to bottleneck queue
length (Equation 1). Whereas Nice flows damage fore-
ground flows when drop-tail queues are completely full,
under RED, interference can begin when the bottleneck
queue occupancy reaches RED’s minimum threshold
�<� � ��� . One solution may be to reduce Nice’s

��� � � � � 	�7�
parameter. The Nice-0.03 lines in Figures 6 and 7 plot
Nice’s interference under RED when

��� ��� � � 	�7��� ��
� �
instead of the default value of ���!A � . Future work is
needed to better understand Nice’s interaction with RED
queuing.

Other results Due to space constraints, we state two
other results here, but omit detailed discussions and
graphs. The full discussion appears in the extended ver-
sion [49].

First, we also perform experiments with synthetically
generated ON/OFF Pareto UDP foreground traffic,
which is much burstier and less predictable than TCP

foreground flows. We observe that Nice still causes
lower interference than Reno or Vegas, but does not
match router prioritization as closely. The utilization
of spare capacity by Nice is also lower compared to the
trace workload case. This suggests that the benefits of
Nice are reduced when traffic is unpredictable. Sec-
ond, we compare Nice to simple rate limited Reno flows.
When the rate is tuned to approximate the spare capacity
of the network, rate limiting performs well. Nice, how-
ever, outperforms rate limiting and does not require hand
tuning.

5 Internet Microbenchmarks

In this section we evaluate our Nice implementation over
a variety of Internet links. We seek to answer three ques-
tions. First, in a less controlled environment than our NS
simulations, does Nice still avoid interference? Second,
are there enough reasonably long periods of spare ca-
pacity on real links for Nice to reap reasonable through-
put? Third, are any such periods of spare capacity spread
throughout the day, or is the usefulness of background
transfers restricted to nights and weekends?

Our experiments suggest that Nice works for a range of
networks, including a modem, a cable modem, a transat-
lantic link, and a fast WAN. In particular, on these net-
works it appears that Nice avoids interfering with other
flows and that it can achieve throughput that are signifi-
cant fractions of the throughput that would be achieved
by Reno throughout the day.

5.1 Methodology

Our measurement client program connects to a measure-
ment server program at exponentially-distributed ran-
dom intervals. At each connection time, the client
chooses one of six actions: Reno/NULL, Nice/NULL,
Reno/Reno, Reno/Nice, Reno/Reno8, Reno/Nice8.1

Each action consists of a “primary transfer” (denoted by
the term left of the /) and zero or more “secondary trans-
fers” (denoted by the term right of the /). Reno terms in-
dicate flows using standard TCP-Reno congestion con-
trol. Nice terms indicate flows using Nice congestion
control. For secondary transfers, NULL indicates ac-
tions that initiate no secondary transfers to compete with
the primary transfer, and 8 indicates actions that initiate
8 (rather than the default 1) secondary transfers. The
transfers are of large files whose sizes are chosen to re-
quire approximately 10 seconds for a single Reno flow
to compete on the network under study.

1We also test standard Vegas in place of Reno for the large-transfer
experiments and find that standard Vegas behaves essentially like
Reno. These results are omitted due to space constraints.

We position a server that supports Nice at UT Austin.
We position clients (1) in Austin connected to the In-
ternet via a University of Texas 56.6K dial in modem
bank (modem), (2) in Austin connected via a commercial
ISP cable modem (cable modem), (3) in a commercial
hosting center in London, England connected to multiple
backbones including an OC12 and an OC3 to New York
(London), and (4) at the University of Delaware, which
connects to UT via an Abilene OC3 (Delaware). All
machines run Linux. The server is a 450MHz Pentium
II with 256MB of memory. The clients range from 450-
1000MHz and all have at least 256MB of memory. The
experiment ran from Saturday May 11 2002 to Wednes-
day May 15 2002; we gathered approximately 50 probes
per client/workload pair.

5.2 Results

Figure 8 summarizes the results of our large-transfer
experiments. On each of the networks, the through-
put of Nice/NULL is a significant fraction of that of
Reno/NULL, suggesting that periods of spare capacity
are often long enough for Nice to detect and make use
of them. Second, we note that during Reno/Nice and
Reno/Nice8 actions, the primary (Reno) flow achieves
similar throughput to the throughput seen during the
control Reno/NULL sessions. In particular, on a mo-
dem network, when Reno flows compete with a sin-
gle Nice flow, they receive on average 97% of the av-
erage bandwidth they receive when there is no com-
peting Nice flow. On a cable modem network, when
Reno flows compete with eight Nice flows, they receive
97% of the bandwidth they would receive alone. Con-
versely, Reno/Reno and Reno/Reno8 show the expected
fair sharing of bandwidth among Reno flows, which re-
duces the bandwidth achieved by the primary flow.

Figure 9 shows the hourly average bandwidth achieved
by the primary flow for the different combinations listed
above. Our hypothesis is that Nice can achieve useful
amounts of throughput throughout the day, and the data
appear to support this statement.

6 Case Study Applications

6.1 HTTP Prefetching

Many studies have published promising results that sug-
gest that prefetching (or pushing) content could signifi-
cantly improve web cache hit rates by reducing compul-
sory and consistency misses [15, 18, 26, 27, 32, 38, 50].

Typically, prefetching algorithms are tuned with a
threshold parameter to balance the potential benefits of
prefetching data against the bandwidth costs of fetching

Reno,NULL

Nice,NULL

Reno,Reno

Reno,Nice
0

100

200

300
Tr

an
sfe

r ti
me

s (
in

se
co

nd
s)

Nice flow
Reno flow

Reno,NULL

Nice
,NULL

Reno,Reno

Reno,Nice

Reno,Reno8

Reno,Nice
8

0

20

40

60

80

Tr
an

sfe
r t

im
es

 (in
 se

co
nd

s)

Nice flow
Reno flow

(a) modem (b) cable modem

Reno,NULL

Nice,NULL

Reno,Reno

Reno,Nice

Reno,Reno8

Reno,Nice8
0

20

40

60

80

Tr
an

sfe
r ti

me
s (

in
se

co
nd

s)

Nice flow
Reno flow

Reno,NULL

Nice,NULL

Reno,Reno

Reno,Nice

Reno,Reno8

Reno,Nice8
0

5

10

15

20

Tr
an

sfe
r ti

me
s (

in
se

co
nd

s)

Nice flow
Reno flow

(c) London (d) Delaware

Figure 8: Large flow transfer performance. Each bar represents the average transfer time observed for the specified
combination of primary/secondary transfers. Empty bars represent the average time for a Reno flow. Solid bars
represent the average time for a Nice flow. The narrow lines depict the minimum and maximum values observed
during multiple runs of each combination.

it and the storage cost of keeping it until its next use. An
object is prefetched if the estimated probability that the
object will be referenced before it is modified exceeds
the threshold. Extending Gray and Shenoy’s analysis
of demand caching [25], Chandra calculates reasonable
thresholds given network costs, disk costs, and human
waiting time values and concludes that most algorithms
in the literature have been far too conservative in setting
their thresholds [9]. Furthermore, the 80-100% per year
improvements in network [9, 37] and disk [17] capac-
ity/cost mean that a value that is correct today may be
off by an order of magnitude in 3-4 years.

In this case study, we build a prefetching protocol similar
to the one proposed by Padmanabhan and Mogul [38]:

when serving requests, servers piggy back lists of sug-
gested objects in a new HTTP reply header. Clients
receiving a prediction list discard old predictions and
then issue prefetch requests of objects from the new list.
This division of labor allows servers to use global in-
formation and application-specific knowledge to predict
access patterns, and it allows clients to filter requests
through their caches to avoid repeatedly fetching an ob-
ject.

To evaluate prefetching performance, we implement a
standalone client that reads a trace of HTTP requests,
simulates a local cache, and issues demand and prefetch
requests. Our client is written in Java and pipelines re-
quests across HTTTP/1.1 persistent connections [21].

MAY 13 MAY 14 MAY 15 MAY 16

Time of day

0

50

100

R
e
sp

o
n
se

 t
im

e
s

(i
n
 s

e
co

n
d
s)

 Reno flow
Nice flow

MAY 10 MAY 11 MAY 12 MAY 13 MAY 14 MAY 15

Time of day

0

5

10

15

20

25

R
e

sp
o

n
se

 t
im

e
s

(i
n

 s
e

co
n

d
s)

Reno flow
Nice flow

MAY 10 MAY 11 MAY 12 MAY 13 MAY 14 MAY 15

Time of day

0

10

20

30

40

R
e
sp

o
n
se

 t
im

e
s

(i
n
 s

e
co

n
d
s)

Reno flow
Nice flow

(a) cable modem (b) London (c) Delaware

Figure 9: Large flow transfer performance over time.

To ensure that demand and prefetch requests use sep-
arate TCP connections, our server directs prefetch re-
quests to a different port than demand requests. The dis-
advantage of this approach is that it does not fit with the
standard HTTP caching model. We discuss how to de-
ploy such a protocol without modifying HTTP in a sep-
arate study [31].

We use Squid proxy traces from 9 regional proxies col-
lected during January 2001 [51]. We study network
interference near the server by examining subsets of
the trace corresponding to a popular groups of related
servers – cnn (e.g., cnn.com, www.cnn.com, cnnfn.com,
etc.). This study compares relative performance for dif-
ferent resource management algorithms for a given set
of prefetching algorithms. It does not try to identify
optimal prefetching algorithms; nor does it attempt to
precisely quantify the absolute improvements available
from prefetching.

We use a simple prediction by partial matching algo-
rithm [14] PPM- � ��� that uses a client’s � most recent
requests to the server group for non-image data to pre-
dict cachable (i.e., non-dynamically-generated) URLs
that will appear during a subsequent window that ends
after the � ’th non-image request to the server group.
We use two variations of our PPM- � ��� algorithm. The
conservative variation uses parameters similar to those
found in the literature for HTTP prefetching. It uses
� � � , � � 	 and sets the prefetch threshold to
0.25 [18]. To prevent prefetch requests from interfering
with demand requests, it pauses 1 second after a demand
reply is received before issuing requests. The aggressive
variation uses � � � , � � A�� , and truncates prefetch
proposal lists with a threshold probability of 0.00001. It
issues prefetches immediately after receiving them.

We use 2 client machines connected to a server ma-
chine via a cable modem. On each client machine,
we run 8 virtual clients, each with a separate cache

and separate HTTP/1.1 demand and prefetch connec-
tions to the server. In order for the demand traffic to
consume about 10% of the cable modem bandwidth,
we select the 6 busiest hours from the 30-Jan-2001
trace and divide trace clients from each hour randomly
across 4 of the virtual clients. In each of our seven tri-
als, all the 16 virtual clients run the same prefetching
algorithm: none, conservative-Reno, aggressive-Reno,
conservative-Nice, aggressive-Nice.

Figure 10(a) shows the average demand response times
perceived by the clients. We note that when clients
do conservative prefetching using either protocol �
Nice or Reno � the latency reductions are comparable.
However, when they start aggressively prefetching us-
ing Reno, the latency blows up by an order of magni-
tude. Clients using aggressive Nice prefetching, how-
ever, continue to see further latency reductions. The fig-
ure shows that Nice is effective in using spare bandwidth
for prefetching without affecting the demand requests.

Figure 10(b) represents the effect of prefetching over
a modem (the setup is same as above except with the
cable modem replaced by a modem), an environment
where the amount of spare bandwidth available is min-
imal. This figure shows that while the Reno and Nice
protocols are comparable in benefits when doing con-
servative prefetching, aggressive prefetching using Reno
hurts the clients significantly by increasing the latencies
three-fold. Nice on the other hand, does not worsen the
latency even though it does not gain much.

We conclude that Nice simplifies the design of prefetch-
ing applications. Applications can aggressively prefetch
data that might be accessed in the future. Nice prevents
interference if the network does not have spare band-
width and improves application performance if it does.

None Conserv Aggress
0

20

40

60

80

100

D
em

an
d

re
sp

on
se

 ti
m

es
(m

ill
is

ec
on

ds
)

Reno
Nice

None Conserv Aggress
0

1000

2000

3000

D
em

an
d

re
sp

on
se

 ti
m

es
(m

ill
is

ec
on

ds
)

Reno
Nice

(a) cable modem (b) dial-up modem

Figure 10: Average demand transfer time for prefetching for the cnn server-group.

6.2 Tivoli Data Exchange

We study a simplified version of the Tivoli Data Ex-
change [20] system for replicating data across large
numbers of hosts. This system distributes data and pro-
grams across thousands of client machines using a hi-
erarchy of replication servers. Both non-interference
and good throughput are important metrics. In particu-
lar, these data transfers should not interfere with interac-
tive use of target machines. And because transfers may
be large, may be time critical, and must go to a large
number of clients using a modest number of simultane-
ous connections, each data transfer should complete as
quickly as possible. The system currently uses two pa-
rameters at each replication server to tune the balance
between non-interference and throughput. One parame-
ter throttles the maximum rate that the server will send a
single client; the other throttles the maximum total rate
across all clients.

Choosing these rate limiting parameters requires some
knowledge of network topology and may have to choose
between overwhelming slow clients and slowing fast
clients (e.g., distributing a 300MB Office application
suite would nearly a day if throttled to use less than half
a 56.6Kb/s modem). One could imagine a more com-
plex system that allows the maximum bandwidth to be
specified on a per-client basis, but such a system would
be complex to configure and maintain.

Nice can provide an attractive self-tuning abstraction.
Using it, a sender can just send at the maximum speed
allowed by the connection. We report preliminary re-
sults using a standalone server and client. The server and
clients are the same as in the Internet measurements de-
scribed in Section 5. We initiate large transfers from the
server and during that transfer measure the ping round
trip time between the client and the server. When run-
ning Reno, we vary the client throttle parameter and

leave the total server bandwidth limit to an effectively
infinite value. When running Nice, we set both the client
and server bandwidth limits to effectively infinite values.

Figure 11 shows a plot of ping latencies (representative
of interference) as a function of the completion time of
transfers to clients over different networks. With Reno,
completion times decrease with increasing throttle rates
but increase ping latencies as well. Furthermore, the op-
timal rates vary widely across different networks. How-
ever Nice picks sending rates for each connection with-
out the need for manual tuning that achieve minimum
transfer times while maintaining acceptable ping laten-
cies in all cases.

7 Related work

TCP congestion control has seen an enormous body of
work since Jacobson’s seminal paper on the topic [30].
This work seeks to maximize utilization of network ca-
pacity, to share the network fairly among flows, and to
prevent pathological scenarios like congestion collapse.
In contrast our primary goal is to ensure minimal inter-
ference with regular network traffic; though high utiliza-
tion is important, it is a distinctly subordinate goal in our
algorithm. Our algorithm is always less aggressive than
AIMD TCP: it reacts the same way to losses and in addi-
tion, it reacts to increasing delays. Therefore, the work
to ensure network stability under AIMD TCP applies to
Nice as well.

The GAIMD [52] and binomial [4] frameworks provide
generalized families of AIMD congestion control algo-
rithms to allow protocols to trade smoothness for re-
sponsiveness in a TCP-friendly manner. The parame-
ters can also be tuned to make a protocol less aggressive
than TCP. We considered using these frameworks for
constructing a background flow algorithm, but we were
unable to develop the types of strong non-interference

50

100

150

200

250

300

350

20 40 60 80 100 120 140 160 180

P
in

g
 la

te
n

cy
 (

in
 m

ill
is

e
cs

)

Completion time(in seconds)

Manual tuning
Nice point

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100110

P
in

g
 la

te
n

cy
 (

in
 m

ill
is

e
cs

)

Completion time(in seconds)

Manual tuning
Nice point

0

1000

2000

3000

4000

5000

6000

50 100 150 200 250 300 350 400 450

P
in

g
 la

te
n

cy
 (

in
 m

ill
is

e
cs

)

Completion time(in seconds)

Manual tuning
Nice point

(a) transcontinental link (b) cable modem (c) modem

Figure 11: Each continuous line represents completion times and corresponding ping latencies with varying send
rates. The single point is the send rate chosen by Nice.

guarantees we seek using these frameworks. One area
for future work is developing similar generalizations of
Nice in order to allow different background flows to be
more or less aggressive compared to one another while
all remain completely timid with respect to competing
foreground flows.

Prioritizing packet flows would be easier with router
support. As noted in Section 4, router prioritization
queues such as those proposed for DiffServ [5] service
differentiation architectures are capable of completely
isolating foreground flows from background flows while
allowing background flows to consume nearly the en-
tire available spare bandwidth. Unfortunately, these so-
lutions are of limited use for someone trying to deploy
a background replication service today because few ap-
plications are deployed solely in environments where
router prioritization is installed or activated. A key
conclusion of this study is that an end-to-end strategy
need not rely on router support to make use of available
network bandwidth without interfering with foreground
flows.

Applications can limit the network interference they
cause in various ways:
(a) Coarse-grain scheduling: Background transfers can
be scheduled during hours where there is little fore-
ground traffic. Studies [19, 34] show that prefetching
data during off-peak hours can reduce latency and peak
bandwidth usage.
(b) Rate limiting: Spring et. al [46] discuss prioritizing
flows by controlling the receive window sizes of clients.
Crovella et. al [15] propose a combination of window-
based rate control and pacing to spread out prefetched
traffic to limit interference. They show that such shap-
ing of traffic leads to less bursty traffic and smaller queue
lengths.
(c) Application tuning: Applications can limit the
amount of data they send by varying application-level
parameters. For example, many prefetching algorithms
estimate the probability that an object will be referenced

and only prefetch that object if its probability exceeds
some threshold [18, 26, 38, 50].

It is not clear how an engineer should go about set-
ting such application-specific parameters. We believe
that self-tuning support for background transfers has at
least three advantages over existing application-level ap-
proaches. Nice operates over fine time scales, so it
can provide lower interference (by reacting to spikes in
load) as well as higher average throughput (by using
a large fraction of spare bandwidth) than static hand-
tuned parameters. This property reduces the risk and
increases the benefits available to background transfers
while simplifying application design. Our experiments
also demonstrate that Nice provides useful bandwidth
throughout the day in many environments.

Existing transport layer solutions can be used to
tackle the problem of self-interference between a sin-
gle sender/receiver’s flows. The congestion manager
CM [3] provides an interface between the transport and
the application layers to share information across con-
nections and for handling applications using different
transport protocols. Microsoft XP’s Background Intelli-
gent Transfer Service (BITS) provides support for trans-
fers of lower priority to minimize interference with the
user’s interactive sessions by using a rate throttling ap-
proach. In contrast to these approaches, Nice handles
both self- as well as cross-interference by modifying the
sender side alone.

8 Conclusions

This paper presents an end-to-end congestion control al-
gorithm optimized to support background transfers. Sur-
prisingly, an end-to-end protocol can nearly approxi-
mate the ideal router-prioritization strategy by (a) al-
most eliminating interference with demand flows and (b)
reaping significant fractions of available spare network
bandwidth.

Our Internet experiments suggest that there is a signif-
icant amount of spare capacity on a wide variety of In-
ternet links. Nice provides a mechanism to improve ap-
plication performance by harnessing this capacity in a
non-interfering manner. Our case studies demonstrate
that Nice can simplify application design by eliminating
the need to hand-tune parameters to balance utilization
and interference. Inspired by the results in this paper, we
have built a self-tuning prefetching system [31] based on
Nice that avoids interference at the server and in the net-
work, and is deployable with simple modifications to a
web server.

One application of Nice is to support massive replication
of data and services, where spare resources (e.g., band-
width, disk space, and processor cycles) are consumed
to help humans be more productive. Massive replication
systems should be designed as if bandwidth were essen-
tially free. TCP Nice provides a reasonable approxima-
tion of such an abstraction.

References

[1] Anurag Acharya and Joel Saltz. A study of internet
round-trip delay. Technical Report CS-TR-3736,
University of Maryland, 1996.

[2] Akamai, Inc. http://www.akamai.com.

[3] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and
H. Balakrishnan. System support for bandwidth
management and content adaptation in internet ap-
plications. In OSDI, pages 213–226, 2000.

[4] D. Bansal and H. Balakrishnan. Binomial Conges-
tion Control Algorithms. In Infocom, 2001.

[5] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An architecture for dif-
ferentiated services, 1998.

[6] T. Bonald. Comparision of TCP Reno and TCP Ve-
gas via fluid approximation. INRIA Research Re-
port 3563, Nov 1998.

[7] Lawrence S. Brakmo and Larry L. Peterson. TCP
vegas: End to end congestion avoidance on a
global internet. IEEE Journal on Selected Areas
in Communications, 13(8):1465–1480, 1995.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distribu-
tions: Evidence and implications. In Infocom,
1999.

[9] B. Chandra. Web workloads influencing discon-
nected service access. Master’s thesis, University
of Texas at Austin, May 2001.

[10] B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Raz-
zaq, and A. Sewani. Resource management for
scalable disconnected access to web services. In
WWW10, May 2001.

[11] B. Chandra, M. Dahlin, L. Gao, and A. Nayate.
End-to-end WAN Service Availability. In USITS,
2001.

[12] Chiu and Jain. Analysis of increase and decrease
algorithms for congestion avoidance in computer
networks. Journal of Computer networks and
ISDN, 17(1):1–14, June 1989.

[13] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In SIGMOD, 2000.

[14] J. Cleary and I. Witten. Data compression using
adaptive coding and partial string matching. IEEE
Transactions on Communications, 1984.

[15] M. Crovella and P. Barford. The network effects of
prefetching. In Infocom, 1998.

[16] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS.
In SOSP, 2001.

[17] M. Dahlin. http://www.cs.utexas.edu/users/dahlin/
techTrends/data/diskPrices/data, Jan 2002.

[18] D. Duchamp. Prefetching Hyperlinks. In USITS,
1999.

[19] S. Dykes and K. A. Robbins. A viability analysis
of cooperative proxy caching. In Infocom, 2001.

[20] Tivoli Data Exchange. http://www.tivoli.com/prod
ucts/documents/datasheets/data exchange ds.pdf.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext transfer protocol – http/1.1, June 1999.

[22] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast ap-
plications: the extended version. Technical Report
TR-00-003, ICSI, March 2000.

[23] Sally Floyd and Van Jacobson. Random early de-
tection gateways for congestion avoidance. IEEE/
ACM Transactions on Networking, 1(4):397–413,
August 1993.

[24] P. Goyal, X. Guo, and H.M. Vin. A hierarchical
cpu scheduler for multimedia operating systems. In
OSDI, pages 107–122, October 1996.

[25] J. Gray and P. Shenoy. Rules of thumb in data en-
gineering. In ”Proc. 16th Internat. Conference on
Data Engineering”, pages 3–12, 2000.

[26] J. Griffioen and R. Appleton. Automatic Prefetch-
ing in a WAN. In IEEE Workshop on Advances in
Parallel and Distributed Systems, October 1993.

[27] J. S. Gwertzman and M. Seltzer. The case for geo-
graphical push-caching. In HotOS, 1995.

[28] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File Sys-
tem. ACM Transactions on Computer Systems,
6(1):51–81, February 1988.

[29] N. Hutchison, S. Manley, M. Federwisch, G. Har-
ris, D. Hitz, S. Kleiman, and S. O’Malley. Logical
vs. physical file system backup. In OSDI, 1999.

[30] V. Jacobson. Congestion avoidance and control. In
SIGCOMM, 1988.

[31] R. Kokku, P. Yalagandula, A. Venkataramani, and
M. Dahlin. A non-interfering deployable web
prefetching system. Technical Report TR-02-51,
Computer Sciences, UT Austin, May 2002.

[32] T. M. Kroeger, D. E. Long, and J. C. Mogul. Ex-
ploring the bounds of web latency reduction from
caching and prefetching. In USITS, 1997.

[33] C. Lumb, J. Schindler, G. Ganger, D. Nagle, and
E. Riedel. Towards higher disk head utilization:
Extracting free bandwidth from busy disk drives.
In OSDI, 2000.

[34] C. Maltzahn, K. Richardson, D. Grunwald, and
J. Martin. On bandwidth smoothing. In 4th In-
ternational Web Caching Workshop, 1999.

[35] R. Morris. Tcp behavior with many flows. In Inter-
national Conference on Network Protocols, 1997.

[36] The network simulator – ns-2. http://www.isi.edu/
nsnam/ns.

[37] A. Odlyzko. Internet growth: Myth and reality, use
and abuse. Journal of Computer Resource Man-
agement, pages 23–27, 2001.

[38] V. N. Padmanabhan and J. C. Mogul. Using pre-
dictive prefetching to improve World-Wide Web
latency. In SIGCOMM, 1996.

[39] R. Hugo Patterson, Garth A. Gibson, Eka Gint-
ing, Daniel Stodolsky, and Jim Zelenka. Informed
prefetching and caching. In SOSP, 1995.

[40] V. Paxson. End-to-end Routing Behavior in the In-
ternet. In SIGCOMM, 1996.

[41] G. Popek, R. Guy, T. Page, and J. Heidemann.
Replication in the Ficus Distributed File System. In
Workshop on the Management of Replicated Data,
pages 5–10, November 1990.

[42] R. Rejaie, M. Handley, and D. Estrin. RAP: An
end-to-end rate-based congestion control mecha-
nism for realtime streams in the internet. In In-
focom, 1999.

[43] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-
to-peer storage utility. In SOSP, 2001.

[44] Dheeraj Sanghi, Ashok K. Agrawala, Olafur Gud-
mundsson, and Bijendra N. Jain. Experimental as-
sessment of end-to-end behavior on internet. In In-
focom (2), pages 867–874, 1993.

[45] P. Shenoy and H. Vin. Cello: A disk scheduling
framework for next-generation operating systems.
In SIGMETRICS, 1998.

[46] Neil T. Spring, Maureen Chesire, Mark Berry-
man, Vivek Sahasranaman, Thomas Anderson, and
Brian N. Bershad. Receiver based management of
low bandwidth access links. In Infocom, 2000.

[47] D. Terry, M. Theimer, K. Petersen, A. Demers,
M. Spreitzer, and C. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Repli-
cated Storage System. In SOSP, 1995.

[48] A. Venkataramani, M. Dahlin, and P. Weidmann.
Bandwidth constrained placement in a WAN. In
PODC, 2001.

[49] A. Venkataramani, R. Kokku, and M. Dahlin. Sys-
tem support for background replication. Technical
Report TR-02-30, Computer Sciences, UT Austin,
May 2002.

[50] A. Venkataramani, P. Yalagandula, R. Kokku,
S. Sharif, and M. Dahlin. Potential costs and
benefits of long-term prefetching for content-
distribution. Computer Communications Journal,
25(4):367–375, 2002.

[51] D. Wessels. Squid Internet object cache.
http://squid.nlanr.net/Squid, Jan 1998.

[52] Y. Yang and S. Lam. General AIMD Congestion
Control. In ICNP, 2000.

[53] H. Yu and A. Vahdat. The costs and limits of avail-
ability for replicated services. In SOSP, 2001.

[54] Y. Zhang, V. Paxson, and S. Shenkar. The Station-
arity of Internet Path Properties: Routing, Loss,
and Throughput. Technical report, ICSI Center for
Internet Research, May 2000.

